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Abstract: Background/Objectives: Nuclear pleomorphism, a crucial determinant of breast can-

cer grading under the Nottingham Histopathology Grading (NHG) system, remains inadequately

quantified in the existing literature. Motivated by this gap, our study seeks to investigate and estab-

lish correlations among morphological features across various scores of nuclear pleomorphism, as

per the NHG system. We aim to quantify nuclear pleomorphism across these scores and validate

our proposed measurement method against ground-truth data. Methods: Initially, we deconstruct

the descriptions of nuclear pleomorphism into three core elements: size, shape, and appearance.

These elements are subsequently mathematically modeled into equations, termed ESize, EShape, and

EAppearance. These equations are then integrated into a unified model termed Harmonic Mean (HM).

The HM equation yields a value approaching 1 for nuclei demonstrating characteristics of score-3

nuclear pleomorphism and near 0 for those exhibiting features of score-1 nuclear pleomorphism.

Results: The proposed HM model demonstrates promising performance metrics, including Accuracy,

Recall, Specificity, Precision, and F1-score, with values of 0.97, 0.96, 0.97, 0.94, and 0.95, respectively.

Conclusions: In summary, this study proposes the HM equation as a novel feature for the precise

quantification of nuclear pleomorphism in breast cancer.

Keywords: quantitative measurement; modelling; morphological features; nuclear pleomorphism;

nuclear atypia scoring; breast cancer

1. Introduction

To date, breast cancer remains a global challenge. Recent reports have found that the
incidence rates of breast cancer are soaring in developed countries, whereas high mortality
rates are reported in lesser-developed countries, mainly due to late diagnoses [1–3]. In 2020,
a total of 684,996 deaths (15.5% of all cancer cases amongst women) were reported, leading
to the disease being proclaimed as the leading cause of mortality (cancer) amongst women
across the globe [4,5]. The NHG system is a semi-quantitative system recommended by the
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World Health Organization (WHO), a modified grading procedure originating from the
Scarff–Bloom–Richardson grading system [6]. Nowadays, the NHG system is widely used
as the gold standard for breast cancer grading purposes, where nuclear pleomorphism is
one of the main features underpinning the final grade of this grading procedure [7].

Breast cancer is a non-communicable disease which emerges in variegated forms, is
self-subsistent, and interacts dynamically with its microenvironment through an adaptive
process. Given these heterogeneous properties, scoring of nuclear pleomorphism in accor-
dance with the semi-quantitative NHG system could be challenging. Table 1 shows the
description of the semi-quantitative NHG system in nuclear pleomorphism, with scores
ranging from 1 to 3 [7].

Table 1. Description of nuclear pleomorphism in the semi-quantitative NHG system.

Description of Nuclear Pleomorphism Scores

Score-1 nuclei are very similar in size to the nuclei of benign pre-existing epithelial
cells (<1.5 times the size), and they show minimal pleomorphism, and an even
chromatin pattern, as well as nucleoli that are either not visible or
very inconspicuous.

1

Score-2 nuclei are larger (1.5–2 times the size of benign epithelial cell nuclei), with
mild to moderate pleomorphism and visible, but small and inconspicuous, nucleoli.

2

Score-3 nuclei are even larger (>2 times the size of benign epithelial cell nuclei), with
vesicular chromatin; they vary markedly in size and shape and often show
prominent nucleoli.

3

2. Related Works

Grading of nuclear pleomorphism is tedious, cumbersome, time-consuming, and
highly susceptible to variations in the experience levels of histopathologists [8,9]. The
conventional grading procedure suffers from inter- and intra-observer variability and could
impinge the grading outputs, leading to suboptimal diagnostic and prognostic outcomes.
Thanks to the advancements in imaging engineering, the introduction of the whole-slide-
imaging scanner has made medical image processing/analysis possible. This has prompted
the exploration of repeatable and reproducible algorithms in the detection of nuclear
pleomorphism using variegated approaches.

Recent works pertaining to the detection of nuclear pleomorphism can be character-
ized into two main approaches: handcrafted- and learned-features approaches. Using
the handcrafted-features approach, Das, Nair, and Peter proposed a kernel-based Fisher
discriminant analysis on the Riemannian manifold (KFDAR), which takes advantage of the
kernel trick to embed the non-linear Riemannian manifold M into a higher-dimensional lin-
ear Hilbert space H [10]. This subspace was then reduced to a lower-dimensional and more
discriminative subspace wherein the samples can be linearly separated. The log-Euclidean
metric and the two symmetrized Bregman divergences, the Stein and Jeffrey divergences,
are the three Riemannian distance metrics that constitute the basis of the kernel technique
developed for the Hilbert space-embedding and kernel-discriminant analysis. The exper-
imental outcomes demonstrated that the proposed mapping to a highly discriminative
space had been successful in separating the histopathology images belonging to different
cancer grades. As a result, the proposed method outperformed some existing algorithms
for cancer grading, both qualitatively and quantitatively.

In the same year, the same team worked on another approach in nuclear-pleomorphism
detection via sparse coding and dictionary-learning on symmetric positive definite (SPD)
matrices for the grading of breast cancer [11]. The motivation for this method mainly
lies within the succession of SPD matrices arising from bundling the difficult approaches
within computer vision and machine learning. A convex issue in the higher-dimensional
RKHS space was created from the sparse coding issue on the SPD manifold Sn+ in order
to better make use of the separability of the cancer grades. The suggested covariance-
based SPD matrices were modelled as the sparse merging of Riemannian dictionary atoms,
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which together constitute a Riemannian manifold. By embedding kernels from the log-
Euclidean metric to reproduce the kernel Hilbert space, Jeffrey and Stein divergences, and
comparison with the non-kernel-based affine-invariant Riemannian metric, the nonlinearity
of the SPD manifold is addressed. The task includes utilizing the kernel approach for the
Riemannian manifold’s Hilbert space-embedding, which can improve breast cancer tissue
discrimination through the use of sparse representation over learned dictionaries. The
performance of the proposed method was found to be better than those of some existing
algorithms, in both quantitative and qualitative analysis. The proposed work found that
the learned geodesic distances with the Riemannian dictionary atoms were more sensitive
and appropriate for the nuclear-pleomorphism score.

In 2020, Das et al. [9] proposed a Riemannian manifold method, a non-Euclidean frame-
work used to investigate the potential for active learning on the nuclear-pleomorphism
score. An active learning technique was used in a batch-mode framework that flexibly
determined the appropriate batch size as well as the group of samples to query by using
the submodular optimization framework. The score of the cancer nuclear pleomorphism
depends on the batch-mode active learning, which relies on the Riemannian manifold.
This flexibly recognizes the examples used for manual labelling, including the complex-
ities and usefulness of tissue samples as well as the investment cost of labelling data.
The Transductive Multi-Label Learning (TRAM) technique was used to replace the need
for manual annotation by predicting the class labels of the histological breast carcinoma
pictures. Jeffrey divergence, Stein divergence, and log-Euclidean metric were the three
kernelized Riemannian metric variations that were subjected to sub-modularity-based dy-
namic batch-mode active learning and evaluated with contemporary algorithms to define
the breast cancer nuclear-pleomorphism grading. Given that it utilizes data from unlabeled
samples, adaptive Batch-Mode Active Learning’s results on the Riemannian metric indi-
cates better performance than some existing approaches for evaluating the nuclear atypia
in breast cancer.

Salahuddin et al. [12] proposed a novel approach to data sampling that made use of for-
mal concept analysis. The proposed pattern-based hyper-conceptual sampling was a novel
mix of conventional sampling methodologies. Formal concepts served as the foundation for
the sampling process. The proposed method begins with a conversion to a formal concept
analysis and then a conversion is made to an object pattern table. For pattern reduction, the
proposed method made use of the hyper-context method. The sample was then generated
using the coupling sampling process. To assess the quality of the samples, machine learning
experiments are implemented. The performance of the suggested approach was justified
by the results of another sampling technique. Using binary distribution, the final sample
comprises a very condensed sample that accurately represents the functional dependencies
and correlations found in the original dataset. As a result, the proposed method was found
promising in producing outcomes that are competitive.

Wan et al. [13] introduced a computer-aided grading system which works dependently
with multi-level characteristics and cascaded Support Vector Machine (SVM) classification.
To objectively define morphological patterns and understandable concepts from the breast
cancer tissue images, pixel-, object-, and semantic-level features were first retrieved. The
nuclei from the images were segmented using an enhanced hybrid active contour model-
based segmentation technique. In combination with object-level (architecture) features
and pixel-level (texture) features, the semantic-level features such as the proportions
of nuclei were abstracted with a Convolutional Neural Networks (CNN) approach and
defined corresponding to various grade levels. This resulted in an interesting mix of
image characteristics that may perform better than either feature subtype on its own. The
performance was maximized by utilizing several feature sets collected at various levels; a
cascaded technique was used to train multiple SVM classifiers by using the composition
of the feature subtypes. To increase the accuracy of the grading process, a cascaded
multi-class classification method was used to pyramidally classify images in a series of
more-demanding categorization activities. The final class of the cancer grade was calculated
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by averaging the results of the various SVM classifiers. The proposed method was found
computationally effective and adaptable to huge datasets, as the proposed method used
only a three-layer CNN model and concurrent processing.

Faridi et al. [14] proposed an automated computer-aided detection (CAD) system
that comprises methodologies such as detection, segmentation, and scoring of nuclear
pleomorphism. The proposed CAD system starts with the pre-processing stage, such
that the hematoxylin and eosin (H/E)-stained input images are first unmixed into their
respective sub-component channels. The cores of malignant nuclei were captured in the
nuclei-borders analyses that were extracted in Step Two after the preprocessed image
had been subjected to morphological procedures and a Difference of Gaussian filter. In
the segmentation stage, the segmented nuclei were graded to fulfil a requirement of the
NHG system. Finalizing the suggested approach requires scoring segmented nuclei in
accordance with the derived features using four criteria that distinguish between malignant
and healthy nuclei. Features for nuclear-pleomorphism scoring include the size of the
nuclei, the density of the chromatin, the regularity of the contours, and the presence of
nucleoli. The proposed CAD system was found promising, and demonstrated an improved
accuracy as compared to some existing techniques in the detection of malignant nuclei,
with an accuracy of 86.6%.

In the learned-features approach, recent studies have used the deep CNN architecture
for grading breast tumors. For cancer grading purposes in nuclear pleomorphism, Wan
et al. proposed mixed CNN-derived semantic-level descriptors together with the object-
based data and pixel-based data [13]. Another CNN-based approach was proposed by
Mollahosseini and Mahoor, namely, the Deep Belief architecture based Deep Neural Net-
work (DBN-DNN) and Multi-Resolution Convolutional Network (MR-CN) together with
Plurality Voting (MR-CN-PV) models, which were built on Restricted Boltzmann Machines
(RBM). The proposed method was a multitask CNN architecture that can simultaneously
forecast the cancer malignancy attribute and level of magnification.

Numerous variegated forms of the CNN architecture have also been proposed for
breast cancer grading focusing on nuclear pleomorphism, including, for example, deep
belief networks [15], residual networks [16,17], and inception networks [18,19]. The deep
CNN architecture had been used by [19,20] for grading breast tumors. The use of these
deep neural networks had demonstrated promising performance in the detection of nuclear
pleomorphism. These learning-based algorithms, however, require high-performance
computing resources, for example, graphics processing units (GPUs), and were found
extremely computationally intensive.

Das et al. [21] proposed a semi-supervised learning framework focusing on nuclear
atypia scoring (NAS) with a deep neural network-based generative adversarial training,
namely, NAS-SGAN, with a minimal labelled dataset. The proposed NAS-SGAN model
comprises a generator and a discriminator model that has undergone adversarial training
with both labelled and unlabeled samples. The discriminator model was created as an
unsupervised model that contained layers, as opposed to the supervised model. The
proposed model retrieved information pertaining to the population of data by removing
discriminative features. The generator model was learned using a consistent attribute
corresponding objective function that used compounded GAN architecture. Although a
small number of labelled samples were used, experimental research demonstrated that
the proposed model could achieve promising accuracy in distinguishing between various
cancer grades, enhancing the durability and precision score of the system.

Karimi and Danyali [22] proposed a combination of the CNN for feature extraction
and a two-layer Long Short-Term Memory (LSTM) for detection of nuclear pleomorphism
in breast cancer. The size of the histopathology images and the limited amount of training
data compel the introduction of a patch-based technique. First, the most significant features
in the image were identified. Next, a three-hidden-layer CNN was created and used
for feature extraction and to categorize the patches separately. For image grading, the
LSTM network was used to take into account all features of an image concurrently. The
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novelty of the proposed method lies within the capability to distinguish between different
cancer grades in accordance with the nuclear-pleomorphism scores without performing
the nuclei-segmentation stage.

Alom et al. [19] proposed an Inception Recurrent Residual Convolutional Neural
Network (IRRCNN) model, comprised of binary and multi-class approaches, for nuclear-
pleomorphism scoring purposes. The IRRCNN, recognized as a strong Deep CNN (DCNN)
model that integrates the strong performance of the Residual Network (ResNet), Recurrent
Convolutional Neural Network (RCNN), and Inception Network (Inception-v4). The
proposed IRRCNN was found to outperform the existing methods, including the Inception
Networks, Residual Networks, and RCNNs. Testing and validation were performed
using two publicly accessible datasets, namely, the Breast Cancer Classification Challenge
2015 and BreakHis. In terms of the patch-based, picture-based, patient-level, and image-
level classification, the detection outputs of the proposed IRRCNN were compared with
some existing methods using state-of-the-art machine learning and deep learning-based
methodologies. The proposed IRRCNN was found promising, achieving higher outputs in
terms of area under the curve (AUC) and overall detection accuracy.

Jiang et al. [20] proposed a CNN-based network, namely, the Breast Cancer Histopathol-
ogy Image Categorization Network (BHCNet), for the categorization of breast cancer
histopathology images. The proposed BHCNet comprises a Squeeze and Excitation (SE)
ResNet module which could achieve comparable performance with fewer parameters. The
proposed method implemented a new learning-rate scheduler, namely, the Gauss error
scheduler, enabling the BHCNet to achieve promising performance without a comprehen-
sive fine-tuning process.

Rakhlin et al. [23] proposed a computational strategy that depends on deep convolu-
tion neural networks for the categorization of breast cancer histopathology images. The
gradient-boosted trees classifier and numerous deep neural network topologies were used
in the proposed detection module. Strong data augmentation and deep convolutional
features retrieved at various scales with freely available CNNs trained on ImageNet were
used to boost the classifier’s robustness. Furthermore, the proposed module implemented
a precise and susceptible-to-overfitting implementation of the gradient boosting algorithm.
The proposed module achieved 87.2% accuracy for the four-class categorization task. For a
two-class classification task, the proposed module demonstrated 93.8% in accuracy, 97.3%
in AUC, and 96.5/ 88.0% in sensitivity/specificity in the detection of breast cancer at the
high-sensitivity operational point.

In both handcrafted- and learned-features approaches, to date, in-depth analysis
of the description of nuclear pleomorphism in accordance with the NHG system (as in
Table 1) is very limited. Detection or modelling algorithms fully aligned with such de-
scriptions across different scores are not available. There are a number of recent works
that demonstrate promising capability in the detection of nuclear pleomorphism in breast
cancer. These methods, however, partly or entirely differ from the description stipulated by
the NHG system, barricading their implementation in real-world applications. In recent
years, quantitative measurement and modelling of nature structures, for example, fetal
cardiovascular structures [24], tubule structures [25], and androgenetic alopecia via hair
diameter measurement [26], are emerging. These approaches reveal the in-depth features
underpinning the object of interest and provide a systematic approach to understanding
complex phenomena by capturing the underlying relationships and interactions between
different variables [27,28]. As this approach aligns with human perception, trust can thus
be established in the output model. Motivated by these determinations, the contributions
of the present study are as follows: (1) to investigate and correlate morphological features
across different scores concerning nuclear pleomorphism in accordance with the NHG
system; (2) to quantify the nuclear pleomorphism via mathematical modelling; and (3) to
validate and benchmark the proposed measurement method against the ground truth. The
main novelty of the proposed measurements over the other existing findings is that the
proposed measurements provide a clear morphological meaning for nuclear pleomorphism
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across different scores, alongside producing measurable output that enables quantification
of qualitative nuclear-pleomorphism features in accordance with the NHG system.

The paper is organized as follows. Section 3 provides a detailed description of the
proposed methods. Section 4 describes the dataset and presents the results obtained from
this study. The limitations of the study and ideas for future work are given in Section 5.
Section 6 summarizes the present study.

3. Methods

3.1. Theoretical Framework and Mathematical Modelling

Upon scrutinizing Table 1, the descriptions of nuclear pleomorphism across scores 1
to 3 can be broken down into three main elements: size, shape, and appearance. Figure 1
illustrates the aforementioned breakdown.
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Figure 1. The breakdown of descriptions for nuclear pleomorphism into the three main elements:
size, shape, and appearance.

A natural question now is how to correlate the three main elements into one usable
model to effectively quantify the qualitative descriptions of the nuclear pleomorphism.
To achieve this, three mathematical equations are proposed, namely, ESize, EShape, and
EAppearance, for size, shape, and appearance elements, respectively. In this study, an equation,
namely, HM, is proposed to integrate these three equations into a single, usable model. We
hypothesize that the HM value for nuclear pleomorphism would fall within the range of [0,
1]. Specifically, the equation expects that a score-3 nuclear pleomorphism has an HM value
approximated to 1, whereas a score-1 nuclear pleomorphism is approximated to 0.

The mathematical model of the size element is straightforward. The ratio of nucleus
size variation is computed as follows:

EPSize =
xi − k

k
; such that 1 ≤ i ≤ N (1)

ESize =







1, i f EPSize ≥ 1
EPSize, i f 0.5 ≤ EPSize < 1

0, i f EPSize < 0.5
(2)
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where xi denotes the size of the ith nucleus; N denotes the maximum number of nuclei;
and k denotes a constant which refers to the size of the benign epithelial cell nuclei. In this
study, the k constant is set as 849. The proposed k constant is determined systematically
based on a comprehensive analysis of 200 benign epithelial cell nuclei. The 200 benign
epithelial cell nuclei were first segmented using the CellProfiler 3.0 software, using the
same procedure/setting as proposed in Step 2 in Section 3.2. Next, the mean value, in pixel
area, of the benign epithelial cell nuclei was calculated. This pixel area was then used as
the k constant herein. Prior to proceeding to the next step, Equations (1) and (2) were tested
and validated using an independent dataset with the size of 150 nuclear pleomorphisms
(specifically, 50 nuclear pleomorphisms from Scores 1, 2, and 3, respectively), to justify
the applicability of the proposed k constant. The mathematical model for size element
comprises a two-stage calculation, namely, EPSize and ESize. The EPSize is first calculated
to determine the nucleus size variation, whereas ESize is then used to integrate rules in
accordance with the descriptions of nuclear pleomorphism across different scores. The
equation yields a value of 1 when the size of the nucleus is >2 times the size of the benign
epithelial cell nuclei, whereas a value approaching 0 is returned when the size of the nucleus
is 1.5 to 2 times or <1.5 times of the benign epithelial cell nuclei.

To model the shape element, an isoperimetric quotient is used. The equation is as
follows:

EShape = 1 −
4π ∗ Ar

Peri2
(3)

where Ar and Peri denote Area and Perimeter, measured in pixel values, respectively. The
core idea of Equation (3) is to differentiate between a circular and an irregularly shaped
object using a single value within the range of [0, 1]. For a nucleus in a perfect circle shape,
the equation yields a value of 0, reflecting the description of score-1 nuclear pleomorphism
with an assumption of minimal pleomorphism. For irregular shapes or bizarre objects,
the value would be greater than 0 (or approaching 1), reflecting the description of score-3
nuclear pleomorphism, with an assumption of marked variation in shape.

Motivated by one of the previous works, specifically one on the study of nucleus shape
in breast histopathology images [8], the appearance element is modelled as follows:

EAppearance =
Hol

Ar
(4)

where Hol denotes the number of hollow pixels in the cell nucleus (examples in Figure 2),
reflecting the pattern and distribution of chromatin and visibility of nucleoli in the cell
nucleus. The equation yields a value approaching 1 if and only if the hollow pixels are
dominant in the nucleus, whereas a value approaching 0 is returned if and only if the
hollow pixels are scarce.

 

𝐻𝑀 = 𝜏𝑤ଵ 1𝐸ௌ௭ + 𝑤ଶ 1𝐸ௌ + 𝑤ଷ 1𝐸 ;
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤ଵ = ൜0, 𝑖𝑓 𝐸ௌ௭ = 0𝑤ଵ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜏 = ൜ 2, 𝑖𝑓 𝑤ଵ = 03, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑤ଵ 𝑤ଶ 𝑤ଷ 𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝑤ଵ 𝜏𝐸ௌ௭ 𝑤ଵ 𝑤ଶ 𝑤ଷ
𝑤ଵ 𝑤ଶ 𝑤ଷ𝑤ଵ 𝑤ଶ 𝑤ଷ
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Figure 2. Sample synthetic images with Hol of 0, 3, and 5, where grey and white colors denote the
foreground and background. (a) Hol = 0; (b) Hol = 3; (c) Hol = 5.

The HM equation is then implemented to integrate the three elements (i.e., size, shape,
and appearance) into one usable model by integrating Equations (2) to (4) into Equation (5),
as follows:

HM =
τ

w1
1

ESize
+ w2

1
EShape

+ w3
1

EAppearance

; (5)
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such that w1 =

{

0, i f ESize = 0
w1, otherwise

such that τ =

{

2, i f w1 = 0
3, otherwise

where w1, w2, and w3 are the weightage of ESize, EShape, and EAppearance, respectively. It is
important to remark that when ESize = 0 (based on Equation (2)), w1 is set as 0 (and τ is set
as 2, as the HM equation now considers only two elements) and rules out the consideration
of ESize in the HM equation. This is mainly because, mathematically, a division by a zero
would result in an infinity value. In this study, all three elements shared same weightage,
and thus w1, w2, and w3 are set as 1. The HM is defined as the reciprocal of the arithmetic
mean of the reciprocals of the three elements in nuclear pleomorphism. This equation
provides a method to aggregate the three features, giving equal importance to each element
(provided that w1, w2, and w3 are set as 1). The weightage of each element can be adjusted
by modifying the value of w1, w2, and w3 and thus provide higher importance to a specific
element. The HM equation yields a value approaching 1 when the nucleus demonstrates
characteristics of score-3 nuclear pleomorphism, whereas a value approaching 0 is returned
when the nucleus demonstrates characteristics of score-1 nuclear pleomorphism.

3.2. Methodology Pipeline

The implementation of proposed equations concerning the size, shape, and appearance,
as well as the HM value, in quantifying the nuclear pleomorphism is simple. The methods
are as follows:

1. Pre-processing: Extract the H-channel of the input breast histopathology images
by converting the RGB input images into optical density space via singular value
decomposition [29].

2. Nucleus segmentation: Segment the nucleus using CellProfiler 3.0 [30].
3. Post-processing: If necessary, manual intervention from an expert is involved, such

that the cell boundary (pixel-based) is manually edited under the expert’s supervision.
4. Calculation: Calculate the ESize, EShape, and EAppearance, using the Equations (2) to (4),

respectively.
5. Measurement of nuclear pleomorphism: Quantify and measure the nuclear pleomor-

phism of a nucleus using the HM equation (Equation (5)).

Perfect nucleus segmentation is known as a highly challenging task in which con-
tinuous efforts are made over the years to improve and close the research gaps [31,32].
It is important to remark that in this study, the main purpose is to quantify the nuclear-
pleomorphism scoring in accordance with the NHG system. The features extracted in the
subsequent stages however are closely related to the succession of the nucleus segmentation
stage. Thus, a semi-supervised nucleus segmentation method is employed such that the
Cell Profiler 3.0 [30] is used as a software tool to segment the nuclei from the H-channel
of the input histopathology images. To obtain the H-channel, the stain-unmixing method
is implemented by converting the RGB input images to optical density space via singular
value decomposition [29]. The segmentation outputs are reviewed and monitored by a
histopathologist to ensure segmentation is performed accordingly. If necessary, manual
intervention is used. This serves as a baseline to justify that the features extracted in
the subsequent stages are sound and reflect the characteristics of nuclear pleomorphism
across different scores. In Steps 4 and 5, calculation and quantitative measurement of nu-
clear pleomorphism are performed by using the proposed equations, namely, ESize, EShape,
EAppearance, and HM.

To validate the hypothesis and the applicability of the proposed measurement method,
the measurement outputs are tested and validated against the ground truth provided by
the histopathologist. For this purpose, a baseline classifier is used, namely, SVM [33,34].
The classification was performed using a fivefold cross-validation SVM classifier with the
Radial Basis Function (RBF) kernel. The data are randomly divided into five equal pieces.
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Each selected piece is chosen as a test set, with training performed on the remaining portion
of the data. The cross-validation is then repeated five times, with each subsample used
exactly once as the validation data. All the observations are used for both training and
validation, and each observation is specifically used for validation.

Evaluation metrics, for example, Accuracy, Recall, Specificity, Precision, and F1-score,
are used to statistically analyze the performance against the ground truth. Table 2 sum-
marizes the evaluation metrics used in this study; the tubule that was correctly labeled as
a tubule is referred to as a True Positive (TP), the non-tubule that was correctly labeled
as a non-tubule is referred to as a True Negative (TN), the non-tubule that was wrongly
labeled as a tubule is referred to as a False Positive (FP), and the tubule that was wrongly
labeled as a non-tubule is referred to as a False Negative (FN). A promising method would
demonstrate high values in all the evaluation metrics.

Table 2. Evaluation metrics.

Metrics Equations

Accuracy TP+TN
TP+TN+FP+FN

Recall TP
FN+TP

Specificity TN
FP+TN

Precision TP
FP+TP

F1-score 2∗Recall∗Precision
Recall+Precision

4. Dataset, Results, and Discussions

4.1. Dataset

The dataset used in this study comprises real histopathology slides of breast cancer
which were locally collected in Malaysia. The breast histopathology slides were obtained
from the Pathology Department, Hospital Tuanku Fauziah, Kangar, Perlis, Malaysia. A total
of 48 breast histopathology slides from 48 patients (one slide per patient) with anonymized
identities were collected retrospectively. These slides were prepared under a standard
staining procedure using the hematoxylin and eosin (H/E) stains. The staining procedure
is aligned with the protocols of the Ministry of Health, Malaysia. An Aperio CS2 whole-
slide-imaging scanner was used to convert the histopathology slides into digital form.
The scanning procedure was performed under the careful supervision of an experienced
histopathologist and an instrument specialist to ensure the histopathology slides were
scanned under fixed instrument parameters (e.g., input format and objective lenses). The
ethical protocol of this study has been approved by the Medical Research and Committee of
the National Medical Research Register (NMRR) Malaysia, with protocol number: NMRR-
21-949-58903. For validation and benchmarking purposes, a total of 600 nuclei were
demarcated by a histopathologist from the 48 breast histopathology slides, such that
200 nuclei from each score were obtained via convenient sampling. The 600 demarcated
nuclei served as ground truth in this study.

4.2. Analysis on the Outputs of ESize, EShape, EAppearance, and HM

Figure 3 shows the boxplots analysis of ESize, EShape, EAppearance, and HM for scores 1
to 3 for nuclear pleomorphism using 300 ground truth, such that 100 nuclei were included
for each score in the analysis. Based on Figure 3a, it is evident that the ESize values of
score-1 and score-2 nuclear pleomorphism exhibit clear separation, whereas the ESize values
for scores 2 and 3 are overlapping. Notably, the ESize of score-3 nuclear pleomorphism
remains consistent across all 100 nuclei, indicating remarkable variation in nucleus size
(i.e., >2.0 times).
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Figure 3. The boxplots of ESize, EShape, EAppearance, and HM for scores 1 to 3 for nuclear pleomorphism
using 300 ground truth, such that 100 nuclei were included for each score. (a) Analysis for ESize;
(b) Analysis for EShape; (c) Analysis for EAppearance; (d) Analysis for HM.

In Figure 3b, score-1 and score-2 nuclear pleomorphism display overlapping data in
EShape, with the EShape outputs from score-2 nuclear pleomorphism slightly lower than those
of score-1. Conversely, score-3 nuclear pleomorphism exhibits distinct separation from the
others. This delineation is justifiable, as marked variation in shape is a common feature
of score-3 nuclear pleomorphism. In the context of breast cancer, pleomorphism refers to
variations in the size, shape, and structure of nucleus cells, particularly when compared to
benign pre-existing epithelial cells [7]. In this study, ESize and EShape are proposed primarily
to identify variations in size and shape, respectively. As variation in size and shape are
key features of pleomorphism, the proposed ESize and EShape complement each other to
effectively capture pleomorphism across scores 1 to 3. Therefore, we infer that the score-2
nucleus pleomorphism sampled herein demonstrates variation in size rather than shape,
resulting in a boxplot with lower values compared to score-1 nuclear pleomorphism, as
depicted in Figure 3b.

In Figure 3c, the outputs of EAppearance across scores 1 to 3 for nuclear pleomorphism
comply to the hypothesis made, such that EAppearance yields a value approaching 1 if the
hollow pixels are dominant in the nucleus, whereas a value approaching 0 is returned if
the hollow pixels are scarce. We could deduce that the Hol is sufficiently effective to reflect
chromatin pattern and visibility of nucleoli in a nucleus.

Figure 3d shows the boxplots of HM analysis across scores 1 to 3 for nuclear pleomor-
phism. It is evident that the boxplots exhibit clear separation across different scores and
the compact boxplots reflect consistency and strong agreement when measuring nuclear
pleomorphism using the proposed HM, and considering the three main elements, size,
shape, and appearance, namely, ESize, EShape, and EAppearance, respectively.
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4.3. Measurement Outputs

To further illustrate the applicability of the proposed measurement, three samples from
each score are provided in Table 3, detailing the original input nucleus patch, segmentation
outputs, and measurement outputs of ESize, EShape, EAppearance, and HM. Based on Table 3,
the proposed measurements, ESize, EShape, EAppearance, and HM, appear to be aligned with
the hypothesis made in this study, such that the HM values for scores 1 and 3 nuclear
pleomorphism are approaching 0 and 1, respectively. The HM values obtained for the
score-1 nucleus are 0.3244, 0.3759, and 0.4382; for score-2, the values are: 0.4816, 0.4997, and
0.4985; and for score-3, the values are: 0.7542, 0.6524, and 0.8404.

Table 3. Sample measurement outputs.

Nuclear Pleomorphism
ESize EShape EAppearance HM

Original Input Segmentation Outputs *

Score 1

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝑬𝑺𝒊𝒛𝒆 𝑬𝑺𝒉𝒂𝒑𝒆 𝑬𝑨𝒑𝒑𝒆𝒂𝒓𝒂𝒏𝒄𝒆
  

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝑬𝑺𝒊𝒛𝒆 𝑬𝑺𝒉𝒂𝒑𝒆 𝑬𝑨𝒑𝒑𝒆𝒂𝒓𝒂𝒏𝒄𝒆
  

0.3993 0.3661 0.2912 0.3244

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝑬𝑺𝒊𝒛𝒆 𝑬𝑺𝒉𝒂𝒑𝒆 𝑬𝑨𝒑𝒑𝒆𝒂𝒓𝒂𝒏𝒄𝒆

  

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝑬𝑺𝒊𝒛𝒆 𝑬𝑺𝒉𝒂𝒑𝒆 𝑬𝑨𝒑𝒑𝒆𝒂𝒓𝒂𝒏𝒄𝒆

  

0.5034 0.3407 0.3270 0.3759

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝑬𝑺𝒊𝒛𝒆 𝑬𝑺𝒉𝒂𝒑𝒆 𝑬𝑨𝒑𝒑𝒆𝒂𝒓𝒂𝒏𝒄𝒆

  

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝑬𝑺𝒊𝒛𝒆 𝑬𝑺𝒉𝒂𝒑𝒆 𝑬𝑨𝒑𝒑𝒆𝒂𝒓𝒂𝒏𝒄𝒆

  

0.0863 0.4715 0.4093 0.4382

Score 2

  

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

  

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

0.7694 0.3861 0.4274 0.4816

  

 

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

 

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

0.5669 0.4360 0.5139 0.4997

  

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

  

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

0.6449 0.4153 0.4855 0.4985

Score 3

  

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

  

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

1.0000 0.6479 0.6973 0.7542

  

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

  

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

1.0000 0.5269 0.5881 0.6524

 

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

 

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

1.0000 0.7049 0.8687 0.8404

* The green color lines show the boundary of the segmented cell nucleus via the CellProfiler 3.0 [30].
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4.4. Classification Outputs

As detailed in Section 3.2, the SVM with RBF kernel is used and serves as a baseline
classifier to assess the viability of the proposed measurement. Here, the proposed ESize,
EShape, EAppearance, and HM are used as new input features to measure and discriminate
nuclear pleomorphism across different scores. As fivefold cross-validation is used, the mean
values of the classification outputs are initially computed. Figure 4 shows the classification
outputs for ESize, EShape, EAppearance, and HM, using the dataset.

𝐸ௌ௭𝐸ௌ 𝐸
ff𝐸ௌ௭ 𝐸ௌ 𝐸

  
(a) (b) 

  
(c) (d) 𝐸ௌ௭ 𝐸ௌ 𝐸𝐸ௌ௭ 𝐸ௌ 𝐸

𝐸ௌ௭ 𝐸ௌ 𝐸
ffi

ff

𝐸ௌ௭
ff

tt

𝐸
tt 𝐸ௌ௭ 𝐸ௌ
tt

ff

ff

𝐸ௌ௭ 𝐸ௌ 𝐸
ff

Figure 4. Classification outputs for ESize, EShape, EAppearance, and HM, using the dataset. (a) Using the
ESize as input feature; (b) Using the EShape as input feature; (c) Using the EAppearance as input feature;
(d) Using the HM as input feature.

Based on Figure 4a–c, using the proposed ESize, EShape, and EAppearance alone as an
input feature into the classifier is insufficient to discriminate nuclear pleomorphism into
different scores accurately. The obtained Accuracy, Recall, Specificity, Precision, and F1-
score for scores 1 to 3 are found to be lower than 0.80, denoting sub-optimal classification
outcomes. In Figure 4a, the Accuracy, Specificity, Precision, and F1-score obtained for scores
2 and 3 nuclear pleomorphism are relatively low (i.e., <0.80). This suggests that using ESize

alone is insignificant to discriminate between score-2 and score-3 nucleus pleomorphism
but effective in identifying score-1 nuclear pleomorphism. This is justifiable, as the sizes of
the nucleus cell for scores 2 and 3 are overlapping, as shown in Figure 3a. Supplementary
features are required to better partition the data into correct categories. In Figure 4b, all
evaluation metrics for score-3 nuclear pleomorphism show promising outcomes (i.e., >0.80),
but relatively poor outputs are found in Accuracy, Recall, Precision, and F1-score (i.e., <0.80)
for both score-1 and score-2 nuclear pleomorphism. This is primarily due to heterogeneous
properties of pleomorphism concerning both size and shape features and the finding
herein is aligned with the boxplot analysis as in Figure 3b. In Figure 4c, using EAppearance

alone as an input feature to the classifier produced slightly better outcomes, compared
to the ESize and EShape, with values approaching 0.80, if not better. The classification
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outcomes, however, are not optimal. Based on Figure 4d, it is evident that the overall
performance of the classification outputs is promising, achieving values of more than
0.90 in all evaluation metrics, such that overall values in Accuracy, Recall, Specificity,
Precision, and F1-score are 0.97, 0.96, 0.97, 0.94, and 0.95, respectively. The proposed HM
formulation aligns with the description of nuclear pleomorphism outlined in the NHG
system, effectively incorporating all three main elements: size, shape, and appearance.
Each element functions as a supplementary feature in the equation, contributing to the
delineation and enhancement of classification outcomes. This comprehensive approach
enables accurate discrimination of nuclear pleomorphism into different scores. Notably, the
error bars in Figure 4d for all evaluation metrics are relatively narrow, indicating a strong
consensus in classification outcomes with minimal standard deviation.

4.5. Ablation Study

To further justify the superiority of the proposed HM equation against the proposed
equations of ESize, EShape, and EAppearance, an ablation study is conducted. Here, specific
input features are systematically removed from consideration while keeping the classi-
fier parameters unchanged. This approach allows for the evaluation of the individual
contributions of each feature to the overall performance. By systematically eliminating
different input features and observing the resulting changes, insights into the importance
and effectiveness of various features can be gleaned. Table 4 presents the F1-scores obtained
from the ablation study, indicating the performance with different features used as input to
the classifier. Based on Table 4, it is evident that the F1-scores for HM are highest across
scores 1 to 3, with an overall output of 0.95.

Table 4. Ablation study.

Feature(s) Included
F1-Score

Score 1 Score 2 Score 3 Overall

ESize 0.92 0.59 0.74 0.75

EShape 0.58 0.57 0.89 0.68

EAppearance 0.81 0.79 0.78 0.79

ESize + EShape 0.67 0.51 0.70 0.63

ESize + EAppearance 0.83 0.64 0.71 0.73

EShape+EAppearance 0.66 0.61 0.81 0.69

HM
(ESize + EShape + EAppearance)

0.96 0.93 0.97 0.95

Bold fonts highlight the highest output in each column.

4.6. Benchmarking with Existing Quantitative Features

To date, existing quantitative features focusing on nuclear pleomorphism are very lim-
ited. Due to the heterogeneous properties of pleomorphism in breast cancer, conventional
features, for example, shape, texture, and fitness of the outline [35], as well as morpho-
logical and textural features [36], are commonly used. Additionally, to further validate
the applicability of the proposed measurement method, recent deep learning methods, for
example, the LeNet-5 [37] and CNN [38] methods, were compared with the proposed HM.
Figure 5 illustrates the classification outputs of the existing quantitative features juxtaposed
with the proposed HM. From the figure, it is evident that the outputs for all evaluation
metrics obtained from the proposed HM are consistently higher than those of the outputs
obtained from the existing quantitative features [35,36]. Compared with the recent deep
learning methods [37,38], the proposed HM demonstrates comparable if not better perfor-
mance. This demonstrates the robustness of the proposed HM in discriminating among
nuclear pleomorphism scores 1 to 3. The proposed HM presents itself as a promising new
feature for measuring nuclear pleomorphism in breast cancer.
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Figure 5. Classification outputs comparing the existing quantitative features and deep learning
methods with the proposed HM [35–38]. (a) Score 1; (b) Score 2; (c) Score 3.

5. Limitations and Future Works

Manual annotation and dataset preparation are known to be expensive, tedious, and
time-consuming processes [39,40]. In this study, we conducted an experiment to quantify
nuclear pleomorphism by thoroughly investigating the features associated with nuclear
pleomorphism as described by the NHG system. The obtained outputs validate the applica-
bility and robustness of the proposed HM as a new feature for measuring and discriminat-
ing nuclear pleomorphism using different scores. Compared to the crowdsourcing-based
datasets, for example (the NuCLS dataset [41]), the dataset used in this study is seen to
be small. Thus, we aim to expand and validate our findings using crowdsourcing-based
datasets in the future. Furthermore, we plan to develop a fusion-oriented deep learning
model to automate the nucleus segmentation stage and utilize the proposed HM as an
input for measuring nuclear pleomorphism in breast cancer.

6. Conclusions

In this study, an in-depth investigation of the nuclei across score-1 to score-3 nuclear
pleomorphism is first performed. The insights gained serve as the foundation for the
proposed quantitative equations, which detail the three core elements of nuclear pleo-
morphism, namely, size, shape, and appearance, denoted as ESize, EShape, and EAppearance,
respectively. These equations are then integrated into a single usable model, termed HM.
The output of the proposed HM is a quantitative value falling within the range of [0, 1], for
which it is hypothesized that a score-3 nuclear pleomorphism has an HM value approxi-
mated to 1, while a score-1 nuclear pleomorphism is approximated to 0. To validate the
applicability of the proposed measurement, a baseline classifier, namely, the SVM with
RBF kernel, is employed. The proposed HM demonstrates promising outputs, achieving
Accuracy, Recall, Specificity, Precision, and F1-score values of 0.97, 0.96, 0.97, 0.94, and
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0.95, respectively. Compared to some existing quantitative features, the proposed HM
outperforms these features, leading to the conclusion that it could serve as a new fea-
ture for measuring nuclear pleomorphism in breast cancer. Additionally, the proposed
HM provides a clear morphological meaning for nuclear pleomorphism across different
scores, producing measurable output that could be used as a second opinion in standard
nuclear-pleomorphism scoring procedures in breast cancer.
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