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ABSTRACT  Article History 

Plastic is a ubiquitous material used to meet various human needs. However, its use negatively 

impacts the environment due to its non-biodegradability, contribution to pollution, and 

potential health threats. Biocomposite materials offer a promising solution to these problems. 

This study aimed to develop biocomposite films using a polyvinyl alcohol / potato starch 

matrix reinforced with coffee grounds waste as a filler. This experimental study involved three 

tests: tensile testing, fracture morphological observation, and biodegradation in soil. The 

addition of CGW to the PVA/PS matrix increased tensile stress, reaching a maximum of 

9.42MPa at a 2% filler loading. This result corresponded with the tensile modulus, which also 

peaked at 2% CGW (0.28MPa). Fracture morphological analysis via scanning electron 

microscopy confirmed these findings, revealing wave-like patterns and strong interfacial 

bonding between the matrix and filler at this concentration. The lowest tensile stress 

(6.31MPa) was observed at a 3% filler loading. Strain values remained relatively consistent 

between pure PVA and the biocomposites. Biodegradation testing revealed degradation rates 

of 32, 34, 36, 39, and 37% for PVA, PVA/PS, and CGW loadings of 1, 2, and 3%, respectively, 

after 15 days of soil burial. The biocomposite films, particularly at the optimal CGW loading, 

exhibit competitive tensile stress and biodegradation rates compared to synthetic plastics, 

suggesting their potential suitability for food packaging applications.  
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INTRODUCTION 
 

 While plastics are ubiquitous in modern society, 

fulfilling a range of consumer demands from packaging to 

single-use items like shopping bags, their persistence in 

the environment presents significant challenges. The non-

biodegradable nature of conventional plastics contributes 

to environmental pollution, exacerbates flooding due to 

drainage blockage, and poses potential risks to human 

health (Acquavia et al., 2021; Kibria et al., 2023). Therefore, 

one of the efforts to overcome this problem is to switch to 

biocomposite materials. Biocomposite have several 

advantages in replacing synthetic plastics such as 

environmentally friendly, low prices, abundant availability, 

and can be used as compost (Sadasivuni et al., 2020; Al 

Amin et al., 2023). However, it has a disadvantage such as 

lower mechanical and thermal properties than synthetic 

plastics (Neves et al., 2020). To overcome this problem, 

other components are needed to improve the properties 

of biocomposite such as natural fillers. 

 Biocomposite is defined as a multi-phase material, 

where the biopolymer is mixed with two or more fibers or 

particles from nature as a reinforcement which results 

increasing the mechanical properties (Zwawi, 2021; Ilyas & 

Sapuan, 2020). Several matrices of biocomposite are 

usually   used   such   as   polylactic   acid   (PLA),  chitosan,  
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polyvinyl alcohol (PVA), starch, and others. From these 

matrices, PVA is one of the biocomposite matrix that has 

several advantages namely soluble in water, resistance to 

chemical, and good film forming (Zulkiflee and Fauzi, 

2021). Due to its properties, PVA has received attention for 

its ability to decompose in nature in a relatively short 

period of time (Begum et al., 2019). However, it has some 

drawbacks such as the high price. Therefore, mixing with 

starch is a solution to reduce the production cost of the 

biocomposite (Asrofi et al., 2019).  

 Study on PVA matrix with a mixture of starch has 

been investigated by previous researchers, for example 

the mixture of PVA and starch. In this study, the 

addition of starch into PVA reduce mechanical 

properties. This phenomenon due to the bad interface 

PVA and starch. Furthermore, starch has hydrophilic 

properties (Asrofi et al., 2019). To overcome this 

problem, the addition of natural fillers is a solution to 

improve the properties without reducing the 

biodegradation value. This is evidenced by a study 

conducted by previous researchers which showed that 

fillers from nature were able to improve the mechanical 

properties of the PVA/Starch matrix. This is due to the 

good hydrogen bonding between the fillers in the 

matrix (Sreekumar et al., 2019). 

 Referring to the previous research, this study uses a 

PVA and potato starch as with coffee grounds waste. The 

use of potato starch as a mixture in the PVA matrix in 

this study was motivated by the previous study that 

potato starch can dissolve large amounts of amylose 

resulting easily soluble in water in a short time (Han et 

al., 2019). 

 In the current study, natural fillers such as coffee 

grounds waste have been prepared to improve the 

properties of the biocomposite. The selection of coffee 

ground waste as a filler in biocomposites because 

coffee is one of the most abundant garden products in 

Jember Regency, Indonesia. According to previous 

study, the coffee grounds waste is the main residue 

after coffee has been brewed. Millions of tons of coffee 

grounds residue consist of several elements, namely 

water, cellulose, lignin, hemicellulose, fat, ash, protein, 

and aliphatic acid. If the coffee grounds waste is not 

controlled properly, it can cause a polluted environment 

because the decomposition process of coffee grounds 

requires large amounts of oxygen (Lessa et al., 2018). 

Therefore, the use of coffee grounds as a biocomposite 

filler aims to reduce coffee grounds waste and is 

expected to be able to obtain added value from coffee 

grounds waste. 

 This study examines the effect of the addition coffee 

grounds waste to the PVA and potato starch matrix. This 

study presents the mechanical properties of the PVA and 

potato starch as matrix without and with the addition of 

coffee grounds waste as filler. These biocomposites were 

tested using tensile test (mechanical properties), scanning 

electron microscopy (fracture morphology), and soil burial 

tests (biodegradation). The results of this study are 

expected to find new types of biocomposites to substitute 

synthetic plastic packaging. 

MATERIALS & METHODS 
 

Materials 

 Polyvinyl Alcohol (PVA) with a viscosity of 49.2 cps and 

a degree of alcoholysis of 87.58 mole% was obtained from 

Chang Chun Petrochemical Co., Ltd. Potato starch (PS) was 

obtained from plantation products in Jember Regency. 

Coffee grounds waste (CGW) was obtained from coffee 

processing waste at local coffee shops in Jember Regency. 

Other chemicals were obtained from a chemical shop in 

Jember Regency, Indonesia.  

 

Preparation of Coffee Grounds Waste (CGW) 

 CGW was dried using drying oven for 24 hours at 

105℃. The dried CGW was treated with alkalization with a 

1% NaOH (0.25 M) solution for 24 hours at room 

temperature. Then, it was neutralized with distilled water to 

pH 7. After the alkalization process, the CGW was dried in 

an oven for 24 hours at 105℃. Finally, it was sieved the 

coffee grounds using an 80-mesh sieve. 

 

Synthesis of PVA/Potato Starch/CGW Biocomposite  

 PVA was mixed with distilled water by weight ratio of 

1:10. Then, 6% of PS and glycerol in a ratio 1:5 was mixed 

in a beaker glass. CGW was added as much 1% (CGW1), 

2% (CGW2), 3% (CGW3) with a ratio of CGW to starch of 

1:100. Besides that, PVA and distilled water were mixed 

using hot plate magnetic stirrer at 90℃ at 500rpm for 

60min until gelatin. The starch, glycerol, and CGW were 

added and stirred into PVA solution at 70℃, 400 rpm for 

40 minutes to produce biocomposite gelatin. The 

biocomposite gelatin was then poured into a rectangular 

glass mold. It was dried using drying oven at 40℃ for 24 

hours. Finally, the biocomposite film was cut according to 

ASTM D-882 standard as reported by previous study 

(Asrofi et al., 2020). 

 

Tensile Test  

 All biocomposite specimens were prepared for tensile 

test. The tensile test was carried out using the Universal 

Testing Machine HT-2402 tensile machine. Three samples 

of each variation were tested and mean values were 

reported. The test was conducted at room temperature. 

 

Scanning Electron Microscopy (SEM)  

 SEM was carried out after the sample undergoes a 

tensile testing process. The SEM test was carried out using 

a machine with the Hitachi 3400 N series. This test was 

carried out on the fracture surface of the biocomposite 

sample. The observation was done at voltage and 

magnification for 1 kV and 2000x, respectively. 

 

Soil Burial Test  

 The biodegradation test was carried out using 

compost soil containing 25% Nitrogen, 7% Phosphorus, 

9% potassium, 3.7% Iron, 55.3% other nutrients, and pH 6. 

Biocomposite specimens were cut to a size of 20×20mm 

and then buried in the soil on depth of 5cm from the top 

of the soil. The biodegradation test was carried out with 

variations in burial for 0, 5, 10, and 15 days. 
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RESULTS & DISCUSSION 
 

Tensile Stress  

 The tensile stress curves of PVA/PS/CGW 

biocomposite containing different ratio of CGW as fillers 

into PVA/PS matrix are shown in Fig. 1. It shows that the 

addition of starch to the PVA matrix reduce the tensile 

stress of the biocomposite from 8.29MPa to 7.08MPa. This 

is supported by previous research which showed that the 

PVA tensile stress value of 31.21MPa decreased to 

9.54MPa when starch was added to the PVA matrix (Mittal 

et al., 2020). This is because starch has amorphous 

properties. The decrease in the value of tensile stress is 

also supported by previous study which shows that the 

addition of starch into the PVA matrix reduce the tensile 

stress caused by a decrease in the density of hydrogen 

bonds in the polymer matrix (Musa & Hameed, 2020). 

When CGW are added to the biocomposite, it increases 

the tensile stress value. The result of the highest tensile 

stress lies in the variation of the CGW by 2% for 9.42MPa. 

This is supported by previous report which conducted 

research on PVA/Potato Starch biocomposite with 

nanocrystalline cellulose (CNC) filler with a variation of 3-

20% (Noshirvani et al., 2018). It is known that the value of 

the tensile stress increases with the addition of the mass 

fraction of the filler. It can be indicated that the increase in 

the tensile stress value is caused by hydrogen bonds 

between the filler and the polymer matrix which causes the 

polymer chain to have limited mobility thereby increasing 

the stiffness of the composite (Noshirvani et al., 2018; 

Nurazzi et al., 2021). 

 

 
 

Fig. 1: Tensile stress of all biocomposite tested 
 

 The increase in the tensile stress value in the 2% CGW 

variation was strengthened by the results of morphological 

observations with SEM which showed a compact structure 

and coastline to produce good interfacial bonds between 

the matrix and filler which could increase the tensile stress 

of biocomposite samples (Asrofi et al., 2018). With the 

addition of 3% CGW, it showed a decrease in the tensile 

stress value to 6.31MPa. These results are similar with 

previous report regarding biocomposites with PVA matrix 

and kenaf fiber filler (Arumugam et al., 2020). This study 

resulted in a decrease in tensile stress along with the 

addition of fiber into the matrix. This occurs due to poor 

adhesion between the matrix and the fiber, causing the 

tensile stress to decrease with the addition of the fiber 

mass fraction (Bharath et al., 2024). The decrease in the 

tensile stress value is also evidenced by the results of 

morphological observations with SEM which show cracks 

and poor interfacial bonds (bad adhesion) which reduce 

the tensile stress value of biocomposite samples (Syafri et 

al., 2019). 

 Fig. 2 shows that the strain at break has an 

insignificant difference along with the addition of CGW as 

filler in the matrix. The highest value is found in the 2% 

filler variation with a value of 33.335% and the lowest value 

is in the 1% filler variation with a value of 32.072%. 

However, in the 2% filler variation, there was a very small 

increase in the strain value, which was 1.263%. From the 

Fig. 2, it can be concluded that along with the addition of 

the mass fraction of the filler, the CGW can increase the 

strain at break value. 

 

 

 
Fig. 2: Tensile strain of all biocomposite tested 

 

 This result is also evidenced by research conducted by 

previous study which conducted research on mixing 

PVA/starch as a matrix and natural fiber as a filler with a 

variation of 10-40% (Mallick et al., 2020). The research 

results show that the higher the mass fraction of rice husk 

fiber in the biocomposite produces a high strain value. The 

highest yield was shown in the variation of 40% rice husk 

fiber with a value of 300.02%. This happens because of the 

good compatibility between the fiber and the matrix. The 

presence of hydroxyl groups in natural fibers makes it 

compatible with the PVA/starch matrix. In addition, the 

increase in strain value was caused by an increase in the 

crystallinity of cellulose as the variety of natural fibers 

increased (Mallick et al., 2020). This result is also evidenced 

by research conducted by previous researcher who 

conducted research on mixing PVA with starch as a matrix 

and nanocrystalline cellulose as filler with a variation of 3-

20%. The result of strain with the highest value is found in 



Int J Agri Biosci, 2024, 13(3): 525-530. 
 

528 

the fiber variation of 7% with a value of 71.1% (Noshirvani 

et al., 2018). 

 Fig. 3 shows that the value of the tensile modulus 

has a good upward trend along with the addition of the 

mass fraction of CGW to PVA/PS matrix. The tensile 

modulus on pure PVA has a value of 0.25MPa. When 

starch was added to the PVA matrix, the value of the 

tensile modulus decreased to 0.23MPa. However, the 

addition of CGW in this study proved to increase the 

value of the tensile modulus. The increase in the tensile 

modulus value occurs when the addition of CGW filler is 

1% with a value of 0.27MPa and the addition of CGW is 

2% with a value of 0.28MPa. 

 

 

 
Fig. 3: Tensile modulus of all biocomposite tested 

 

 The increase in the value of the tensile modulus is 

supported by previous research which examined the 

effect of adding coir fibers to the PLA matrix on 

mechanical properties (Sun et al., 2017). This study 

showed that the addition of coir fibers to the PLA matrix 

resulted in an increase in tensile modulus. This occurs 

because the addition of fibers to the matrix causes the 

material to become stiffer due to the reduced mobility of 

the polymer chains with the addition of fibers (Sun et al., 

2017). 

 

Morphological Analysis  

 The biocomposite samples used in the SEM testing in 

this study were variations of pure PVA, PVA/PS/CGW2, 

and PVA/PS/CGW3 as shown in Fig. 4. This variation was 

chosen because the result of the highest tensile stress 

with a mixture of PVA/PS/CGW2 lies in the variation of 

coffee grounds by 2%. Meanwhile, the variation of 3% 

coffee grounds was chosen because it experienced a 

decrease in the value of tensile stress after the addition 

of fiber. 

 Fig. 4 (a-c) shows the results of the SEM test with a 

magnification of 2000x to determine the fracture 

surface of the biocomposite sample. Fig. 4a is the result 

of SEM testing on pure PVA biocomposite samples. The 

results showed that the pure PVA sample had a smooth 

surface which indicated that there was no filler 

component in the matrix. This result is evidenced by 

previous research which obtained pure PVA 

biocomposite samples having a smooth surface 

structure which indicates that the homogeneity of the 

PVA solution makes a good sample (Kansiz et al. 2024). 

Similar results were also shown in previous studies 

related to the phenomenon of smooth PVA structures 

without fillers (Mahardika et al., 2021). 

 Fig. 4b is the result of the fracture of the biocomposite 

sample with variations of PVA/PS/CGW2 which shows that 

there are wave lines and compact structures that are 

evenly distributed on the fracture surface of the 

biocomposite sample. The wave lines and compact 

structure are an indication that the filler is evenly 

distributed in the matrix so that there is no filler 

agglomeration which results in an increased tensile stress 

value. The compact structure and good fiber dispersion 

indicate a good interfacial bond between the matrix and 

filler so that the sample has an increase in tensile stress 

(Asrofi et al., 2018; Mahardika et al., 2021). 

 Fig. 4c is the result of SEM observations on the 

PVA/PS/CGW3 variation which shows that there are long 

cracks. Cracks are an indication of poor interfacial bonding 

between the matrix and filler. Poor interfacial bonding 

indicates that the filler is not homogeneous with the matrix 

due to the process of stirring the biocomposite solution, 

resulting in a decrease in the tensile stress value (Syafri et 

al., 2019). 

 

Soil Burial Degradation Properties  

 Fig. 5 shows the rate of biodegradation of 

biocomposite samples with the effect of variations in the 

mass fraction of CGW by 1, 2, and 3%. The Fig. 5 displays 

the rate of weight loss increases with the addition of 

variations in the mass fraction of the CGW filler. The 

results showed that at 5-day burial, the samples showed 

weight loss values of 17, 22, 26, 26, and 28%, respectively. 

In pure PVA samples, the value of the biodegradation 

rate increased up to day 15. This happened because 

according to previous researcher, PVA has hydrophilic 

properties so that it can absorb water in the soil which 

can cause the sample to experience increased weight loss 

(Marinas et al., 2024). 

 On day 10, each biocomposite sample experienced an 

increased weight loss compared to day 5 with values of 24, 

28, 30, 31, and 36%, respectively. The PVA/Starch 

biocomposite film sample showed that the addition of 

starch into the PVA matrix could increase the rate of 

degradation than the pure PVA sample. This happens 

because PVA has high hydrolyzability properties, causing 

resistance to soil burial degradation (Silva et al., 2023; 

Asrofi et al., 2023). Therefore, the addition of starch can 

increase the rate of degradation growth of microorganisms 

faster so that it helps the degradation process (Mallick et 

al., 2019). These results are also supported by previous 

research conducted which shows that along with the 

addition of the starch mass fraction into the PVA matrix, 

the degradation rate increases (Majeed et al., 2023; Asrofi 

et al., 2023). 
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Fig. 4: Fracture morphology by 

Scanning Electron Microscopy 

(SEM): (a) PVA, (b) PVA/PS/CGW2, 

(c) PVA/PS/CGW3 

 

 

 
 

Fig. 5: Degradation rate of all biocomposite tested 

 

 On day 15, each biocomposite sample experienced an 

increase in the rate of degradation compared to day 10 with 

values of 32, 35, 38, 39, and 37%, respectively. The increase 

in the rate of degradation was caused by the addition of the 

mass fraction of CGW into the PVA/PS matrix. The results of 

this study are supported by previous report which shows 

that as the mass fraction of the fiber in the matrix, the 

degradation rate increases (Asrofi et al., 2023). This happens 

because the organic compounds in the fiber make the 

biocomposite film vulnerable to attack by microorganisms. 

This is also supported by previous study which states that 

the natural fiber used can affect the degradation process 

because the fiber that has been treated with alkalization has 

undergone a chemical process so that it can increase the 

rate of degradation (Sun et al., 2021). 

 

Conclusion 

 In this study it can be concluded that the addition of 

the mass fraction of CGW filler increase the tensile stress of 

the biocomposite. The highest maximum value is found in 

the variation of the addition of CGW by 2% with a tensile 

stress value of 9.42MPa, strain of 33.335%, and tensile 

modulus with a value of 0.28MPa. This is due to the good 

interfacial bond between the matrix and filler which can 

increase the tensile stress of the biocomposite sample. 

Observation of morphology test used three samples, namely 

PVA, PVA/PS/CGW2, and PVA/PS/CGW3. The sample that 

has the best bond is found in the PVA/PS/CGW2 variation 

which indicates that there is a wave line which can indicate a 

good interfacial bond between the matrix and the filler, 

while the PVA/PS/CGW3 variation shows a crack which 

indicates that the bond is poor interface between matrix 

and filler. The addition of variations in the mass fraction of 

CGW filler can increase the rate of biodegradation in 

nature. The highest value of biodegradation rate was 

found in the variation of PVA/PS/CGW3 with an average 

weight reduction of 25% in a span of 15 days. 
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