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Abstract: The increase in mobile technology has raised concerns about the potential health effects 
of mobile phone radiation. The biological impact of exposure to radiofrequency (RF) waves emitted 
by electronic devices has been extensively studied and is a concern for the public, policymakers, and 
health researchers. The study aimed to examine the impact of 900 MHz radiofrequency waves on 
biomarkers such as interleukin (IL)-1α, IL-1β, tumour necrosis factor (TNF)-α, homocysteine, nerve 
growth factor, and serotonin in rats' serum and brain tissue. Thirty adult male Sprague Dawley rats 
(200 ± 20g) were randomly assigned to three groups (n=10): control (not exposed to RF), exposed I 
(2 hours per day), and exposed II (4 hours per day). The exposed groups were exposed to 900 MHz 
RFW for 30 consecutive days. The results showed that only the exposed group II significantly 
increased serum serotonin levels compared to the control group (P=0.0496). IL-1α, TNF-α, and nerve 
growth factor levels in brain tissue increased significantly in both exposed groups compared to the 
control group (P<0.0001). The control group had significantly lower levels of IL-1β compared to 
exposed groups I (P=0.0289) and II (P=0.0004). Additionally, serotonin and homocysteine levels in 
the brains of exposed II were significantly higher compared to the other groups (P<0.0001). The 
results showed disruptions in all biomarkers, indicating the potential impacts of daily exposure to 
900 MHz radiofrequency waves from mobile phones on brain function. This suggests that mobile 
phone radiation may affect brain function. 
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1.0  INTRODUCTION 
Radiofrequency waves (RFW) are non-ionizing radiation 
used in mobile phones, wireless networks, and other 
electronic devices. The long-term effects of exposure to 
these electromagnetic fields (EMFs) on brain function 
and health are still not fully understood and are the 

subject of ongoing research and debate. As mobile 
phone usage becomes more common, it is important to 
understand the effects of long-term exposure to 
radiofrequency EMF, which falls within the frequency 
range of 3 kHz to 300 GHz. The Global System for Mobile 
Communications (GSM) uses 900 MHz radiofrequency 
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(RF) (The International Commission on Non-Ionizing 
Radiation Protection, 2020).  
 
Research has focused on understanding potential health 
risks and biological mechanisms associated with EMF 
exposure. Studies have shown that EMF radiation can 
have detrimental effects on the central nervous system 
(CNS), including impacts on the blood-brain barrier 
(BBB), brain trace element balance, memory function, 
synaptic plasticity, neurotransmitter release, and 
neuronal viability (Azimzadeh & Jelodar, 2020a, 2020b; 
Bertagna et al., 2021; Sırav & Seyhan, 2016). 
 
Cytokines are multifunctional proteins that immune 
system cells produce in response to injury or pathogens. 
In the brain, activated neuronal and glial cells 
continuously produce cytokines (Bourgognon & 
Cavanagh, 2020), which play a role in various functions, 
such as neuronal development (Monet & Quan, 2023), 
sleep regulation (Krueger, 2008), synaptic plasticity, 
neurotransmitter metabolism (Zipp et al., 2023), 
neuroendocrine functions, and BBB modifications (Yang 
et al., 2022). IL-1 is a crucial regulator of inflammation 
and stress in the central nervous system by controlling 
various innate immune responses (Park et al., 2018). 
TNF-α plays a vital role in different central nervous 
system functions, including synaptic homeostasis, 
transmission, and scaling. It also influences 
excitotoxicity, neuroinflammation, and the permeability 
of the BBB (Fresegna et al., 2020). Exposure to EMFs has 
been shown to increase levels of certain cytokines at 
both the protein and mRNA levels (Wu et al., 2012). 
 
Homocysteine (Hcy) is a sulfur-containing amino acid 
that is derived from methionine and is known to be a 
potent pro-inflammatory factor, stimulating the 
production of pro-inflammatory cytokines (Borowska et 
al., 2021; Li et al., 2015). Elevated levels of Hcy are a 
well-established risk factor for vascular disorders, brain 
atrophy, and Alzheimer's disease (Smith et al., 2018). 
 
Nerve Growth Factor (NGF) is a crucial neurotrophin 
that supports the development and survival of specific 
neurons in the CNS and peripheral nervous systems 
(PNS). It is mainly expressed in the hippocampus, 
olfactory, and cortex regions, and the sympathetic 
ganglia (Berry et al., 2012). Inflammatory conditions, 
such as cerebral ischemia and reperfusion, can trigger 
NGF expression in neurons (Li et al., 2022). NGF also 
regulates communication between the nervous and 
immune systems. It is produced by various brain cells, 
including astrocytes, glial cells, neurons, lymphocytes, 
and mast cells. It is found in different brain regions, such 

as the hippocampus, cortex, basal forebrain, 
cerebellum, and brainstem (Minnone et al., 2017).  
 
Serotonin is a neurotransmitter that regulates mood, 
anxiety, and happiness (Hensler, 2010). It plays a crucial 
role in neurodevelopment, learning and memory, 
neuropsychiatric diseases, and autonomic regulation 
(Shah et al., 2018; Witteveen et al., 2013). While the 
majority of serotonin (90%) is produced in the 
gastrointestinal tract, a small percentage (1 –2%) is 
produced by neurons in the brain (Terry & Margolis, 
2017). Serotonin in platelets affects cytokine production 
and is involved in inflammation (Jenne & Kubes, 2015;  
Li et al., 2012). Exposure to 1800 MHz for 1 and 2 
months significantly increased hippocampal serotonin 
levels (Aboul Ezz et al., 2013). Additionally, exposure to 
900 MHz RFW for 45 minutes significantly increased 
plasma serotonin levels (Eris et al., 2015). 
 
Previous studies have shown that exposure to 900 MHz 
RFW can have harmful effects on the pancreas and 
testis tissue, leading to decreased testosterone levels 
and increased levels of specific biomarkers such as 
cytokines (IL-1β and TNF-α) and homocysteine 
(Azimzadeh & Jelodar, 2019; Jelodar et al., 2021). 
Additionally, exposure to RFW from mobile phones can 
have a greater impact on the brain due to its weak 
protective enzymes and high lipid content, making it 
susceptible to lipid peroxidation and oxidative stress 
(Fang et al., 2013). In this study, we investigated the 
effects of 900 MHz RFW on regulatory and functional 
biomarkers IL-1α and β, TNF-α, Hcy, NGF, and serotonin) 
in the brain tissue and serum of rats. Our findings 
demonstrated significant changes in cytokines, 
homocysteine, NGF, and serotonin levels in brain tissue 
following exposure to radiofrequency waves, while 
serum parameters remained essentially unchanged 
except for serotonin levels. 
 
2.0  MATERIALS AND METHODS 
2.1  Animals  
Thirty adult male Sprague Dawley rats weighing 200 ± 
20 g were obtained from the Shiraz animal house 
centre. The rats were housed in polycarbonate cages 
(42 * 26.5 * 15 cm3) with a constant temperature of 20 
± 2˚C and a 12-hour light-dark cycle. They had free 
access to food and water. The exposure time was set 
between 9 a.m. and 1 p.m. All experiments were 
conducted in compliance with Shiraz University's ethical 
guidelines (Code No.IR.AC.REC. 1398.S9530650) and the 
National Institutes of Health's Guide for the Care and 
Use of Laboratory Animals (National Research Council, 
2011). 
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Figure 1. Effects of 900 MHz RFW exposure for 2 and 4 hours per day over 30 consecutive days on the concentrations of  
(A) IL-1α, (B) IL-1β, (C) TNF-α, (D) Hcy, (E) serotonin, and (F) NGF in brain tissue. The columns represent the mean ± SD, One-
way ANOVA, and Tukey's multiple comparison tests. * p < 0.05; *** p < 0.001; and **** p <0.0001 compared to the control 
group. ++++ p < 0.0001 compared to the control and exposed group I. 

 

 
Figure 2. Effects of 900 MHz RFW exposure for 2 and 4 hours per day over 30 consecutive days on the concentrations of  
(A) IL-1α, (B) IL-1β, (C) serotonin, and (D) Hcy levels in the serum. The columns represent the mean ± SD, One-way ANOVA, and 
Tukey's multiple comparison tests. * p < 0.05 compared to the control group. 
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2.2  The radiofrequency wave exposure device and 
power dosimetry 
We used a simulator developed by Shiraz University's 
Faculty of Telecommunication and Electronics 
Engineering to generate an electromagnetic field at a 
frequency of 900 MHz. The simulator has a 12 cm 
antenna that emits 900 MHz RFW circularly. The output 
power of the simulator was monitored using a spectrum 
analyzer (FSH6, Rohde and Schwarz, Germany), with the 
antenna of the spectrum analyzer placed 1 meter away 
from the simulator during the measurements. The MCS 
Real-Time Spectrum Analyzer Software recorded the 
real-time readings during the test. The peak power 
density recorded from the proximity of the simulator in 
the downlink band was 0.6789 mW/cm2 at 876 MHz. 
We also detected a specific absorption rate (SAR) value 
of 0.035 W/kg using a field-probe device (300 kHz -18 
GHz, Wave Control, Spain) (Azimzadeh & Jelodar, 
2020c). 
 
2.3  Experimental protocol  
All rats were divided into three groups of 10 each: 
control group (with no exposure); exposed I group (2 
hours per day); and exposed II group (4 hours per day). 
The signal generator was placed one meter away from 
the cages of the exposed groups. Both exposed groups 
were irradiated to 900 MHz RFW for 30 consecutive 
days (Azimzadeh et al., 2018). 
 
2.4  Sampling and tissue preparation  
On the last day of the exposure period, all animals were 
anaesthetized with a 2% diethyl ether-saturated cotton 
ball in a chamber for 3–5 minutes and then euthanized 
by collecting whole blood through heart puncture. The 
blood was collected in glass tubes and left to clot at 
room temperature for thirty minutes. It was then 
centrifuged at 1300 g for 10 minutes. The serum was 
collected and stored at -70°C for later analysis. Brain 
tissue was rapidly removed, isolated, and stored at -
70°C. The brain tissue was washed once with distilled 
water, homogenized using a tissue grinder on ice and 
centrifuged at 2000 rpm for 20 minutes at 4ºC to collect 
the resulting supernatant. The concentration of 
biomarkers (serotonin, Hcy, NGF, TNF-α, IL-1 α, and β) 
was measured in the serum and brain supernatant using 
the ELISA kits according to the manufacturer's 
instructions (serotonin: IBL, Hamburg, Germany; Hcy: 
Diazyme, Shanghai, China; NGF, TNF-α, IL-1 α, and β: 
Crystal Day Biotech, Shanghai, China). The total protein 
concentration of the brain tissue was evaluated using 
the Bradford method  (Bradford, 1976). 
 
 

2.5  Statistical analysis  
The data were presented as mean ± standard deviation 
(SD). Statistical analysis was performed using one-way 
ANOVA followed by Tukey's multiple comparison tests 
with Graph Pad Prism® 8.0.1. A p-value of <0.05 was 
considered statistically significant in all experiments. 
 
3.0  RESULTS 
3.1  The effects of RFW exposure on the brain tissue 
Figure 1 shows the concentration of all studied 
biomarkers in the brain. The mean levels of IL-1α, IL-1β, 
and TNF-α in the exposed groups (I and II) were 
significantly higher compared to the control group. The 
one-way ANOVA revealed a significant difference in the 
mean IL1-α levels between the studied groups (F (2, 24) 
= 68.12, P<0.0001). The post hoc test indicated that 
both exposed groups I and II had significantly higher 
mean IL1-α levels compared to the control group 
(P<0.0001) (Figure 1A). Similarly, there was a significant 
difference in the mean levels of IL-1β among the groups 
(F (2, 27) = 10.20, P=0.0005, one-way ANOVA). The 
control group had significantly lower mean levels of IL-
1β compared to exposed groups I (P=0.0289) and II 
(P=0.0004) (Figure 1B). The one-way ANOVA also 
indicated a significant difference in the mean TNF-α 
concentration (F (2, 27) = 67.67, P<0.0001). The mean 
TNF-α levels in the control group were significantly 
lower than in both exposed I and II groups (P<0.0001) 
(Figure 1C). 
 
The mean levels of Hcy, serotonin, and NGF in the brains 
of the studied groups showed significant differences 
(Hcy: F (2, 27) = 73.84, P<0.0001; serotonin: F (2, 21) = 
31.27, P<0.0001; NGF: F (2, 27) = 99.02, P<0.0001, one-
way ANOVA). Post hoc analysis revealed that the 
exposed II group had significantly higher mean Hcy and 
serotonin levels than the exposed I and control groups 
(P<0.0001, Tukey's multiple comparison tests). 
Additionally, both exposed groups had significantly 
higher mean NGF levels compared to the control group 
(P<0.0001, Tukey's multiple comparison tests) (Figure 
1D-F). 
 
3.2  The effects of RFW exposure on the serum 
parameters 
Figure 2 shows the levels of IL-1α, IL1-β, Hcy, and 
serotonin in the serum of the experimental groups 
(Figure 2A-D). The only significant change observed in 
the serum was an increase in serotonin concentration (F 
(2, 26) = 4.414, P=0.0224, one-way ANOVA). Post hoc 
analysis revealed a significant increase in serotonin 
levels in group II compared to the control group 
(P=0.0172, Tukey's multiple comparison tests)  
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(Figure 2C). It should be noted that due to technical 
issues, we could not evaluate the TNF-α and NGF levels 
in the serum. 
 
4.0  DISCUSSION 
The study found that exposure to 900 MHz RFW had a 
significant impact on biomarkers in the brain, while only 
a few changes were observed in the serum. 
Inflammatory cytokines (IL-1α, IL-1β, and TNF-α) 
showed a significant increase in the brain tissue in both 
exposed groups compared to the control group. These 
results demonstrated an increase in the inflammatory 
markers assessed, reinforcing concerns about the 
biological effects of such radiation. The findings suggest 
that radiofrequency exposure may trigger inflammation 
in the brain, consistent with previous experiments 
showing elevated inflammatory cytokine levels in other 
tissues following exposure to 900 MHz RFW or 
microwave radiation (Azimzadeh & Jelodar, 2019; 
Jelodar et al., 2021; Wu et al., 2012). Increased levels of 
these mediators have been associated with diseases 
such as depression, Alzheimer's, and epilepsy 
(Bourgognon & Cavanagh, 2020). Elevated levels of IL-
1α and IL-1β in brain tissue did not correlate with 
changes in serum levels, suggesting localized production 
of these cytokines. 
 
Research on the effects of EMF on cytokine levels is 
limited, and the findings are conflicting. Some studies 
suggest that short-term exposure to EMF can increase 
innate immunity cytokines, while long-term exposure 
may decrease the adaptive immune response (Mahaki 
et al., 2019). Exposure to EMF has also been associated 
with increased production of inflammatory cytokines 
and reactive oxygen species (Kim et al., 2017; Patruno 
et al., 2018). However, other studies have found 
different effects (Mahaki et al., 2020), and some have 
reported no effects of EMF exposure on cytokine 
production (Fan et al., 2015; Ikeda et al., 2002). The 
discrepancies in findings may be due to differences in 
study design and methodologies. 
 
The Hcy levels in group II brains were significantly higher 
than in the exposed I and control groups (P < 0.05). 
Previous research has shown that exposure to 900 MHz 
RFW increased Hcy levels in pancreatic tissue, with no 
significant change in testicular tissue (Jelodar et al., 
2021). To our knowledge, there are no other published 
reports on the effects of EMF on Hcy levels in tissues. 
 
The brain lacks metabolic pathways to eliminate Hcy, 
making neurons and glial cells more susceptible to its 
toxic effects, impacting neuronal survival and signalling 

(Boldyrev et al., 2013; Škovierová et al., 2015). Our 
study did not find significant changes in serum Hcy 
levels, supporting this hypothesis. However, high Hcy 
levels can adversely affect the CNS, including increased 
excitatory neurotransmission, neuronal damage, and 
compromised BBB integrity (Lehotský et al., 2016). High 
homocysteine (HHcy) and nitrosative stress can also 
compromise the integrity of the BBB, leading to 
cerebrovascular permeability and neuronal 
degeneration (Kamat et al., 2016). HHcy inhibits nitric 
oxide production and bioavailability, induces reactive 
oxygen species generation, and increases the 
production of inflammatory cytokines (Li et al., 2015). 
Our study found that long-term exposure to 900 MHz 
RFW led to a significant increase in Hcy levels in brain 
tissue, accompanied by an increase in the production of 
inflammatory cytokines (IL-1α, IL-1β, and TNF-α), which 
may have detrimental effects on the CNS. 
 
The levels of NGF in the brain tissues of both exposed 
groups (I and II) were significantly higher compared to 
the control group. An increase in NGF may be a 
compensatory response to counteract the stress and 
potential damage caused by exposure to RFW. 
However, persistently elevated levels of neurotrophins 
may lead to dysregulation of neuronal growth and 
function, potentially contributing to neuropathology. 
Previous studies have also reported changes in NGF 
levels in various tissues following exposure to 900 MHz 
RFW or pulsed electromagnetic fields (Azimzadeh & 
Jelodar, 2019; Jelodar et al., 2021; Longo et al., 1999). 
Differences in tissue type, size, and capacity for NGF 
generation may explain variations in results. NGF can 
activate innate immune responses and regulate 
inflammation to prevent tissue damage (Minnone et al., 
2017). It can increase inflammatory cytokines (Bayas et 
al., 2003; Hepburn et al., 2014) and stimulate the 
release of anti-inflammatory cytokines (Liew et al., 
2005). The significant increase in NGF concentration in 
both exposed groups following exposure to RFW may 
modulate inflammatory cytokines.  
 
Exposure to 900 MHz RF increased serotonin levels in 
both the serum and brain. This finding is particularly 
interesting because it suggests that exposure to RFW 
may affect emotional states and cognitive functions 
regulated by serotonin. Altered serotonin levels have 
complex implications. Increased serotonin may improve 
mood and reduce anxiety, but imbalances in serotonin 
levels have been linked to psychiatric disorders such as 
depression and schizophrenia (Celada et al., 2013a; 
Jenkins et al., 2016). 
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Previous research has also found decreased pancreatic 
serotonin levels following similar exposure (Jelodar et 
al., 2021). Studies on the effects of EMF on 
neurotransmitters such as serotonin, acetylcholine, and 
catecholamines have shown conflicting results. For 
example, exposure to 1800 MHz EMF increased 
serotonin and decreased dopamine levels in the 
hippocampus and hypothalamus (Aboul Ezz et al., 
2013), while exposure to 900 MHz RFW increased blood 
serotonin levels (Eris et al., 2015). Furthermore, 
exposure to 800 MHz EMF decreased the release of 
acetylcholine, while exposure to 1800 MHz EMF had no 
effect (Li et al., 2017; Testylier et al., 2002). Additionally, 
exposure to different frequencies (900,1800,2100 MHz) 
reduced brain serotonin levels in newborn rats (Ismail 
et al., 2015). 
 
Several potential mechanisms have been proposed for 
increased serotonin levels following RFW exposure. 
These include increased catabolism due to the 
heightened activity of monoamine oxidase (Said et al., 
2012), EMF-induced damage to the ileal mucosa 
(Herrera et al., 1995), and decreased synthesis and 
absorption of the serotonin precursor tryptophan. Since 
90% of the body's serotonin is produced in the 
gastrointestinal tract, the significant increase in serum 
serotonin concentrations in the current study is due to 
this source. Additionally, exposure to different EMF 
frequencies can modify blood-brain barrier 
permeability (Salford et al., 2003; Zhou et al., 2013), 
suggesting that the primary source of increased brain 
serotonin levels is the serum, originating from the 
gastrointestinal tract.  
 
Serotonin-producing neurons are widely distributed in 
the brain, and evidence shows that several serotonin 
receptor subtypes are densely expressed throughout 
the brain (Carhart-Harris & Nutt, 2017; Celada et al., 
2013b). Pro-inflammatory cytokines such as TNF-α and 
IL-1β have been reported to positively correlate with 
elevated brain serotonin levels (Masson & Hamon, 
2009), indicating that serotoninergic neurons also 

contribute to the increase in serotonin concentration in 
the brain.  
 
Further research, including replication studies and 
investigations into underlying mechanisms, may be 
needed to establish the significance and broader 
implications of the findings fully. Nonetheless, the 
findings contribute valuable insights into the potential 
effects of radiofrequency wave exposure on brain 
health, laying the groundwork for future research and 
discussions in the scientific community. 
 
 
5.0  CONCLUSION 
Our study revealed that daily exposure to 900 MHz 
radiofrequency waves for 30 days resulted in significant 
alterations in cytokines (IL-1α, IL-1β, and TNF-α), Hcy, 
NGF, and serotonin levels in the brain tissue with long-
term exposure (4 hours). Short-term exposure also 
caused significant changes in cytokines (IL-1α, IL-1β, and 
TNF-α), and NGF levels in the brain tissue. There were 
no significant changes in serum parameters, except for 
serotonin levels, indicating that the effects of 
electromagnetic fields may be limited to specific tissues. 
These findings suggest that radiofrequency waves (900 
MHz) could disrupt brain function by affecting the 
neuroendocrine, neurotransmitter, and immune 
systems. 
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