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Abstract: Background: Ischemic stroke poses significant challenges in diagnosis and treatment,

necessitating efficient and accurate methods for assessing collateral circulation, a critical determi-

nant of patient prognosis. Manual classification of collateral circulation in ischemic stroke using

traditional imaging techniques is labor-intensive and prone to subjectivity. This study presented the

automated classification of collateral circulation patterns in cone-beam CT (CBCT) images, utilizing

the VGG11 architecture. Methods: The study utilized a dataset of CBCT images from ischemic

stroke patients, accurately labeled with their respective collateral circulation status. To ensure uni-

formity and comparability, image normalization was executed during the preprocessing phase to

standardize pixel values to a consistent scale or range. Then, the VGG11 model is trained using an

augmented dataset and classifies collateral circulation patterns. Results: Performance evaluation of

the proposed approach demonstrates promising results, with the model achieving an accuracy of

58.32%, a sensitivity of 75.50%, a specificity of 44.10%, a precision of 52.70%, and an F1 score of 62.10%

in classifying collateral circulation patterns. Conclusions: This approach automates classification,

potentially reducing diagnostic delays and improving patient outcomes. It also lays the groundwork

for future research in using deep learning for better stroke diagnosis and management. This study is

a significant advancement toward developing practical tools to assist doctors in making informed

decisions for ischemic stroke patients.
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1. Introduction

Ischemic stroke remains one of the leading causes of mortality and long-term dis-
ability worldwide, posing significant challenges to healthcare systems globally [1]. Rapid
and accurate diagnosis of ischemic stroke is crucial for timely intervention and effective
treatment, as delayed diagnosis can lead to irreversible neurological damage and worsened
patient outcomes [2–5]. Collateral circulation typically occurs in ischemic stroke but not in
hemorrhagic stroke. In ischemic stroke, when a blood vessel becomes blocked or narrowed,
the body initiates a natural response known as angiogenesis [6,7]. Collateral circulation
is the network of supplementary blood vessels that provide perfusion to the ischemic
region, mitigating the impact of arterial occlusion and potentially salvaging threatened
tissue [8–10], as shown in Figure 1.
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Figure 1. Visualization of collateral circulation.

Traditionally, the assessment of collateral circulation in ischemic stroke has relied
on conventional imaging modalities such as computed tomography (CT) and magnetic
resonance imaging (MRI), as stated by other researchers [11,12]. However, manual classifi-
cation of collateral circulation patterns from these imaging modalities is labor-intensive,
time-consuming, and subject to inter-observer variability [13]. Moreover, the complex and
heterogeneous nature of collateral circulation patterns further complicates accurate classi-
fication using conventional methods. Numerous studies conducted by researchers have
explored various scoring systems for characterizing collateral flow [14–16]. These systems
aim to classify and assess the extent of collateral circulation, facilitating the evaluation of
stroke severity and potential treatment outcomes. However, there is still a lack of consensus
among experts regarding the most effective standardized scoring system for collateral
circulation [17]. Each study on collateral circulation classification has its own unique set of
characteristics and criteria. Table 1 provides a comparative analysis of the characteristics
associated with poor, moderate, and good collateral circulation, offering insights into the
distinctions and features of each classification category.

Table 1. Comparison between poor, moderate, and good collateral circulation.

Criteria Poor Moderate Good

Assessment using the Miteff
collateral method [14]

Only superficial MCA is
reconstructed distal to
the occlusion

Some of the MCA branches
are reconstructed distal to
the occlusion

Most of the MCA branches are
reconstructed distal to
the occlusion

Degree of vertebral venous
expansion [15]

External vertebral vein ≤ 25% External vertebral vein ≥ 25% External vertebral vein ≥ 50%

Vascular reperfusion [18] Minimal recanalization Partial recanalization Complete recanalization

Infarct growth [19]
More infarct growth with
good pre-treatment.

Less infarct growth with good
pre-treatment.

Did not show infarct growth
with good pre-treatment.

Several medical imaging methods, including X-ray [20], cone-beam computed to-
mography (CBCT) [21,22], and magnetic resonance imaging (MRI) [23,24], offer detailed
information concerning blood flow to different regions of the brain. Cone-beam computed
tomography (CBCT) imaging offers a valuable tool for assessing collateral circulation
due to its high spatial resolution [21,22,25,26] and ability to capture dynamic vascular
changes [12,27], as shown in Figure 2. Collateral circulation patterns in CBCT images mani-
fest as alterations in contrast enhancement, vessel caliber, and filling patterns, reflecting
the compensatory blood flow routes established in response to arterial occlusion [27–29].
The identification and classification of these collateral circulation patterns are essential
for understanding stroke pathophysiology and guiding treatment decisions. However,
manual assessment of collateral circulation from CBCT images is challenging and prone to
inter-observer variability [30]. Hence, the development of automated methods utilizing
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deep learning techniques holds promise for providing rapid and objective evaluation of
collateral circulation in ischemic stroke [31–33].

 

Figure 2. Example of CBCT images for collateral circulation.

In recent years, deep learning techniques have emerged as powerful tools for medical
image analysis, offering the potential to automate and improve the accuracy of diagnostic
tasks [34–37]. Convolutional neural networks (CNNs), in particular, have demonstrated re-
markable performance in various medical imaging applications, including lesion detection,
tumor segmentation, and disease classification [38,39]. Leveraging hierarchical features
learned from large datasets, CNNs can extract discriminative features from medical images,
enabling automated interpretation and diagnosis. VGG11 is particularly notable for its deep
architecture and was among the early models to demonstrate the effectiveness of very deep
networks in image classification tasks. Table 2 provides a review of the VGG11 technique.

Table 2. VGG11 Analysis Technique.

Author Purpose Imaging Modality Result

Kaya et al. [40] Skin Cancer Skin cancer image Accuracy—83%

Govindan et al. [41] Sign Language Hand gestures and voice Accuracy—97.89%

Sri et al. [42] Lung X-ray Accuracy—98.28%

Mao et al. [43] Chicken Distress Audio Accuracy—95.07%

Rahi et al. [44] Skin Cancer Skin cancer image Accuracy—85%

In this study, a novel deep-learning approach is proposed for the automated classifica-
tion of collateral circulation patterns in cone-beam CT (CBCT) images of ischemic stroke
patients. This study focuses on harnessing the capabilities of the VGG11 architecture, a
deep CNN architecture known for its effectiveness in image classification tasks. By training
VGG11 on a curated dataset of CBCT images, the development of a robust and accurate
model capable of automatically classifying collateral circulation patterns. This method for
assessing collateral circulation can significantly enhance clinical outcomes by providing
rapid, accurate, and consistent evaluations, crucial for timely and personalized treatment
decisions in stroke ischemic. Also, the method enables better risk stratification, optimizes
resource allocation, and offers valuable prognostic information, leading to improved patient
care and reduced complications.

2. Method

The proposed method implemented in this study is the VGG11 model, which is a vari-
ant of the VGG (Visual Geometry Group) architecture. The dataset was divided into 80%
for training and 20% for testing, as shown in Figure 3, ensuring that the model is robustly
trained and unbiasedly evaluated on unseen samples. The size and diversity of the training
dataset significantly affect the performance of deep learning models. Larger datasets en-
hance model accuracy and feature learning, while diverse datasets improve generalization,
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reduce bias, and increase robustness. Techniques such as data augmentation and transfer
learning can further optimize dataset size and diversity. Thus, a well-structured and varied
training dataset leads to better model performance, higher accuracy, and improved clinical
outcomes in classifying collateral circulation in ischemic stroke.

 

Figure 3. Research flow for VGG11 method.

In this study, VGG11 has been proposed to classify collateral circulation. The most
significant advantage of using the VGG11 model is its simplicity and effectiveness in feature
extraction, which leads to good accuracy in image classification tasks. VGG11 is a deep
convolutional neural network architecture that was proposed by the Visual Geometry
Group (VGG) based at the University of Oxford [38]. It is a variant of the VGG network
architecture, originally introduced for image classification tasks. The VGG11 architecture
is characterized by its deep structure and homogeneous design. The VGG11 model is
composed of a sequence of convolutional layers, pooling layers, and fully connected layers.
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The term “11” in VGG11 indicates the total count of layers in the network, encompassing
both convolutional and fully connected layers [45].

The algorithm input data are an RGB image with a resolution of 256 by 256 pixels
used for training and testing the deep learning models. Next, image pre-processing is
implemented, where normalization and augmentation processes are involved. Image
augmentation is a technique that involves applying various transformations to existing
images in the dataset to generate additional training data.

Then, the model’s architectures are selected and implemented. The architecture con-
sists of seven convolutional layers, with each layer followed by a ReLU activation function.
Furthermore, the model incorporates five 2 × 2 max pooling operations, progressively
reducing the size of the feature maps by a factor of 2 at each pooling step [46]. It employs
3 × 3 kernels for all its convolutional layers, and Figure 4 provides details on the number
of channels in each layer [45]. The first convolutional layer generates 64 channels, and
as the network goes deeper, the number of channels doubles after each max pooling op-
eration until it reaches 512. In the subsequent layers, the number of channels remains
consistent [45].

 
Figure 4. VGG11 architecture.

This method is also known for its simplicity and uniformity. By stacking multiple
layers with small filters, it can learn hierarchical representations of increasing complexity.
The deep structure of the network allows it to capture both low-level and high-level features
in the input images, enabling it to achieve strong performance on image classification tasks.

The parameters of the network are optimized by employing a suitable loss function
and an optimization algorithm like stochastic gradient descent (SGD), to train the model.
Through backpropagation, the gradients of the loss with respect to the parameters are
computed, and the parameter values are updated iteratively. The training process involves
multiple epochs, with each epoch representing a full iteration over the entire training
dataset [44]. Completing seven epochs allows the model to learn from training data and
refine its parameters to enhance predictive capabilities. The primary training objective is
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preventing overfitting, where the model becomes overly specialized and fails to generalize
to new data [47]. The model’s performance on the testing set is evaluated after each epoch,
with accuracy serving as a crucial metric to ensure it doesn’t overfit.

3. Results and Discussion

3.1. Training and Testing Stage

The sample image used for the VGG11 method is shown in Figure 5. Data sets of 3411
images were trained with the respective model, and the remaining 957 images were used
to test the model’s classification performance.
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Figure 5. Sample CBCT image for VGG11 method.

Figure 6 illustrates the testing accuracy result of the proposed model, achieving the
best accuracy of 58.32%. It visually represents the model’s performance during testing,
showcasing its accuracy across various evaluation metrics. The accuracy can be improved
by considering a few aspects such as increasing the data size, and applying augmentation
and regularization techniques. Furthermore, exploring more complex architectures or lever-
aging transfer learning from pre-trained models like VGG16, combined with meticulous
preprocessing of input images, can further enhance accuracy by ensuring robust feature
extraction and model stability.
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Figure 6. Testing accuracy graph for VGG11 method.

This result provides valuable insights for researchers and clinicians into the overall
performance of the model and its ability to classify collateral circulation patterns accurately
based on CBCT images. The achieved accuracy indicates that the model is learning mean-
ingful patterns from the data and performing better than random chance. Furthermore, its
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competitiveness with similar studies suggests comparable performance to existing methods,
despite challenges such as noise, artifacts, and anatomical variability in the data. Therefore,
while the accuracy may not be high, it represents a promising step forward in applying
deep learning to collateral circulation classification in ischemic stroke. Further research and
optimization efforts are necessary to improve accuracy and robustness, potentially through
advanced architectures, larger datasets, and parameter fine-tuning.

Figure 7 shows the training and testing loss results for seven epochs. It shows the
comparison between training and testing loss. The graph shows that the testing loss is
greater than the training loss. This could be an indication that the model is overfitting. The
model performs better on the training than the testing data set.tt
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Figure 7. Training and testing loss comparison graph for VGG11 method.

3.2. Classification Stage

The confusion matrix depicted in Figure 8 provides a comprehensive evaluation of the
classification performance of the VGG11 model on both the training and testing datasets. It
allows for a detailed examination of the model's correct and incorrect classifications within
each class.
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Figure 8. Confusion matrix for testing data for VGG11 method.
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The confusion matrix reveals that the model demonstrates effective classification
capabilities, as evidenced by the high number of correct predictions. Specifically, it correctly
classifies 327 images as having good collateral circulation and 231 images as having poor
collateral circulation. These accurate predictions indicate the model’s ability to discern
distinct patterns and features associated with different collateral circulation classes.

However, upon closer examination of the confusion matrix, it is evident that some
samples are misclassified, leading to incorrect predictions. These misclassifications high-
light the need for further investigation and improvement to enhance the model’s accu-
racy. It becomes essential to identify the specific challenges and factors contributing
to the misclassifications to provide the model with additional clarity and guidance for
accurate classification.

By doing this, valuable insights into the model’s performance and areas for refinement
are identified. The matrix allows for a quantitative assessment of the classification results,
providing a clear understanding of the strengths and limitations of the model in classifying
collateral circulation based on CBCT images.

3.3. Performance Evaluation Stage

The performance of the model is evaluated through a series of experiments, yield-
ing a comprehensive set of metric results. The effectiveness of the proposed system is
meticulously assessed using a range of performance metrics discussed in detail within
this section. These metrics provide valuable insights into the performance and accuracy
of the models under evaluation, enabling a comprehensive analysis of their capabilities.
For a comprehensive understanding of the models’ performance, metrics such as accuracy,
sensitivity, specificity, precision, and F1 score are calculated and analyzed. Based on the
confusion matrix in Figure 8, the best accuracy of 58.32%, a sensitivity of 75.50%, a speci-
ficity of 44.10%, a precision of 52.70%, and an F1 score of 62.10% are obtained from the
calculation below.

According to Equation (1), the accuracy calculation of the proposed model reveals an
accuracy score of 58.30%. In this study, the model successfully predicted 327 images with
good collateral circulation and 231 images with poor collateral circulation. This indicates
that out of the total 957 images in the dataset, the model made correct predictions for 558
images, encompassing both categories of collateral circulation.

Accuracy =
True Positive + True Negative

Total number of samples

Accuracy =
327 + 231

957
Accuracy = 0.583

(1)

Equation (2) calculates the sensitivity of the proposed model, resulting in a sensitivity
score of 75.50%. In this study, out of the total 433 images with good collateral circulation, the
model successfully identified and classified 327 images as having good collateral circulation.
This indicates that the model’s ability to accurately detect and classify positive cases of good
collateral circulation resulted in a high sensitivity score, demonstrating its effectiveness in
identifying this specific category of collateral circulation patterns.

Sensitivity =
True Positive

True Positive + False Negative

Sensitivity =
327

327 + 106
Sensitivity = 0.755

(2)

Equation (3) calculated the specificity of the proposed model and determined that
the specificity value is 44.10%. In this study, out of the total 524 images illustrating poor
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collateral circulation, the model successfully identified and classified 231 images as having
poor collateral circulation.

Specificity =
True Negative

True Negative + False Positive

Specificity =
231

231 + 293
Specificity = 0.441

(3)

Upon performing the precision calculation in Equation (4), it is determined that the
precision value is 52.70%. In this study, out of all the positive predictions made by the model,
which include both true positive and false positive predictions, 52.70% of them correspond
to true positive predictions, meaning they correctly identify instances of good collateral
circulation. This precision score suggests that while the model demonstrates a reasonable
level of accuracy in identifying positive cases, there is still room for improvement in terms
of reducing the number of false positive predictions. Further optimization and fine-tuning
of the model may enhance its precision and overall performance in accurately identifying
and classifying cases of good collateral circulation.

Precision =
True Positive

True Positive + False Positive

Precision =
327

327 + 293
Precision = 0.527

(4)

Upon calculating the F1 score in Equation (5), it has been determined that the F1
score value is 62.10%. In this study, the F1 score reflects how precise the model is in
identifying cases of good collateral circulation. Achieving a higher F1 score would require
enhancing both precision and sensitivity, thereby improving the model's ability to accurately
classify cases of good collateral circulation. This could be accomplished through further
refinement and optimization of the model, considering factors such as feature selection,
hyperparameter tuning, and data augmentation techniques.

F1 score =
2 × Precision × Sensitivity

Precision + Sensitivity

F1 score =
2 × 0.527 × 0.755

0.527 + 0.755
F1 score = 0.621

(5)

4. Conclusions

This study demonstrates the potential of deep learning using the VGG11 method,
to automate the classification of collateral circulation patterns in ischemic stroke using
CBCT imaging. The study achieved a notable accuracy of 58.32% in accurately classifying
collateral circulation patterns, demonstrating the potential of deep learning techniques,
particularly with the VGG11 architecture, in this domain. Although the achieved accuracy is
competitive with other studies, further advancements are needed to improve classification
accuracy and robustness for real-world clinical applications. This research contributes to
the ongoing efforts to utilize deep learning for more accurate and efficient stroke diagnosis
and optimizing treatment strategies.
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