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Chalcogenide semiconductor of the type tin sulphide or stannous sulphide
(SnS) has been synthesised in aqueous media under the presence and absence of
EDTA complexing agent. It was found that electrodeposition performed in the
presence of EDTA is more reproducible, better adhered to titanium substrate,
more leveled, more crystalline and offers better photoconductivity properties in
comparison to electrodeposition carried out without EDTA. These were
determined by means of Energy Dispersive Analysis of X-ray (EDAX), Scanning
Electron Microscopy (SEM), X-ray Diffraction (XRD), UV-visible Spectroscopy,
Linear Scan Photovoltammetry (LSPV) and in special cases, X-ray Photoelectron
Spectroscopy (XPS). The main improvement in photoconductivity property which

is a basic requirement for any solar energy materials and semiconductor was due
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to factors that stem from good adhesion, crystallinity, surface coverage and

composition.

Optimisation of the electrodeposition condition was the prerequisite of
synthesising an outstanding SnS quality. In the optimisation study, the optimum
amount of thiosulphate, EDTA and tin source (stannous ions) has been
determined based upon the degree of reproducibility of Sn/S values from analysis
of stoichiometry (via EDAX) and degree of reproducibility of deposits quantity
(up to XRD detection limit for SnS deduction) at a fixed deposition time. The
optimum deposition potential of 0.7V (vs. SCE) was clear cut from microscopic
analysis by means of scanning electron micrographs and quantification by way of
EDAX. Under the optimum condition, an average Sn/S found from the study was
1.12 + 0.05, which 1s within the expected stoichiometry found in literature. The
average energy gap estimated on samples prepared on ITO substrate was 1.29 +
0.29 eV for a dire(':t optical transition and 0.74 + 0.20 eV for indirect optical
transition. In terms of proportion, this correlates with an advanced study on SnS
property via valence band spectra by Ettema et a/. published in Physical Review
B, 1992, 46(12): 7363-7386, which reported the optical transitions to be 1.39 eV

for direct transition and 0.2-0.4 eV for indirect transition.
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Examination of the effect of sodium dodecylsulphate (SDS) on the
electrodeposit shows a significant adverse effect on the electrodeposits. SDS was
suspected to cause electrode poisoning and had resulted in raise of pH, which was

non favourable for cathodic electrodeposition of SnS.

As in the case of tartaric acid, however, the leveling effect expected of it
might be insignificant and this could have been the masking effect of EDTA. To
ascertain the slight enhancement of crystal growth following addition of tartaric

acid into the electrodeposition bath, further investigation may be required.
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Semikonduktor kalkogenida, timah sulfida (SnS), telah disintesis di dalam
larutan akueus dengan kehadiran dan tanpa kehadiran agen pengkompleks EDTA.
Elektroenapan, yang dilakukan dengan kehadiran EDTA didapati mempunyai
kebolehulangan yang lebih baik, di mana enapan dapat melekat pada titanium
dengan lebih kuat, lebih rata, mempunyai kehabluran yang lebih baik dan
mempamerkan sifat fotokonduksi yang lebih baik. Ini telah diperhatikan daripada
analisis penyerakan tenaga sinaran-X (EDAX), mikroskopi elektron imbasan
(SEM), pembelauan sinaran-X (XRD), spektroskopi ultra lembayung nampak
(UV-visible), imbasan linear fotovoltametri (LSPV), dan di dalam kes-kes
tertentu, spektroskopi fotoelektron sinar-X (XPS). Penigkatan dalam fotokonduksi

yang merupakan satu sifat asas penting bagi peranti sel suria atau semikonduktor,



telah berjaya dicapai hasil daripada penambahbaikan daya lekatan, kehabluran,

pelitupan perinukaan dan komposisi.

Pengoptimuman pengelektroenapan adalah perlu bagi mendapatkan SnS
yang berkualiti. Amaun optimum bagi tiosulfat, EDTA dan ion timah telah
ditentukan berdasarkan pemerhatian kepada darjah keterulangan pada nisbah Sn/S
daripada analisis stoikiometri (daripada EDAX), daya lekatan kepada substrat
titanium, kehabluran dan sifat fotokonduksi yang baik. Keupayaan
pengelektroenapan —0.7 V (terhadap SCE) telah dipilih keupayaan optimum
berdasarkan mikroskopi elektron imbasan dan stoikiometri. Enapan yang
dihasilkan pada keadaan optima ini menghasilkan nisbah stoikiometri pada nilai
1.12 + 0.05 Sn/S, iaitu terlingkung di dalam julat nilai Sn/S yang boleh
diterimapakai. Nilai luang tenaga, E, bagi enapan yang disediakan di atas ITO di
bawah keadaan optima ini ialah 1.29 + 0.29 eV bagi peralihan terus dan 0.74 +
0.20 eV bagi peralihan tidak terus. Ini bersesuaian dengan yang dilaporkan oleh
Ettema et al. pada tahun 1992 di dalam jumal Physical Review B, jilid 46,
nombor 12, yang menjumpai jurang tenaga bagi peralihan terus 1.39 eV dan bagi

peralihan tidak terus 0.2-0.4 eV.



Kehadiran bahan aktif permukaan SDS didapati menunjukkan kesan
negatif kepada pengelektroenapan SnS. SDS tidak membantu pengelektroenapan
sebaliknya menyebabkan keracunan elektrod. Keracunan ini dijangka berpunca

daripada peningkatan pH, yang tidak sesuai untuk pengelektroenapan SnS.

Keupayaan asid tartarik untuk meratakan permukaan tidak dapat dilihat
dengan jelas dan ini mungkin disebabkan kesan kehadiran EDTA di dalam larutan
pengelektroenapan. Penambahan saiz yang dapat dilihat pada hablur
menunjukkan kemungkinan asid tartank mampu meningkatkan kadar
pengelektroenapan. Kajian lanjut diperlukan bagi melihat kesan ini dengan lebih

terperinci.
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CHAPTERI

INTRODUCTION

The era of science and technology will be left for the ionic and protonic
technology, by which this work is motivated. Reducing the dimensions of devices is
one of the aspects in focus [1]. One of the works prompted by this is the development
of thin films from which the idea of electrochemical technique stems for the synthesis
of tin sulphide, SnS. This phase of Sn-S compounds reveals the features of an ideal
semiconductor with E, falling in the range of 1-2 eV (Table 1.1), making it suitable for

n

photoelectrbchemical, photovoltaic and optoelectronic applications, for instance.

The thin film form of SnS and other more common binary compounds such as
CdS, GaAs, ZnS, ZnSe and CdSe, capture a significant interest of scientists in many
fields, vis-a-vis Energy, Solar Cell Devices, Silicon and Tin Technology, Materials,
Chemistry Electronic Industry and etceteras. In Malaysia, thin film technology is one
of the most important technologies in the electronic industry to account for its being
world’s third largest exporter of semiconductor. With Sn and Si abundance, Malaysia

is in even better position for the world market of USD100 billion for thin film [1].





