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Abstract: This paper studies synchronization behaviors of two sorts of non-linear fractional-order
complex spatio-temporal networks modeled by hyperbolic space-varying PDEs (FCSNHSPDEs),
respectively, with time-invariant delays and time-varying delays, including one delayed coupling.
One distributed controller with space-varying control gains is firstly designed. For time-invariant
delayed cases, sufficient conditions for synchronization of FCSNHSPDEs are presented via LMISs,
which have no relation to time delays. For time-varying delayed cases, synchronization conditions of
FCSNHSPDE:s are presented via spatial algebraic LMIs (SALMIs), which are related to time delay
varying speeds. Finally, two examples show the validity of the control approaches.

Keywords: delayed coupling; space-varying; synchronization control; PDEs

1. Introduction

There exists an array of important complex networks in real life, such as power
networks [1], people group networks [2], influential spreader networks [3], transportation
networks [4], and logistics networks [5]. Complex networks are an effective and significant
instrument for perceiving the interconnections of elements. In view to their powerful
function, complex networks have been applied to many fields, including virus spread [6],
brain science [7], image processing [8], water quality assessment [9], network attack [10],
feature extraction [11], and multi-agent systems [12-15].

As is well-known, synchronization is one of the most important dynamics behaviors [16-18].
Most of the literature has held the idea that the dynamics of nodes depends only on time. Actually,
the dynamics of most processes depend not only on time but also on space [19-23], such as in the
cases of flexible manipulators [24], flexible spacecraft [25], and reaction-diffusion systems [26].
Therefore, it is meaningful to study partial differential equation (PDE)-based complex
spatio-temporal networks(CSNs), considering both time and space [27-29]. Kocarev et al.
proposed synchronization methods of spatio-temporal chaos [30]. Xia and Scardovi studied
synchronization analysis of linear CSNs [31]. Demetriou investigated control methods
for synchronization of CSNs [32]. Kabalan et al. proposed synchronization of CSNs with
in-domain coupling by boundary control [33]. Zheng et al. gave an control approach for
synchronization of fractional-order CSNs with time delays [34]. Hu et al. proposed an
adaptive approach for synchronization of intermittent CSNs using piecewise auxiliary
functions [35]. Yang et al. proposed two boundary coupling ways of stochastic CSNs [36].
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Yang et al. proposed exponential synchronization of fractional-order CSNs with hybrid
delay-dependent impulses [37].

Most of the above references were modeled by parabolic PDEs, whereas few works studied
the synchronization of CSNs based on hyperbolic space-varying PDEs (CSNHSPDEs). Li et al.
studied synchronization of second-order CSNHSPDEs [38] and first-order CSNHSPDEs [39]
by using boundary control. Lu proposed boundary control for local exact synchroniza-
tion of quasi-linear CSNHSPDESs [40]. Ma and Yang studied synchronization control of
CSNHSPDEs, respectively considering a single weight and multiple weights [41]. As
a whole, these works studied synchronization of space-varying CSNHSPDEs, which
fractional-order models have not considered.

Fractional-order systems are commonly found in a wide range of fields such as physics,
electronics, biology, and engineering [42,43]. Yan et al. proposed boundary control of
fractional-order parabolic multi-agent systems [44] as well as studying observer-based
control [45]. Zhao et al. proposed an event-triggered boundary controller of fractional-
order parabolic multi-agent systems [46]. Finite-time boundary control was studied for
hyperbolic multi-agent systems [47]. However, the research of fractional-order CSNs
based on hyperbolic space-varying PDEs (FCSNHSPDEs) with time-delayed couplings is
significant and it remains challenging, not being solved yet.

The objective of this paper is to investigate a distributed controller for synchronization
of a kind of FCSNHSPDEs with time-varying parameters and time delays. Firstly, a class
of FCSNHSPDE models with time-invariant delays is given, and a distributed controller
is studied to drive the following node to reach synchronization with the isolated node.
Sufficient conditions are obtained for synchronization of FCSNHSPDEs in terms of spatial
algebraic LMIs (SALMIs). A class of FCSNHSPDE models with time-varying delays is
given. The same distributed controller is employed, and sufficient conditions are respec-
tively obtained for synchronization of FCSNHSPDEs with time-varying delays. The key
contributions of this paper are listed as:

(1) Non-linear fractional-order complex spatio-temporal networks are modeled by hyper-
bolic space-varying PDEs in this paper, and have potential applications for flexible
manipulators, flexible strings, flexible articulated wings, and flexible appendages.

(2) One distributed controller with space-varying control gains is designed in this paper.
It allows different nodes to own different gains.

(3) Synchronization conditions of FCSNHSPDE:s are presented by spatial algebraic LMISs,
which contain space-varying coefficients. By using spatial algebraic LMIs, time-
invariant delays and multiple time-varying delays within FCSNHSPDEs have been
addressed, respectively.

2. Problem Formulation

This paper firstly studies one fractional-order CSTN based on hyperbolic space-
varying PDEs (FCSNHSPDEs) with time-invariant delays, and the i-th node has the behav-

Dz, ) = 0() P 4 Aw)zi(w,) + Ag(@)zi(w,t - 1) + B(@)f(zi(w, 1)
N
+ By(w)f(zi(w, t — 1)) +¢1 ) &ij(w)T (w)z(w, t)

=1
N )
+0 Z ij(W)T(w)zj(w,t — 13) + ui(w,t),

i=1

zi(w, t) = 2 (w, 1), (w,t) € [0,L] x [~7,0],
S

[0,L] x [0,00) are space and time, respectively. z;(w,t), u;(w,t) € R".
,A(w), Ag(w), B(w), and T (w) € R™*™ . f(-) is a non-linear function, 0 < L and
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0 < @ < 1 are real scalars, time delays 0 < 11, T», 73 < T, and constants ¢; > Oand ¢, >0
are the coupling strengths. G(w) = (gij(w))nxn is such that g;;(w) = — Z gij(w).

j=1j#
The isolated node, s(w, f) € R", is assumed to be

6, Dis(0,t) = ©(w) 2 4 A(w)s(w, ) + Ag(w)s(eo,t ) + Bw) f(s(eo,)

+ Ba(w)f(s(w, t — 1)), 2

s(w,t) =s%(w,t), (w,t) € [0,L] x [~7,0].

This study aims to explore a distributed controller driving FCSNHSPDE (1) synchro-
nization to the isolated node (2) as

uj(w, t) =dj(w)(s(w, t) — zj(w,t)), 3)
in which d;(w) are space-varying control gains.
Definition 1. FCSNHSPDE (1) reaches synchronization if

tlimHzi(w,t)—s(w,t)H:0,i€{1,2,~~~,N}. (4)
—c0
Definition 2 ([48]). For a € (0,1), the Caputo partial derivative is defined as follows:

¢ a _ 1 toap(w,7) 1
WDiplew,t) = I(1—a) / ot (t— T)“dT' ©)

where p(x,t): R X [ty, 00) is a differentiable function with regard to t.

Assumption 1. For any wi,wy € R, there exists 0 < X € R satisfying
[f(w1) = flwa)] < X|wr = wal- 6)

Lemma 1 ([49]). Fora € (0,1), z(w,t) : R™ x Ry — R" is differentiable, then the following
inequation holds:

fOD‘t"(zT(w,t)z(w,t)) <227 (w, )i, Diz(w, t). (7)
3. Synchronization of FCSNHSPDEs with Time-Invariant Delays
Lete;(w,t) A zi(w, t) — s(w, t). The behavior of ¢; is obtained as

§,Dte(co,t) = (I © 0() L) | (1 & A(w))elw, ) + Iy © Ag(w)elcw,t ~ )

+ (Iy ® B(w))F(e(w, )) (In © Bg(w))F(e(w, t — 1))

+1(Ga (@) ®T1(w))e(w, ) +2(Galw) @ Ta(w) e(ew, t = ) + u(w, 1), ®
e(L,t) =0,
e(w, t) = & (w,t), (w,t) € [0,L] x [-7,0],
where €(w) A 2w) — O (w), u 2 wl,ul,--,ull]T, e 2 lel,el, -, el]T, F(e;) =
A T

fzi(w, 1)) = f(s(w, t)), and F(e)
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Theorem 1. Under Assumption 1, FCSNHSPDE (1) achieves synchronization via the con-
troller (2), if there exist d;(w) > 0 such that the following SALMI holds:

Fi(w) Ajlw) 05026 (w) @Iz (w)
* * —1I

where
Y¥i1(w) £ 05[]y ® A(w) + ¢1G1(w) @ T1(w) — D(w) @ Iy + *]
+0.5x° Iy ® (B(w)BT (w) + B4 (w)BJ (w)) + 3.5Iny,
D(w) £ diag{d:(w),da(w), - ,dn(w)}.

Proof. Let the Lyapunov functional candidate be
Vi(t) =§ D Valt) + Vi (b),

Va(t) =05 [ o, e, ),

W = [ [ ol pidpre .
[0 @ et pipdo
[0 @t pipre

By using Lemma 1, one has

. L L
Vi(t) </0 eT(w,t)foD?‘e(w,t)dw+3/o el (w, t)e(w, t)dw

L L
—/ el(w,t —1)e(w, t — Tl)dw—/ el(w,t —)e(w, t — 1)dw
0 0

L
- / el (w,t —13)e(w, t — 13)dw
0

L de(w, t)
— T 4
=, e' (w,t) 5 dw

+ /OL el (w,t)(Iy ® A(w) + c1G1 (w) @ T1(w))e(w, t)dw

. (11)

+ ; el (w,t)(Iy ® Ag(w))e(w, t — 11)dw
L

+ A el (w, 1) (c2Ga(w) @ Ta(w))e(w, t — 13)dw + /OL el (w, t)B(w)E(e(w, t))dw

+ /OL el (w,t)By(w)F(e(w, t — T))dw — /OL el (w, 1) (D(w) @ Iy )e(w, t)dw

L L
+ 3/ el (w, t)e(w, t)dw — / el (w,t —1)e(w, t —11)dw
0 0

L L
—/ eT(w,t—Tz)e(w,t—Tz)dw—/ el(w,t —13)e(w, t — 13)dw.
0 0
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Using integration by parts,
L de(w, t)
T 7
/O e (w, H©(w) 5 dw
=’ (w, )0 (w)e(w, )|5=F
L 9T
- WG(w)e(w,t)
Do (12)
—eT(0,H)O(w)e(0, )
L de(w, t)
—_ T ’
/0 e’ (w, 1)O(w) o dw
L de(w, t)
< — T ’
< /0 e’ (w,1)0(w) o dw,
which implies
L de(w, t)
/0 e (w,t)0(w) o dw < 0. (13)
By applying the triangle inequality, under Assumption 1, one has
L
/ el (w,t)B(w)F(e(w,t)) dw+/ (w, t)Bg(w)F(e(w, t — 1))dw
<0.5)? / w)BT (w) + By(w)B] (w))e(w, t)dw
+ 0.5y 2 (PT(w, HF(w,t) + Fl(w,t — 1) F(w,t — 1))dw (14)
0
L
= [ e(w,1)(05x%Iy ® (B(w)B" (w) + By(w)B] (w)) + 0.5Iny)e(w, t)dw
—|—05/ (w,t—m)e(w,t —1)dw.
Substitution of (12)—(14) into (11) yields,
L L
Vi(t) < / & (w, £)¥e(w, F)dw — 0.5 / T (w,t — )e(w, t — T)dew, (15)
0 0

where é(w,t) £ [eT(w,t),e (w,t —11),eT (w,t —13)]T. Substituting (9) to (15), one has
V() < =Amin(=O)|16C, )| < —Amin(=F)|le(-, 1)]| < 0, for all non-zero e(w, t), implying

synchronization of FCSNHSPDE (1). O

4. Synchronization of FCSNHSPDEs With Time-Varying Delays
This section studies time-varying delayed FCSNHSPDEs, such as

£,D1zi(w,) = 0(@) 2L | A}z, ) + Ag(w)zlw, t—(6) + B(w) flzi(w, 1)
N
+ By(w)f(zi(w, t = 1a(t))) +¢1 Y &ij ()T (w)z(w, t)

j=1
N
+6 2 gij ()T (w)zj(w, t — 3(£)) + ui(w, t),
=
Zl'(L, i’) = 0,
zi(w, t) = 22(w, 1), (w,t) € [0,L] x [-7,0],

where 0 < (1) K 7,0 < (H) < 7,0 < () < 7,0 < B(H) < pp, 0 < 1(f) <

0< 'i'3(t) < U3.

(16)

Uy, and
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The isolated node is assumed to be

6, Dis(w,) = 0(w) D) 1 A(w)s(w,8) + Ag(@)s(eo,t — a(8)) + B(w)f(s(w,)
T By(w)fls(ew,t— (1)), a7)

s(L,t) =0,
s(w,t) =s%(w,t), (w,t) € [0,L] x [-7,0].
The error system between FCSNHSPDE (16) and (17) with time-varying delays can be

obtained as

(. Die(w,) = (Iy ©0(w) W) 1 (1y & Aw))e(w, 1) + (I © Ag(w))e(w, (1)

+ (In ® B(w))F(e(w, 1)) + (In ® Bg(w))F(e(w, t — 12(t)))

+01(Gr(w) @ Ty (w))e(w, t) + e2(G2(w) @ Do (w))e(w, t — T3(t)) + u(w,t),
e(L,t) =0,
e(w,t) = e®(w,t), (w,t) € 0,L] x [-7,0].

(18)

Theorem 2. Under Assumption 1, the FCSNHSPDE (17) achieves synchronization with the iso-
lated node (18) via the controller (2), if there exist d;(w) > 0 such that the following SALMI holds:

En Ag(w) 050G (w) @ Ta(w)
* ~I 0 <0, (19)

* * —1

[x1
Il

where D(w) is defined in (9) and

B 2 05[]y ® A(w) + 0161 (w) @ Ty (w) — D(w) @ Ly + %]
+0.5x°Iny @ (B(w)BT (w) + By(w)B] (w)) + 3.5In,-

Proof. Let the Lyapunov functional candidate be
Va(t) =§ Dy~ MVa(t) + V1),

Va(t) =05 /0 T (o, Be(eo, Do,
Ve(t) = /OL /ttnm T (w, p)e(w, p)dpdw o
- /oL ./;M ¢ (w, p)e(w, p)dpdew
* ./O.L /t;3(t> el (w,p)e(w, p)dpdw.

By using Lemma 1, one has
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</ t,Die(w,t) dw+3/ (w, t)e(w,t)dw

—(1—%(t) /OL eT(w, t — 1 (b))e(w, t — 7 ())dw

(- 50) [t~ nb)e(w,t - ()
L

~(1=n) [ )e(

(

:/OL eT(w,t)Law t)dw
+ " el (w, t)(Iy ® A(w) 4 ¢1G1 (w) @ T1(w))e(w, t)dw

° (21)
[ @ ) Iy © Ag(w))e(w,t =i (8))deo

w, t—13(t))e(w, t — 13(t))dw

+ / )(€2Go(w) @ Th(w))e(w, t — 13(t) )dw + /OL el (w,t)B(w)F(e(w,t))dw
—|—/ (w, t)Bg(w)F(e(w, t — a(t)))dw — /OL el(w, t)(D(w) ® In)e(w, t)dw

L
+3/ e(w, t)dw — (1—”1'.'1(t))/0 T(w,t =1 (F)e(w, t — 7 (t))dew

— (1= (1)) /OL T (w, t — v(t))e(w, t — o (t))dw
(- 5(0) [ Tt - w)eleo, - (1),

where D(w) 2 diag{d(w),da(w), - ,dn(w)}.
Under Assumption 1,

L L
/0 el (w, t)B(w)F(e(w, t))dw—l—/o el (w,t)By(w)F(e(w, t — 1o(t)))dw
L
<0521~ 1) [ ¢ (@, 1) (B(@)BT (@) + Balw)B] (@))e(w, s
+ 0. 5)(_2(1 — Up) /L (FT(w, £)F(w,t) + PT(w, t—n(t)F(w,t —1(t)))dw (22)
—/ (w,£)(0.5x*(1 — p2) 'y ® (B(w)BT (w) + By(w) B} (w)) + 0.5y )e(w, t)dw

+0.5(1 — pp) /OL el(w,t —1(t))e(w, t — 1(t))dw.
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According to the conditions of time-varying delays, one has
L
—(1=1®) [ e @t - nb)ewt—n(h)do
0
L
— (11— (1)) / eT(w, t — v(t))e(w, t — o(t))dw
0

— (11— (1)) /O'L eT(w, t — t3(t))e(w, t — T3(t))dw

<= ) [ ot nl)elw, — ()de “
~(- ) [ et - mlt)elw, (1)
(1) [ et = l)elewt — (1))
Substitution of (22) and (23) into (21) yields,
Va(t) < /OL & (w, H)E(w)e(w, H)dw — 05(1 — ) /OL eT(w, t—1a(t))e(w, | — 1a(t))dw, (24)

where &(w, t) = [eT (w,t), el (w, t — 71 (1)), el (w, t — 13(t))]T.
The rest of the proof is similar to that of Theorem 1, and so it is omitted. O

Remark 1. There are many important works on synchronization of hyperbolic PDE-based
CSTNs [38,39,501; however, time delays are still not addressed, which has been considered in
this paper.

Remark 2. This paper addresses synchronization of FCSNHSPDEs not only with multiple time-
invariant delays but also with multiple time-varying delays, as well as considering delayed coupling.

Remark 3. PDEs’ space-invariant parameters with based CSTNs have been studied for synchro-
nization or consensus [50,51], while space-varying parameters models have not been considered. As
is well-known, space-varying parameter models exist in processing [52—-54]. This paper deals with
space-varying parameter-based models.

5. Numerical Examples

Example 1. To demonstrate the effectiveness of Theorem 1, consider FCSNHSPDE (1) with random
initial conditions and time-invariant delays as follows

0zj1(w, t
fOD?CZil ((,U, t) = % + 1.2211 ((U, t) - 0.221'2((4], i’) + 0.821'1((4},1' — Tl)
+ 0.521'2 (C(J, t— Tl) + f(zil (w, t)) — 0.2f<Zi1 (w, t))
N

+ f(zin(w, t — 1)) —0.2f (zip(w, t — T2)) + 0.2 Zigij(w)zjl(w, t)
j=

N
+03) gij(w)zj1 (w, t — 13) + ujp (w, 1),
j=1
iy Dizin(w,t) = W + 2.5sin(2ntw)z (w, t) — 1.8z (w, t)
+ cos(nw)ziy (w, t —11) + 1.6z (w, t — 11) 4+ 0.25in (27w ) f(zi1 (w, t))
—25f(zin(w, 1)) +0.2sin(2ntw) f (zj1 (w, t — 1)) — 2.5f (zip(w, t — 1))
N N
+02) gij(w)zjp(w, 1) +03 ) gii(w)zpp(w, t — 13) + up(w, t),
j=1 j=1

(25)
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where
10 1.2 —0.2 08 05
Ow) = [ 0 1 ]'A(“’) - [ 25sin(2w) —1.8 ]'Ad(“’) - [ cos(nw) 1.6 }
1 —0.2 10
Blw) = Balw) = [ 0.2sin(2nw) —2.5 ]'Fl(“’) =T(w) = [ 0 1 }
L=1,a=095c; =02, =03,tp=0,11 =3, =2,13 =4, f(-) = tanh(-), (26)
0 -1 -3 —6

I i . -1 5 -2 =2
zi = [ 2 ],Gl(w) = Gy(w) = o -3 6 1

-1 -3 -3 7

This illustrates that FCSNHSPDE (1) cannot achieve synchronization without control in Figure 1.
From (26), x = 1 is obtained. By Theorem 1, solve (9) by using Matlab, and the time-varying control gains
are obtained as shown in Figure 2, where the parameter feasibility radius = 100 of feasp in the LMI toolkit.
Figure 3 shows that FCSNHSPDE (1) reaches synchronization via the proposed controller (3) with the
feedback gains shown in Figure 2, and the controller (3) is shown in Figure 4.

2000

e
1000
0

0

e e Ry
21 =50 22-20
100 L4 -40 v
-60
0 0
0.5 ; 10 0.5 ; 10
0- r

€31 _500 v 322200 v
-1000 -400
0 0
0.5 ; 10 0.5 ; 10

600
2,1 400 €,,200
200 100

0 0

s < 10 0.5 10

10 10 2

! t ! f

&
E

g
3

0.

Figure 1. ¢(w, t) of FCSNHSPDE (1) without control.

17
dyfw)
. wsan dofw)
- (W)
- - — — - '
15’,—”’ S~ )
- = - S T TR
- ~
Bl I
Las® IR T L L LLTTPPRPRP
13 ‘
0 0.2 0.4 0.6 0.8 1

Figure 2. The space-varying control gains of FCSNHSPDE (1).
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10 ' 1o

i, 20 i
11 20 U1y 0
0
.zg
0.5 5 10 10

Figure 4. The control input of FCSNHSPDE (1).
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Example 2. To demonstrate the effectiveness of Theorem 2, consider FCSNHSPDE (16) with
time-varying delays, and with the same coefficients to those of Example 1, except:

7 (t) =124 0.2sin(1.27tt), 7, = 1.5+ 0.8sin(0.27tt), 13 = 1.8 +sin(0.37tt).  (27)

Fiqure 5 shows that FCSNHSPDE (16) with time-varying delays cannot achieve synchroniza-
tion without control. From (27), yy = 0.247m, yp = 0.167, 3 = 0.37, and x = 1 are obtained. By
Theorem 2, solve (20) and the time-varying control gains are obtained as shown in Figure 6, where
the parameter feasibility radius=200 of feasp in the LMI toolkit. Figure 7 shows that FCSNHSPDE
(16) with time-varying delays achieves synchronization via controller (3) with the control gains,
while controller (3) is shown in Figure 8.
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Figure 5. ¢(w, t) of FCSNHSPDE (16) without control.
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Figure 6. The space-varying control gains of FCSNHSPDE (16).
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6. Conclusions

This study addressed synchronization of two sorts of semi-linear space-varying FC-
SNHSPDESs, one with time-invariant delays, and the other with time-varying delays. To
ensure FCSNHSPDESs achieve synchronization, a space-varying control gains-based control
method was proposed. Sufficient conditions for synchronization of FCSNHSPDE with both
time-invariant and time-varying delays were derived using SALMIs. The effectiveness
of these methods was demonstrated through two examples. The proposed method has a
potential application for flexible manipulators, flexible strings, flexible articulated wings,
and flexible appendages, which will be considered in the future. The actuator is often
prone to faults due to harsh environmental conditions, and so fault-tolerant control of
FCSNHSPDEs will be studied in future.
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