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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• BCLH2Pro: Novel ML tool predicts H2 
yield in biomass chemical looping 
processes.

• CatBoost algorithm achieves over 98% 
accuracy in H2 yield predictions.

• SHAP analysis reveals key factors: car
bon content, reducer temp, Fe2O3/Al2O3 
ratio.

• User-friendly web interface optimizes 
BCLpro operational parameters.

A R T I C L E  I N F O

Keywords:
Artificial intelligence
Supervised learning
Process simulation
Chemical looping
Agricultural waste

A B S T R A C T

This study optimizes biomass chemical looping processes (BCLpro), a technique for converting biomass to en
ergy, through machine learning (ML) for sustainable energy production. The study proposes an integrated Fe2O3- 
based ฺBCLpro combining steam gasification for H2 production. Aspen Plus is used as the primary tool to generate 
extensive datasets covering 24 biomass types with 18 feature inputs in a supervised model. A methodology 
involving K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine 
(LGBM), Support Vector Machine (SVM), Random Forest (RF), and CatBoost (CB) algorithms was employed to 
predict H2 yields in the BCLpro, utilizing 10-fold cross-validation for robust model evaluation. Findings highlight 
the CB algorithm’s superior performance, achieving up to 98% predictive accuracy, with carbon content, reducer 
temperature, and Fe2O3/Al2O3 mass ratio identified as crucial features. The algorithm has been developed into a 
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user-friendly tool, BCLH2Pro, accessible via a web server. This tool is designed to assist in reducing costs, 
optimizing biomass selection, and planning operational conditions to maximize H2 yield in BCLpro systems. 
Access to the tool can be obtained through the following link: http://bclh2pro.pythonanywhere.com/.

1. Introduction

Over the last decade, escalating environmental concerns have 
stemmed from emissions such as carbon dioxide (CO2), nitrogen dioxide 
(NO2), and sulfur dioxide (SO2) from fossil fuel combustion, contrib
uting to global warming and climate change. Industrialization-driven 
CO2 emissions necessitate prioritizing renewables for energy sector 
decarbonization and climate change mitigation. While solar, wind, 
hydro, tidal, and geothermal sources face weather-dependent chal
lenges, biomass stands out for its abundance and environmental 
friendliness. Biomass, with ample chemical energy, emerges as an ideal 
resource for replacing fossil fuels, underscoring its pivotal role in a 
sustainable energy transition [1-5].

Biomass constitutes 37.2% of the Organization for Economic Coop
eration and Development (OECD) total primary energy supply and 
isrecognized globally as a vital renewable resource. This category en
compasses liquid biofuels, biogases, and renewable municipal waste as 
components of modern bioenergy. Derived from diverse sources like 
agricultural waste and industrial byproducts, biomass stands out for its 
adaptability, utilizing organic materials that would otherwise go to 
waste. Hydrogen (H2) derived from biomass, is gaining attention as a 
promising clean energy source due to its high energy density and min
imal emissions [6-9].

H2 is gaining widespread attention as a promising energy source due 
to its high energy density and minimal greenhouse gas emissions, with 
its modern applications illustrated in Fig. 1. Its versatility arises from its 
ability to be generated from various low-carbon sources, making it an 
environmentally friendly option. With a higher heating value (HHV) of 
141.8 MJ/kg, H2 surpasses many other fuels in energy content, like 
gasoline with 44 MJ/kg. Steam gasification of biomass, which yielding 
approximately 53–55 %vol. of H2, is a favored method for H2 produc
tion. Chemical looping processes (CLP) provide an alternative route for 
H2 production [5,9-13].

CLP revolutionize traditional reactions by utilizing a solid looping 
material’s redox cycle, typically dividing the overall reaction into two 
sub-reactions in distinct reactors [14]. Iron oxide mediates redox re
actions in chemical looping, allowing heat production from fuel com
bustion without releasing CO2 emissions [15]. Chemical looping 
comprises two divisions: direct chemical looping (DCL) and syngas 
chemical looping (SCL) [16]. Biomass chemical looping processes 
(BCLpro) conversion efficiently harnesses biomass energy, converting it 
into H2-rich syngas with solid metal oxides as oxygen carriers [17]. 
Thermochemical biomass conversion’s key parameters [5], such as 
particle size, gasification temperature, equivalence ratio (ER), gasifica
tion agents, and steam/biomass (S/B) ratio, impact H2 yield and pro
duction rate as shown in Fig. 2. Quantitatively assessing and optimizing 
these processes, either through experimental or simulation approaches, 
is challenging due to research limitations on specific biomass sources or 
model compounds. This complexity presents opportunity for the appli
cation of advanced data analysis techniques [18].

Recent advances in artificial intelligence (AI) have revolutionized 
data utilization in chemical engineering, particularly through machine 
learning (ML) [19]. ML, which is a statistical AI category, relies on 
existing datasets to make predictions and inferences, identifying pat
terns for complex tasks. This technology enhances insights into catalyst 
development, the reaction conditions refinement, and the reactor 
configuration optimization within the engineering domain [20,21].

ML operations, as outlined by [22], involve classification, regression, 
prediction, and clustering. Classification discerns input categories, while 
regression formulates models capturing input-output relationships, 
prediction forecasts future values, and clustering identifies and groups 
similar points in datasets. In academia, AI and ML algorithms are uti
lized to build predictive models for energy consumption, reducing un
certainties in renewable energy sources [23]. ML plays a crucial role in 
optimizing BCLpro in several ways:

1. Predictive Modeling: ML algorithms can predict H2 yield based on 
various input parameters, allowing for optimization of process con
ditions without extensive experimental work.

2. Feature Importance: ML techniques like SHapley Additive exPlana
tions (SHAP) help identify the most influential factors in H2 pro
duction, guiding focused research efforts.

3. Process Optimization: By analyzing complex relationships between 
multiple variables, ML can suggest optimal operating conditions for 
maximizing H2 yield.

4. Rapid Iteration: ML models can quickly evaluate numerous sce
narios, accelerating the process of finding optimal biomass compo
sitions and operating conditions.

5. Cost Reduction: By reducing the need for extensive laboratory ex
periments, ML helps lower research and development costs in 
BCLpro optimization.

6. Scalability: ML models are easily scaled to incorporate new data, 
continuously improving predictions as more information becomes 
available.

These advantages make ML an invaluable tool in advancing BCLpro 
technology, enabling a more efficient and sustainable H2 production 
from biomass resources.

Miyahira and Aziz introduced a tailored conversion system for rice 
husks, optimizing H2 production efficiency. The system integrates su
perheated steam drying, steam gasification, chemical looping, and the 
Haber-Bosch process. Three systems were compared: dual fluidized bed 
chemical looping with H2O and CO2, and single fluidized bed chemical 
looping. Using Aspen Plus for modeling and optimization, their study 
revealed peak efficiencies of 51.80% for H2, 38% for NH3, and 0.651% 
for net power [16]. This comprehensive investigation advances the 
understanding of efficient biomass-derived H2 production. However, the 
proposed integrated conversion system for rice husk biomass has limi
tations for practical applications: firstly, it considers only one type of 
biomass, and secondly, process modeling methods often rely on 

Fig. 1. The implementation of H2 energy in various sectors.
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specialized software tools, such as Aspen Plus [24]. These factors may 
limit the broader applicability of the approach to diverse biomass 
sources and different modeling environments.

Aspen Plus, a widely recognized commercial software, exhibits high 
capabilities for modeling intricate chemical processes and optimizing 
complex processes like biomass gasification. Supported by validation 
databases and professional software assistance, its utilization, however, 
necessitates the acquisition and maintenance of a valid software license 
[25,26]. Therefore, it is imperative to develop reliable, accurate, robust, 
and efficient modeling approaches [24].

This study introduces BCLH2Pro, a novel and user-friendly tool 
specifically designed to assist researchers in the field of BCLpro. 
Developed without cost, BCLH2Pro leverages extensive datasets gener
ated through simulations of BCLpro with Fe2O3/Al2O3 for H2 production 
from biomass using Aspen Plus software. The tool incorporates a diverse 

range of 24 biomass feedstocks, including almond shell, coffee husk, and 
oat straw, and explores these under various operating conditions. A total 
of 18 input variables and one target output variable (H2 yield) are 
employed in the analysis. Supervised ML techniques play a crucial role 
in BCLH2Pro’s functionality. Six well-established algorithms, namely 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), eXtreme 
Gradient Boosting (XGB), Random Forest (RF), CatBoost (CB), and 
LightGBM (LGBM), and a 10-fold cross-validation approach. Model 
performance is meticulously evaluated using five key metrics: Coeffi
cient of determination (R2), Mean Absolute Error (MAE), Normalized 
Mean Absolute Error (NMAE), Root Mean Square Error (RMSE), and 
Normalized Root Mean Square Error (NRMSE). Ultimately, the model 
demonstrating the highest degree of accuracy and robustness is selected 
for developing the final BCLH2Pro tool.

Fig. 2. Effect of different factor to H2 yield.

Fig. 3. A schematic flowchart of this study.
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2. Materials and methods

In this study, process and data simulations were generated using 
Aspen Plus V. 12.1. Data analysis and modeling employed ML tech
niques implemented through Python within Jupyter notebooks. The 
models were constructed utilizing the ’scikit-learn’ library in Python 
[27]. All computations were executed on a system equipped with a 13th 

generation Intel(R) Core (TM) i9–13900KF processor operating at 3.00 
GHz, complemented by 32 GB of installed RAM. The operating system 
was 64-bit, and the processor architecture is x64. A flowchart depicting 
the methodology is presented in Fig. 3.

2.1. Biomass chemical looping processes (BCLpro) description

This study modeled H2 production efficiently using Miyahira and 
Aziz’s system, primarily relying on biomass for its high energy potential 
[16]. The process incorporates steam gasification and chemical looping, 
detailed in Fig. 4., facilitating a systematic approach to optimize H2 
production with high energy efficiency in the BCLpro system, biomass 
undergoes gasification in the gasifier, transitioning from 30 ◦C and 1 bar 
to 500–1,100 ◦C. The resulting syngas moves to the reducer, reacting at 
500–1,100 ◦C with Fe2O3/Al2O3 to produce CO2 and H2O. The reduced 
oxygen carrier proceeds to the oxidizer, generating H2 and Fe3O4 by 
reacting with steam. The carrier then enters the combustor, forming 
Fe2O3 with air at 1,000–1,500 ◦C. Heat is transferred to the reducer. The 
exhaust gasses emanating from the reducer, oxidizer, and combustor 
serve the purpose of generating steam for the processes of gasification 
and oxidation. Additionally, these gases, along with CO2 and H2O from 
the reducer, enter a separator. H2 is extracted, while other exhaust gases 
are discharged. This systematic process model optimizes H2 production 
from biomass, with high energy efficiency.

The following reaction in the gasifier are considered to occur, the 
primary reactants are char and H2, converting rapidly into CO2 and H2O, 
as depicted in Eqs. (1) - (6) [28]. The ultimate product stream emerges as 
a result of the reactions between gasification and oxidation products. H2, 
carbon monoxide (CO), and methane (CH4) production take place 
through processes such as the water gas shift reaction (Eq. (7)), methane 
reforming (Eq. (8)), char CO2 gasification (Eq. (9)), and char steam 
gasification (Eq. (10)). 

Biomass → (H2, CO, CO2, CH4) gas + water + char + tar                (1)

Tar → CO2+C+CH4+CO                                                                (2)

Tar + H2O → H2+CO                                                                     (3)

C(Solid) +
1
2
O2→CO (4) 

CO +
1
2
O2→CO2 (5) 

H2 +
1
2
O2→H2O (6) 

CO + H2O ↔ H2 + CO2                                                                  (7)

CH4 + H2O ↔ CO + 3H2                                                                (8)

C + CO2 → 2CO                                                                            (9)

C + H2O → H2+CO                                                                     (10)

In the reduction stage, the syngas reacts with Fe2O3/Al2O3, pro
ducing CO2 and H2O, as depicted in Eqs. (11) – (15) [16]. 

Fe2O3 + CO →2FeO + CO2                                                          (11)

FeO + CO → Fe + CO2                                                                 (12)

Fe2O3 + H2 → 2FeO + H2O                                                          (13)

FeO + H2 → Fe + H2O                                                                 (14)

4Fe2O3 + 3CH4 → 8Fe + 3CO2 + 6H2O                                        (15)

The oxidizer unit receives the reduced oxygen carrier, which then 
enters and reacts with steam, generating H2 and Fe3O4. The reaction 
described in Eqs. (16) and (17) are considered within the oxidizer. 

Fe + H2O → FeO + H2                                                                 (16)

3FeO + H2O → Fe3O4 + H2                                                          (17)

In the combustor unit, the reduced oxygen carrier mixes with air and 
forms Fe2O3. The reaction described in Eq. (18) occurs within the 
combustor. 

4Fe3O4 + O2 → 6Fe2O3 +N2                                                         (18)

Fig. 4. Block diagram of BCLpro system.
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The H2 yield is determined using Eq. (19) [29,30]. 

H2yield(%) =
H2 mass flow output (kg/hr)

Feedstock mass flow (dry basis)(kg/hr)
x100 (19) 

2.2. Feedstock data selection

This study extensively reviewed the literature to select a diverse 
range of biomass raw materials. A meticulous approach considered the 
distinctive properties of each biomass sample, intentionally selecting 
comparable characteristics to minimize potential bias in the training 
dataset. Proximate and ultimate analyses were conducted on 24 metic
ulously selected biomass samples from Kartal and Ozveren [31], quan
tifying parameters such as moisture (Mo), volatile matter (VM), ash (As), 
fixed carbon (FC), carbon content (CC), hydrogen content (HC), oxygen 
content (OC), nitrogen content (NC), and sulfur content (SC).

2.3. Data generation and preprocessing

The processes executed by BCLpro, which were simulated using 
Aspen Plus, underwent a meticulous validation process. Subsequently, 

the platform is prepared to serve as a tool for the generation of datasets. 
Information pertaining to the distinctive characteristics of each biomass 
is inputted into the feed line. Following this, adjustments are made to 
the operating conditions to diversify the data range specified for the 
variables, thus providing a comprehensive overview of the static fea
tures, as detailed in Table 1. A total of 106,795 datasets were generated, 
with 2,000-5,000 datasets for each of the 24 biomass types. To optimize 
processing time and resource allocation, 3,013 datasets were randomly 
selected, ensuring each biomass type is represented by 120–130 data
sets. This balanced subset provides a representative sample for analysis.

Normalization is crucial for training the model as it ensures that data, 
especially with varying value ranges, are adjusted for balanced influ
ence, preventing disproportionate impacts on prediction accuracy. In 
this study, normalization, described by Eq. (20) [32], transforms data 
into standardized ranges like − 1 to 1 and 0 to 1 [33]. This process 
equalizes data attributes, facilitating analysis and ML by eliminating 
distortions arising from raw, unstandardized data collected from diverse 
sources [34,35]. 

Xʹ =
X − μ

σ
(20) 

Table 1 
Input and output variables with statistical properties for BCLpro modeling.

Variable Name Units Boundary values Average S.D.

Input features
Biomass characteristics
Moisture Mo vol.%db. 2.27–15.00 6.95 3.62
Fixed carbon FC vol.%db. 5.57–75.90 22.51 12.81
Volatile matter VM vol.%db. 19.00–91.70 71.37 12.77
Ash As vol.%db. 0.88–19.91 6.12 5.37
Carbon content CC vol.%db. 28.85–54.02 43.00 7.16
Hydrogen content HC vol.%db. 3.26–8.84 5.82 1.27
Nitrogen content NC vol.%db. 0.15–2.86 0.77 0.5
Sulfur content SC vol.%db. 0.00–2.96 0.79 0.97
Oxygen content OC vol.%db. 34.99–50.62 43.49 4.02
Operating condition
Fe2O3 to Al2O3 mass ratio Fe2O3/Al2O3 kg/hr:kg/hr 0.30–0.80 0.52 0.15
Biomass flowrate BF kg/hr 2,496.11–11,339.81 7,160.78 2,496.11
Fe2O3 to biomass mass ratio Fe2O3/B kg/hr:kg/hr 6.67–39.68 12.51 5.09
Air to biomass mass ratio A/B kg/hr:kg/hr 0.69–52.91 1.96 4.09
Steam to biomass mass ratio S/B kg/hr:kg/hr 1.77–6.61 3.18 1.21
Steam split fraction SS – 0.30–0.70 0.5 0.04
Gasification temperature GT ◦C 500–1,100 814.55 214.12
Reducer temperature RT ◦C 500–1,100 745.1 169.27
Combustor temperature CT ◦C 1,000–1,500 1,250.33 168.86
Output target
H2 Yield HY % 0.495- 

14.928
7.40 3.07

Fig. 5. Kth-fold cross validation.
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In the provided formula, where X represents the overall data, X’ 

denotes the transformed data, μ denotes the mean, and σ denote stan
dard deviation (S.D.)

The Pearson Correlation Coefficient (PCC), expressed by Eq. (21), 
serves to assess the linear dependence between two variables, be it 
disparate inputs or their connection with outputs. A PCC value of 1 or − 1 
indicates a substantial correlation, while 0 signifies no correlation. The 
absolute PCC value gauges the relative significance of features influ
encing output variables, especially in H2 production. Notably, in this 
context, x and y denote the variables of interest for PCC determination, 
and n signifies the number of datapoints [36]. 

PCC =

∑n
i=1(xi − x)

∑n
i=1(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

√ (21) 

where x and y are the two variables of interest for which the PCC is to 
be determined, with xi and yi representing their respective values for the 
ith sample, and n denotes the total number of data points in the dataset.

2.4. Model development

The input data is partitioned into ten subgroups using 10-fold cross- 
validation, as illustrated in Fig. 5. The remaining subgroup is used as test 
data, while nine subgroups serve as training data for each round of the 
models’ training. Subsequently, these ten datasets are consecutively fed 
into the ML models (SVM, KNN, XGB, RF, LGBM, and CB). Conducting 
the majority of the training over 10 iterations helps eliminate inaccurate 
model assessments stemming from the unintentional partition of the 
sample datasets.

The effectiveness and precision of each model were evaluated using 
statistical metrics. These metrics include the R2 defined in Eq. (22), MAE 
specified in Eq. (23), NMAE shown in Eq. (24), RMSE presented in Eq. 
(25), and NRMSE indicated in Eq. (26) [37,38]. The NRMSE assesses the 
RMSE across the entire range of observed variables and is computed as 
the ratio of RMSE to the average of the observed values. 

R2 = 1 −

∑n
i=1

(
ya,i − yp,i

)2

∑n
i=1

(
ya,i − ya

)2 (22) 

MAE =
1
n

(
∑n

i=1

⃒
⃒
⃒ya,i − yp,i

⃒
⃒
⃒

)

(23) 

NMAE =

1
n
∑n

i=1

⃒
⃒
⃒ya,i − yp,i

⃒
⃒
⃒

max
(

ya,i

)
− min

(
ya,i

) (24) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
ya,i − yp,i

)2

n

√
√
√
√ (25) 

NRMSE =
RMSE

ya
(26) 

In the provided formula, where ya,i represents the actual value, yp,i is 
the predicted value, ya denotes the average value of the actual value, and 
n is equal to the number of the studied data.

2.5. Shapley additive explanations (SHAP)

The SHAP method constitutes an interpretative approach applicable 
to ML models, facilitating the assessment of feature importance. This 
method allocates importance values to each feature for a specific pre
diction, enabling users to comprehend the individual contributions of 
features to the ultimate output. The computation of the SHAP value for a 
given feature is expressed by Eq. (27) [39]: 

∅i =
∑

S⊆F\{i}

ns!(nF − ns − 1)!
nF!

[
fs∪{i}

(
xs∪{i}

)
− fs(xs)

]
(27) 

F represents the set of all features, with S being a subset of F. ns and np 
denote the number of features in F and S, respectively. The sign of the 
SHAP value indicates whether a feature has a positive or negative effect 
on the model output. The absolute SHAP value quantifies the magnitude 
of a specific feature’s impact. By calculating the average absolute SHAP 
value across all samples, a comprehensive assessment of input feature 
importance can be achieved.

2.6. Selected machine learning algorithm

2.6.1. K-nearest neighbor (KNN)
The KNN algorithm, a method used for both regression and classifi

cation, categorizes sample data points by utilizing votes from their 
nearest neighbors, based on a pre-trained database [40]. It assigns the 
most frequent class for categorical output. The variable ’k’, a small 
positive integer, denotes the number of considered neighbors, and for 
regression, averaging is applied. Increasing ’k’ minimizes variance but 
introduces bias. Mathematically, classification KNN is expressed in Eq. 
(28). For KNN regression, the output is defined as the average of the k 
nearest values [41]. 

D(X, Y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑k

i=1
(xi − yi)

2

√

(28) 

2.6.2. Support vector machine (SVM)
The SVM is a supervised learning algorithm employed for both 

regression and classification problems [42]. SVM has found extensive 
application across various domains, owing to its numerous reliable 
learning characteristics and its ability to predict positive trial outcomes. 
The theoretical foundation supporting the SVM algorithm is elucidated 
in Eq. (29) [43]. 

T = {(xiyi)| i=1, 2,…n} (29) 

where n-dimensional feature vectors xi and yi are defined in the real 
number domain, with xi ∈ X , and yi ∈ { − 1, + 1}. When the dataset 
under analysis exhibits a linear relationship, Eqs. (30),(31) can be 
applied. 

WTX + b = 0 (30) 

W = (W1;W2;…;Wd) (31) 

In the given equation, W represents the hyperplane, and b signifies 
the distance between the hyperplane and the origin. The formal repre
sentation for the distance from any point X to the hyperplane can be 
expressed as Eq. (32). 

γ =
|ωTX + b|

||ω||
(32) 

2.6.3. Random forest (RF)
The RF algorithm utilizes ensemble learning to generate multiple 

Decision Trees (DTs). When applied to a dataset, it organizes the data 
into a hierarchical tree structure. Each node in this structure undergoes 
further classification based on specific criteria, ultimately leading to the 
final output [44,45].The calculation is detailed in Eq. (33). 

f(x) =
∑M

m=1

1
m

fm(x) (33) 

where, fm represents the mth tree in the set of all decision trees M.

2.6.4. eXtreme gradient boosting (XGB)
XGB is an efficient ML model that iteratively trains decision trees, 
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focusing on high-error samples. It improves accuracy by progressively 
adjusting the weight of each tree’s contribution, as shown in Eq. (34)
[46]. 

ŷi =
∑K

k=1
fk(xi), fk(xi) ∈ F (34) 

where xi represents the input value of the ith sample, ŷi is the pre
dicted value for the ith sample, K denotes the total number of trees, fk 

signifies a function within the set F of all functions, F represents the set 
space of all trees, and k indicates the kth tree.

Eq. (35) formally expresses the objective function of XGBoost: 

X =
∑n

i=1
l(y, ŷ) +

∑K

k=1
Ω(fk) (35) 

Here, l(y, ŷ) represents the error between the model’s prediction and 
the actual value, while Ω(fk) denotes the regularization term that gov
erns the model’s complexity

To reduce overfitting, a penalty term is added to the regularization 
function, as shown in in Eq. (36). 

Ω(fk) = γT + λ
1
2
∑T

j=1
ω2

j (36) 

λ is the control leaf node fraction, T the total leaf nodes, γ the control 
leaf node count, and ωj is the jth leaf node fraction.

2.6.5. Light gradient boosting machine (LGBM)
LGBM exhibits outstanding efficiency, accuracy, and speed, attrib

uted to the integration of two unique data sampling and categorization 
approaches. This combination enhances the efficiency and accuracy of 
data scanning, sampling, grouping, and categorization when compared 
to similar methods [47]. In the LGBM algorithm, yi is considered the 

target value, ŷi
(t) is the predicted value for the ith sample at the current 

iteration t, and ŷi
(t− 1) is the predicted value for the ith sample from the 

previous iteration (t-1). The objective function of the LGBM model is 
articulated in Eq. (37) [48]. 

Obj(t) =
∑n

i=1

(
yi, ŷi

(t))
+
∑t

i=1
Ω(fi) (37) 

This objective function is further expanded using the Taylor formula, 
resulting in Eq. (38): 

Obj(t) =
∑n

i=1

[

l
(
yi, ŷi

(t− 1))
+ gift(xi) +

1
2
hif2

t (xi)

]

+ Ω(ft) (38) 

where gi = ∂ŷi
(t-1)l(yi, ŷi

(t-1)), hi = ∂2
ŷi

(t-1)l(yi, ŷi
(t-1)). The accumulation 

of n samples is utilized to traverse all leaf nodes, yielding the final 
objective function of the LGBM model, as expressed in Eq. (39). 

Obj(t) =
∑s

j=1

[

Gjwj +
1
2
(
Hj + λ

)
w2

j

]

(39) 

where S indicates the number of leaf nodes, and w signifies the leaf 
weight.

In this equation: Gj =
∑

i∈Ij
gi, and Hj =

∑

i∈Ij
hi and I represents the sample 

set in leaf node j.

2.6.6. CatBoost (CB)
The CB algorithm is efficient, precise, and adept at handling cate

gorical characteristics. It builds an ensemble of weak decision trees, 
integrating them through gradient boosting. This process involves 
adding extra trees to rectify errors made by earlier trees. For predicting 
continuous values, CB applies the formula specified in Eq. (40) [49]. 

Fig. 6. Pearson correlation analysis matrix.
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y = f(x) =
∑n

i=1
αi hi(x) (40) 

The variable y represents the predicted value, while x denotes the 
input features. The output function f(x) is expressed as a linear combi
nation of the basis functions hi(x), where the coefficients αi determine 
the weight of each basis function in the linear combination.

3. Results and discussion

3.1. Pearson correlation coefficient (PCC) analysis

In order to investigate potential feature overlap and construct pre
dictive models for estimating H2 yield, the PCC was employed to assess 

the extent of collinearity among independent variables [50]. The pres
ence of positive and negative signs serves to elucidate direct or inverse 
correlations between pairs of independent variables. Fig. 6 visually 
represents the degree of linear dependency among the 18 input 
variables.

Ideally, PCC values of 1 indicate a high degree of correlation in the 
data, while a PCC of 0 suggests no correlation between the variables. 
Generally, variables with a |PCC| greater than 0.6 are regarded as 
correlated entities [51]. The positive and negative signs delineate the 
nature of correlations between two independent variables. For instance, 
the positive correlation between S/BF feature and Fe2O3/BF feature is 
characterized by a |PCC| value of 0.94, whereas the negative correlation 
between the isosteric heat of FC feature and VM feature is indicated by a 
|PCC| value of 0.91.

Table 2 
Optimized hyperparameters of six machine learning algorithms.

Models Hyperparameters estimator Boundary value Optimization value

KNN ‘leaf_size’ 
‘n_neighbors’ 
‘p’ 
‘weights’ 
‘algorithm’

[1,2,…,15] 
[1,2,…,10] 
[1,1.4,…,2.6] 
[’uniform’, ’distance’] 
[’auto’,’ball_tree’,’kd_tree’,’brute’]

3 
5 
1.8 
distance 
kd_tree

SVM ‘C’ [1,1.2,…,2.8] 2.8
‘kernal’ 
‘gamma’

[’linear’] 
[’scale’,’auto’]

linear 
scale

RF ‘max_depth’ [1,2,…,15] 14
‘n_estimators’ [1,2,…,30] 29

XGB ‘min_child_weight’ 
‘gamma’ 
‘subsample’ 
‘colsample_bytree’ 
‘n_estimators’ 
‘max_depth’

[1,2,…,5] 
[1,2,3] 
[0.2,0.4,…,1.0] 
[0.6,0.8,1.0] 
[500,1000] 
[1,2,…,5]

1 
1 
0.8 
1 
1000 
4

LGBM ‘colsample_bytree’ [0.6,0.8,1.0] 0.8
‘n_estimator’ [500,1000] 1000
‘max_depth’ [1,2,3,4] 3
‘num_leaves’ [2,3,4,5] 4

CB ‘depth’ [1,2,…,5] 4
‘l2_leaf_reg’ [0.5,1.0,5.0] 0.5
‘learning rate’ 
‘min_child_samples’

[0.001,0.01,0.004] 
[1,4,8,16,32]

0.01 
8

Table 3 
Performance metrics for train and test sets of ML algorithms.

Models Data Performance metrics for regression

R2 

(S.D.)
MAE 
(S.D.)

NMAE (S.D.) RMSE (S.D.) NRMSE (S.D.)

KNN Train 0.99987 0.0008 0.00011 0.02954 0.00412
(0.00007) (0.00042) (0.00006) (0.01557) (0.00217)

Test 0.86547 0.0008 0.00011 0.02954 0.00410
(0.01218) (0.00042) (0.00006) (0.01557) (0.00216)

SVM Train 0.77800 1.01704 0.14162 1.36986 0.19076
(0.00234) (0.00445) (0.00056) (0.00847) (0.00103)

Test 0.77358 1.01704 0.14168 1.36986 0.19083
(0.01931) (0.00445) (0.00316) (0.00847) (0.00454)

XGB Train 0.98688 0.25106 0.03496 0.33301 0.04637
(0.00021) (0.00240) (0.00038) (0.00270) (0.00046)

Test 0.97963 0.25106 0.03497 0.33301 0.04638
(0.00377) (0.00240) (0.00059) (0.00270) (0.00072)

LGBM Train 0.95759 0.46208 0.06435 0.59875 0.08338
(0.00060) (0.00306) (0.00047) (0.00387) (0.00057)

Test 0.95089 0.46208 0.06437 0.59875 0.08341
(0.00363) (0.00306) (0.00132) (0.00387) (0.00177)

RF Train 0.99686 0.10229 0.01424 0.16277 0.02267
(0.00018) (0.00190) (0.00025) (0.00478) (0.00065)

Test 0.98150 0.10229 0.01425 0.16277 0.02268
(0.00455) (0.00190) (0.00047) (0.00478) (0.00092)

CB Train 0.99437 0.15446 0.02151 0.21808 0.03037
(0.00016) (0.00209) (0.00027) (0.00321) (0.00042)

Test 0.98466 0.15446 0.02152 0.21808 0.03038
(0.00360) (0.00209) (0.00062) (0.00321) (0.00092)
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However, all other features have PCC < 0.6 and are not highly 
correlated. Elimination of any one variable may result in the sum of 
composition biomass percentages not being equal to 100%. The PCC 
analysis serves as a preliminary screening method for features within the 
raw dataset, aiding in the comprehension of overlapping input variables. 
Moreover, it helps mitigate resource requirements and prediction timing 
when executing the predictive models.

3.2. Accuracy evaluation of hydrogen yield estimation

Six ML algorithms (SVM, KNN, XGB, RF, LGBM, CB) were customized 
and optimized with hyperparameters for H2 yield prediction analysis in 
this study. The distinctive performances of each algorithm were evalu
ated to identify the model with optimal predictive accuracy [50]. 
Table 2 provides the optimized hyperparameters for each algorithm.

Table 3 presents the results pertaining to the predictive accuracy of 
diverse ML models for forecasting H2 yield in BCLPro, encompassing 
SVM, KNN, XGB, RF, LGBM, and CB. Based on the experimental findings, 
it is discerned that within the training dataset, the KNN method 
exhibited the highest accuracy at 99.987% with a S.D. of 0.00007, 
implying superior robustness compared to alternative algorithms. 
Nevertheless, RF, CB, XGB, and LGBM methods also proved to be 
effective, boasting accuracies exceeding 95%. In the test dataset, the CB 
method demonstrated a predictive accuracy of 98.466%, while RF, XGB, 

and LGBM similarly exhibited commendable accuracies. Conversely, 
Support SVM methods demonstrated lower accuracy on such datasets, 
evident from the R2 value in both training and testing phases, which 
only reached 77%. Consequently, in the process of selecting a model for 
further development as a predictive tool, BCLH2pro must undergo 
ranking, amalgamating the cumulative ranking for each model, with 1 
representing the highest rank and 6 the lowest. This determination is 
based on the R2, MAE, NMAE, RMSE, and NRMSE values illustrated in 
Fig. 7(a), as well as on the S.D. depicted in Fig. 7(b).

From Fig. 7(a) and (b), it is evident that the KNN, RF, and CB 
methods possess the lowest cumulative rankings, designating them as 
the most favorable models. Similarly, in terms of robustness, the CB 
method accumulates the least rank, succeeded by XGB and RF. However, 
in the decision-making process concerning model selection, consider
ation must be given to the model that aligns well with the dataset to 
avoid overfitting. Significant discrepancies in R2 values between the 
training and test datasets, as observed in Table 3 for the KNN model, 
indicate potential overfitting. Consequently, it is deduced that the CB 
method exhibits a more favorable fit with the dataset than KNN. As a 
result, CB is selected for further development as a tool named BCLH2Pro.

3.3. Shapley additive explanations (SHAP)

The best-performing RF model was used in conjunction with the 

Fig. 7. Model performance comparison: (a) Cumulative rank based on accuracy metrics; (b) Cumulative rank based on S.D. of metrics.
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SHAP algorithm to evaluate the importance of input variables. As shown 
in Fig. 8(a), the factors that most significantly influence prediction ac
curacy are CC, RT, and the mass ratio of Fe2O3 to Al2O3. These results 
help prioritize the importance of biomass components in H2 production. 
CC, HC, OC, and FC are the most critical variables, while SC and Mo in 
biomass have the least influence. Additionally, as illustrated in Fig. 8(b), 
a pronounced monotonic correlation exists between biomass charac
teristics and operational conditions, as indicated by SHAP values. In 
contrast, the relationships between SHAP values and other original 
experimental features exhibit greater complexity. This clear and concise 
progression of feature relationships constitutes a crucial element 
contributing to the improved training performance of ML models. The 
transparency in feature evolution streamlines the identification of 
shallow nonlinear relationships during the model training process, 
enabling a more comprehensive exploration of significant feature re
lationships [39].

3.4. Learning curve of the machine learning algorithms

Fig. 9 illustrates the learning curve of the six algorithms during the 
development of H2 yield predictions for BCLpro. Notably, the accuracy 
of H2 yield predictions was higher when applied to training datasets 
compared to test datasets. The increase in the number of training data 
points resulted in improved prediction accuracy. A smaller training 
dataset led to higher training error and lower R2 values, indicating 
limited generalization capability and higher test error. As the volume of 
training data increased, H2 yield prediction also improved, reducing bias 
errors. Remarkably, beyond 2,500 testing data points, the accuracy of H2 
yield prediction did not significantly increase from the 0.95 R2 value for 
most algorithms, with the exception of SVM, which continued to show 
improvement.. Therefore, this study utilizes approximately 3,013 data 
sets from a total dataset exceeding 106,795 entries, ensuring accurate 
model construction and minimizing delays in computer processing [52].

3.5. Regression analysis plots for ML models

Fig. 10 illustrates a comparative analysis between predicted and 
experimental values, utilizing normalized data for H2 yield through the 
application of six ML algorithms: KNN, SVM, RF, XGB, LGBM, and CB 
shown Fig. 10(a)–(f), respectively. The proximity of data points to 
regression lines serves as an indicator of enhanced predictability within 
the developed models. In the context of experimental values, the CB 
emerges as a superior model for predicting data across all ML algorithms 
due to its elevated accuracy and low error rates. It exhibits the highest R2 

values in both the training and testing datasets, amounting to 0.99437 
and 0.98466, respectively. The black dotted line in the results symbol
izes the point where predicted values from the ML model precisely align 
with the test values. Upon scrutinizing Fig. 10(c), (e), and (f), it becomes 
apparent that the scatter plots XGB, RF, and CB manifest a distribution 
pattern for the train and test datasets closely aligned with the black 
dotted line. These findings underscore the distribution characteristics of 
predictive data and the precision of the CB model, positioning it as a 
preferable choice among the ML algorithms due to its superior R2 values 
and minimal error rates.

3.6. One-dimensional partial dependence plots (1D-PDPs)

PDPs in Fig. 11 illustrate the influence of the six most important 
input features (CC, RT, Fe2O3/Al2O3, HC, Fe2O3/BF, and OC) on the 
predicted H2 yield obtained using the RF model. PDPs help explain the 
relationship between each input feature and the predicted H2 yield, 
making it easier to understand how changes in each variable affect the 
H2 yield.

When considering the relationship between biomass CC and H2 yield, 
as shown in Fig. 11(a), a non-linear pattern is observed. The relationship 
can be divided into three stages: a gradual increase in H2 yield within the 
CC range of 30-40%, a rapid increase from 40-45% due to the evapo
ration of volatiles and cellulose decomposition [53], and a stabilization 
when CC exceeds 45% [54]. This analysis indicates that the optimal CC 
range for H2 production is 40-45%, providing valuable insights for 
biomass selection and process condition optimization.

RT is another crucial factor affecting H2 yield, as depicted in Fig. 11
(b). The optimal temperature range for H2 production is found to be 550- 
650◦C, where the H2 yield reaches its peak. At temperatures below 
550◦C, the H2 yield is relatively low, possibly due to insufficient energy 
for efficient gasification reactions. Conversely, when temperatures 
exceed 650◦C, the H2 yield decreases significantly, suggesting that 
excessively high temperatures may adversely affect the production 
process.

The ratio between Fe2O3 and Al2O3 is another interesting variable, as 
shown in Fig. 11(c). The plot reveals that the H2 yield tends to decrease 
continuously as the Fe2O3/Al2O3 ratio increases from 0.3 to 0.8, with the 
most pronounced decline occurring between 0.3 and 0.5. This 

Fig. 8. SHAP analysis of feature importance: (a) Mean SHAP values for each 
feature, (b) Distribution of SHAP values across features.
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phenomenon may be attributed to changes in oxygen transfer capacity 
and oxygen carrier stability as the proportion of Fe2O3 increases. It is 
observed that lower ratios (approximately 0.3-0.4) yield the highest H2 
production, possibly due to an optimal balance between oxygen transfer 
capability and material stability.

When analyzing the effect of initial HC in biomass on H2 yield, as 
shown in Fig. 11(d), a complex three-stage relationship is observed. In 
the first stage (HC 4-5%), a gradual increase in H2 yield is noted, 
attributed to moisture expulsion and hemicellulose decomposition, 
resulting in syngas formation and elevated H2 levels. The second stage 
(HC 5-7%) exhibits a steeper slope with slight fluctuations, indicating 

intensified devolatilization and cellulose breakdown, leading to 
increased syngas production and higher H2 yield. In the final stage (HC 
> 7%), a rapid increase in H2 yield is observed, followed by stabilization, 
likely due to lignin decomposition and fixed carbon formation [55].

The ratio between Fe2O3 and the BF also has a significant impact on 
H2 yield, as illustrated in Fig. 11(e). As the ratio increases from 8 to 
approximately 20, a continuous and substantial decrease in H2 yield is 
observed. At lower ratios (Fe2O3/BF < 10), insufficient oxygen leads to 
incomplete oxidation, promoting H2 production. As the ratio increases 
(Fe2O3/BF 10-15), excess oxygen accelerates the oxidation of hydrogen 
to water and shifts the equilibrium towards CO2 production (Eqs. (11)- 

Fig. 9. Learning curves for six machine learning models: (a) KNN, (b) SVM, (c) XGB, (d) LGBM, (e) RF, and (f) CB.

Fig. 10. Comparison of predicted vs. actual H2 yield values for ML models: (a) KNN, (b) SVM, (c) XGB, (d) LGBM, (e) RF, and (f) CB.
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(18)). H2 yield stabilizes when the Fe2O3/BF ratio exceeds 20, poten
tially indicating the cessation of biomass decomposition or the presence 
of excess oxygen in the system.

Fig. 11(f) demonstrates the complex relationship between biomass 
OC and H2 yield, which can be divided into two main stages. In the first 
stage (OC < 38%), the H2 yield remains high and relatively constant, 

indicating optimal conditions for syngas synthesis and hydrogen release 
from the biomass structure. However, in the second stage (OC > 38%), a 
significant decrease in H2 yield is observed as OC increases further. This 
may be due to enhanced complete combustion, increased water vapor 
formation, altered thermodynamic equilibrium favoring oxidation re
actions, and over-oxidation of the oxygen carrier. Therefore, the data 

Fig. 11. 1D-PDPs of key features influencing H2 yield predictions: (a) CC, (b) RT, (c) Fe2O3/Al2O3, (d) HC, (e) Fe2O3/BF, (f) OC.

Fig. 12. Screenshots captured from the BCLH2pro web server interface.
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suggest that the optimal OC range for maximizing H2 yield is approxi
mately 36-38%, and beyond this point, production efficiency decreases 
markedly.

3.7. BCLH2Pro web server

To enhance accessibility and promote collaborative engagement 
within the scientific community, the BCLH2Pro web server has been 
designed and implemented. This user-friendly platform is openly 
accessible online at http://bclh2pro.pythonanywhere.com/. Detailed, 
step-by-step guidelines have been meticulously provided to facilitate 
users in effectively utilizing the BCLH2Pro web server for obtaining 
specific and desired research outcomes. The unrestricted availability of 
this resource contributes to the seamless integration of advanced 
computational tools, fostering a conducive environment for scientific 
exploration and discovery. The user interface of BCLH2Pro presents the 
primary interface and showcases the dataset employed for training, as 
illustrated in Fig. 12. Users can follow these steps to utilize the tool:

1. Access the web server and input the biomass data and operational 
parameters in the designated fields.

2. Select the "Output" button to initiate the process and obtain the H2 
yield value.

4. Conclusions

The integration of advanced ML algorithms and the user-friendly 
BCLH2Pro web server marks a significant improvement in BCLpro. 
Aspen Plus generated a comprehensive dataset, which was strategically 
reduced for efficient analysis. Learning curve analysis confirmed high 
prediction accuracy despite the data reduction. The CB algorithm, 
identified through meticulous analysis, demonstrates superior predic
tive power, achieving up to 98% accuracy in H2 yield predictions. SHAP 
analysis identified CC, RT, and Fe2O3/Al2O3 ratio as the most influential 
factors for H2 production. Optimal conditions for high H2 yield were 
determined to be 40-45% vol.%db., 550-600◦C, and 0.3-0.4, respec
tively. BCLH2Pro has emerged as a valuable resource for the research 
community, aiding in biomass selection and operational setup in 
BCLPro. This application is expected to minimize trial-and-error exper
imentation, thereby reducing laboratory costs across various industries. 
However, the study’s reliance on simulated data presents limitations. 
Future research should focus on validating these findings with experi
mental data and expanding the scope to include more diverse biomass 
types and operational conditions. Despite these constraints, this study 
provides a robust foundation for optimizing BCLpro systems and for 
advancing efficient, sustainable H2 production from biomass resources.
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