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Abstract—Translating textual requirements into precise Unified Modeling Language (UML) class diagrams poses challenges due to the 

unstructured and often ambiguous nature of text, which can lead to inconsistencies and misunderstandings during the initial stages of 

software development. Current methods often struggle with effectively addressing these challenges due to limitations in handling diverse 

and complex textual requirements, which may result in incomplete or inaccurate UML diagrams. This study aims to propose a Natural 

Language Processing (NLP) model that analyzes and comprehends textual requirements to extract relevant information for generating 

UML class diagrams, ensuring accuracy and consistency between the diagrams and requirement descriptions. The research employs a 

four-step approach: preprocessing to handle text noise and redundancy, sentence classification to distinguish between "class" and 

"relationship" sentences, syntactic analysis to examine grammatical structures, and UML class diagram generation based on predefined 

rules. The results show that the model achieved a classification accuracy of 88.46% with a high Area Under the Curve (AUC) value of 

0.9287, indicating robust performance in distinguishing between class definitions and relationships. This study highlights that existing 

methods may not fully address the nuances of translating complex textual requirements into accurate UML diagrams. This study 

successfully demonstrates an automated method for generating UML class diagrams from textual requirements and suggests that future 

research could expand datasets, optimize feature extraction, explore advanced models, and develop automated rule generation methods 

for further improvements. 
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I. INTRODUCTION

Requirement gathering and the design phase are crucial 

stages in the software development lifecycle within the 

software development industry [1]. The duration of these 

phases significantly impacts the overall project timeline. 

Creating UML diagrams is a critical and time-intensive task 

spanning these software development phases. Diagrams, 

particularly class diagrams, bridge these phases [2]. Class 

diagrams are widely used in Object-Oriented analysis and 

design, forming the cornerstone from which other models are 
derived [3]. 

Translating textual requirements into precise UML class 

diagrams presents several challenges. Firstly, these 

requirements are often unstructured, with verbose, 

ambiguous, or incomplete descriptions, making it difficult to 

accurately extract information such as identifying classes, 

attributes, and their relationships [4]. Secondly, textual 

requirements can contain ambiguities, leading to 

inconsistencies and misunderstandings [5]. Manual analysis 
and mapping of textual requirements to UML class diagrams 

are time-consuming and error-prone, requiring significant 

time to interpret and understand the descriptions [6]. Existing 

tools have explored both semi-automatic and fully automated 

methods for generating UML class diagrams: 

The semi-automated method refers to the need for human 

involvement or guidance, such as editing, validating, 

correcting, or supplementing the generated class diagrams.  

The approaches presented in [7] propose an NLP-based 

framework to generate UML class diagrams from software 

requirements. It parses texts using a syntax parser and POS 
tagger, identifies linguistic elements, and employs semantic 

networks and word sense disambiguation to score and select 

candidate classes and relationships. The framework generates 

class diagrams and C# code templates. However, it has 

limitations with complex language structures and relies on 
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predefined semantic networks that may only be suitable for 

some domains. Utilized NLP techniques and heuristic rules 

but required users to adhere to grammar rules and necessitated 

manual intervention to validate and modify the generated 

class diagrams [8]. Proposed RAPID (Requirement analysis 

to Provide Instant Diagrams), a tool employing NLP and 

domain ontology techniques [9]. However, it might have 

limitations with complex sentence structures and require each 

sentence to conform to a specific structure. A method for 

extracting object-oriented elements through NLP was 
presented in [10]. However, refining class diagrams might 

necessitate developer involvement for complex problem 

statements. 

The fully automated method refers to a process that doesn't 

require manual intervention or interaction. The approaches 

presented in [11] propose a system named Requirements 

Engineering Analysis and Design (READ) for generating 

UML class diagrams from informal natural language 

requirements using NLP and domain ontology techniques. 

The system preprocesses requirement text with sentence 

segmentation, tokenization, stop-word removal, stemming, 

and POS tagging using the NLTK library, then extracts UML 

concepts like class names, attributes, methods, and 

associations through heuristic rules. However, the method’s 

rules may be incomplete, leading to potential errors in class 

name filtering. A study by [12] relied on syntactic parsing and 

GKP (Grammar Knowledge Patterns), using the Stanford 

parser for requirements. It needs help with complex language 

and parser accuracy dependency. In [13], AGUML was 

proposed for automated UML class diagram generation, 
utilizing text normalization, semantic analysis, and parsing. 

The system improves accuracy and reduces manual effort but 

lacks the adaptability to new language structures and detailed 

evaluation against existing tools. An NLP-based approach for 

automated UML class diagram generation from textual 

requirements, integrating text analysis and word 

vectorization, was proposed in [14]. This enhances efficiency 

and accuracy but may require further adaptation for complex 

texts. Table 1 evaluates prior research endeavors related to 

similar work in this domain.

TABLE I 

EVALUATION OF EXISTING RESEARCH 

Study Input Automation 
Method / 

Technique used 
Output and advantages Limitations 

[7] Software 
Requirements 
Specification 
(SRS) 

Semi-
automatic 

NLP + POS tagger Produced UML class diagrams and C# 

code templates. The advantages lie in 

automated generation, enhancing 

efficiency in understanding requirements 

and generating code. 

Need help to handle complex 

language structures and semantics, 

relying on pre-defined semantic 

networks and vocabulary. 

[8] NL textual 
requirements 

Semi-
automatic 

NLP techniques + 
heuristic rules 

Class diagram. The advantages lie in 

handling multiple elements and guiding 

users to standardize requirement 

documents, enhancing generation 

accuracy. 

Requires adherence to syntax rules 

in document writing. Involves 

manual intervention for irrelevant 

class identification and diagram 

validation. 

[9] Informal NL 
requirements 

Semi-
automatic 

NLP + domain 
ontology 

Class diagram. Its strengths lie in 

extracting concepts using various 

technologies and offering an interactive 

interface. 

Limits with complex sentence 

structures. Requires specific 

sentence structure compliance. It 

may restrict the accurate parsing of 

complex requirements. Limited 

applicability for intricate 

requirement documents. 

[10] NL problem 
statements 

Semi-
automatic 

NLP + Relative 
extraction method 
+ Dependency 
Graph 

Automatic extraction of object-oriented 

elements from natural language text. 

Utilizes an intermediate representation 

(dependency graph). Conversion of 

dependency graph to UML class diagram. 

Simplified graphical representation allows 

user manipulation. 

Accuracy reduction in complex 

problem statements. Utilizes an 

intermediate representation 

(dependency graph). - Developer 

involvement is needed for class 

diagram refinement. 

[11] Informal NL 
textual 
requirements 

Automatic NLP + domain 
ontology 

Class diagram. The READ system 

features a user-friendly Tkinter interface, 

reduces over-generation issues by 

introducing strong and weak thresholds, 

and includes a refinement module to 

eliminate irrelevant elements. 

The method's rules might be 

imperfect or unsuitable for all 

cases, potentially resulting in valid 

class names being incorrectly 

filtered out or invalid ones being 

mistakenly retained. 

[12] Informal NL 
textual 
requirements 

Automatic Syntactic 
dependency 
analysis + GKPs 

UML class diagram's textual 

representation". Utilizes syntactic 

dependency analysis and grammatical 

knowledge patterns, avoiding the need to 

rewrite or annotate requirement 

statements and having no restrictions on 

input formats. 

Depends on the accuracy of the 

parser, unable to handle anaphora 

resolution, ambiguity, and 

polysemy, cannot identify the 

multiplicity of relationships, and 

lacks direct generation of graphical 

class diagrams. 

[13] Informal NL 
textual 
requirements 

Automatic NLP + text 
normalization, 
syntactic and 

semantic analysis, 
parsing, 
information 
extraction 

Class diagram. Reduces time and effort 

for manual creation. Improves accuracy of 

component recognition 

Dependent on input text quality. 

Limited context understanding for 

complex scenarios. Relies on 

predefined rules 
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Moreover, translating requirements into sequence and class 

diagrams also faces additional limitations [15]. The 

generation of sequence diagrams and class diagrams may 
encounter the following issues: the interpretation of 

requirements might be influenced by personal understanding, 

leading to inconsistencies in the models; complex business 

logic and system behaviors can be challenging to represent in 

sequence diagrams comprehensively; class diagrams and 

sequence diagrams have limitations in capturing dynamic 

system behaviors and interactions, which can affect the 

completeness and accuracy of the system design[16]. 

Therefore, existing methods often need help in handling these 

translations, impacting the accuracy and effectiveness of the 

generated models [17]. 

Despite advancements, existing methods require 
substantial manual involvement or face limitations with 

complex text and domain adaptability [18]. More effective 

approaches are needed that minimize human intervention 

while accurately generating UML class diagrams from textual 

requirements, handling ambiguities, and ensuring 

completeness [19]. 

The outlined objectives achieved throughout the research 

project encompass proposing an NLP model capable of 

analyzing and comprehending given textual requirements, 

extracting pertinent information related to software design 

such as classes, attributes, and methods. Implementing this 
NLP model to generate UML class diagrams that align with 

provided requirements automatically ensures consistency and 

accuracy between the diagrams and requirement descriptions. 

The research also aimed to validate the tool's accuracy and 

completeness in generating UML class diagrams through case 

studies or experimental validation. 

The research will reduce the time and effort required to 

create UML class diagrams, improving accuracy and 

consistency in reflecting textual requirements. This has 

significant implications for enhancing efficiency in software 

design processes and addressing the gaps identified in existing 

methods. 

II. MATERIAL AND METHOD 

A. General Framework 

This study employs natural language processing techniques 

to automatically generate UML class diagrams from English 

text. The framework, illustrated in Fig. 1, includes four main 

steps: preprocessing, sentence classification, syntactic 

analysis, and UML class diagram generation. Through these 

steps, the study achieves the automatic conversion of natural 
language text into UML class diagram models, providing tool 

support for requirements modeling in software engineering 

and system design. 

The goal of the preprocessing stage is to identify structured 

information from natural language text. The objective of the 

sentence classification stage is to distinguish between "class" 

and "relationship" types of sentences in the text, clarifying the 

type of each sentence so that specific parsing rules can be 

applied in subsequent steps. In the syntactic analysis stage, 
techniques such as part-of-speech tagging and dependency 

parsing are used to analyze sentences' grammatical and 

semantic information. 

 
Fig. 1  Framework for Automatically Generating UML Class Diagrams from 

Textual Requirements Using Natural Language Processing Techniques 

B. Preprocessing Stage 

The English text is typically unstructured and may contain 

a lot of redundant, consistent, and clear information. To 
address these issues, this paper first preprocesses the English 

text, transforming the raw text into a more accessible format 

for analysis and processing. In this study, text preprocessing 

mainly includes two steps: coreference resolution and 

sentence segmentation. 

Coreference Resolution: English text often contains 

numerous pronouns, nouns, and other lexical items that may 

refer to the same entity. While humans easily understand the 

referents of these terms in the context of surrounding 

sentences, computers often struggle to identify them. 

Therefore, the study performs coreference resolution in the 

input text to clarify the specific referents of pronouns and 

Study Input Automation 
Method / 

Technique used 
Output and advantages Limitations 

[14] Textual 
requirements 

Automatic NLP Class diagram. Increased software design 

efficiency by reducing manual effort. 

Enhanced quality and accuracy through 

automated consistency checks. Decreased 

human errors in diagram creation. 

Dependency on input text quality 

and clarity. Challenges with 

complex domain-specific 

terminologies and ambiguous 

language structures.  
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nouns. This ensures that pronouns retain their meaning during 

sentence segmentation by correctly referencing their targets. 

Sentence Segmentation: Sentence segmentation is breaking 

down text into individual sentences by identifying 

punctuation marks and specific sentence boundaries. This 

process effectively divides complex, multi-sentence texts into 

smaller units. It is crucial for text preprocessing in natural 

language processing, especially when dealing with intricate 

and multi-sentence inputs. Sentence segmentation reduces 

contextual dependencies, thereby enhancing the accuracy of 
subsequent parsing and processing tasks. 

C. Binary Sentence Classification 

The purpose of binary sentence classification is to 

categorize input natural language sentences into two types: 

"class definition" or "relationship description." In the dataset, 

sentences are labeled as either "class definition" or 

"relationship description," and our goal is to determine 

whether an input sentence belongs to the "class definition" 
category or the "relationship description" category. 

D. Syntactic Analysis 

The process of syntactic analysis includes two steps: part-

of-speech tagging and dependency parsing. Part-of-speech 

tagging's primary task is to assign an appropriate grammatical 

tag to each word in a sentence. This process identifies the 

grammatical category of each word, including nouns, verbs, 

adjectives, etc., enhancing understanding of sentence 

structure and laying the groundwork for subsequent 
information extraction. 

In software requirements text, UML class diagrams involve 

numerous dependency relationships. For instance, there are 

subject-verb relationships between classes and their own 

attributes and between classes and relationships. Dependency 

parsing helps us identify these elements and their 

relationships. The primary task of dependency parsing is to 

determine the dependency relationships between components 

within a sentence, such as subject-verb relationships (SBV), 

verb-object relationships (VOB), and coordination 

relationships (COO). 

E. UML Class Diagram Generation 

A series of class and relationship rules are defined to handle 

different categories of sentences to accurately extract the 

various components of a UML class diagram from natural 

language text. These rules extract the necessary structures for 

constructing the UML class diagram from syntactically 

analyzed text. By parsing the sentence structure, these rules 

identify classes, attributes, and their relationships, mapping 

these elements to the UML model to generate UML 
fragments. 

After extracting multiple independent UML fragments 

from the text, including information such as classes, 

attributes, and relationships, the next step is concatenating 

these fragments into a complete UML class diagram. Issues 

like attribute and class name conflicts may arise during the 

fragment concatenation process. To ensure the consistency 

and correctness of the model, conflict detection and resolution 

are performed, addressing conflicts such as attribute names 

conflicting with class names or relationship names. When 

necessary, attributes or classes are renamed based on context 

to maintain model consistency and integrity. 

F. Dataset Overview 

To develop and evaluate the automated UML class diagram 

generation system, a suitable dataset was created for training 

and testing machine learning classifiers. This dataset was 

compiled from software requirement documents across 
various domains and complexities, including 600 high-quality 

UML class diagrams. From these, 100 diagrams were 

meticulously selected for detailed processing and broken 

down into independent class and relationship units. The 

dataset includes UML class diagrams from various domains, 

specifically healthcare, finance, and education. The 

healthcare domain encompasses electronic medical record 

systems and medical management systems; the finance 

domain includes banking management systems and securities 

trading systems; and the education domain involves learning 

management systems and online education platforms. In total, 
there are three different types of domains. This domain 

diversity helps validate the model's performance and 

robustness across different application scenarios. 

After the steps above, the extracted and annotated dataset 

consists of 756 rows and three columns. Each row represents 

a UML fragment. Table II provides descriptions for columns 

in the dataset. 

TABLE II 

DATASET COLUMN DESCRIPTIONS 

Column 

Name 
Description DataType 

fragments_id 

Unique identifier for the 
UML fragment, used to 
trace the original UML 
dataset information before 
segmentation. 

String 

English 

Contains the English 
description of each UML 
fragment, explaining the 
content of the fragment. 

String 

kind 

Indicates the category of the 
UML fragment, possible 
values include "class" (for 
classes) and "rel" (for 
relationships). 

Enum ('class', 
'rel') 

 

For example, one of the Relationship UML fragments from 

the class diagram named GWPNV0 in our dataset (Fig. 2) has 

a fragments_id of 50, and its annotation results are shown in 

Table III. 

 
Fig. 2  Example of a UML Fragment Depicting a Relationship 
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TABLE III 

ANNOTATION RESULTS FOR THE UML FRAGMENTS EXAMPLE 

fragments_id English kind 

50 
In a Petri Net a Place may 
be the destination of a 
Transition 

rel 

 

The study first analyzed the distribution of categories for 

the dataset. The analysis results are shown in Fig. 3, indicating 

that the numbers of "rel" and "class" categories are similar, 

with no imbalance between categories. 

 
Fig. 3  Distribution of Class and Relationship Types 

 

Furthermore, considering the presence of numerous long 
texts in the dataset and significant differences in text lengths 

between the two types, introducing more sophisticated feature 

extraction methods, such as TF-IDF, is being considered. This 

approach aims to better capture subtle relationships within the 

texts, enhancing the model's ability to process and learn from 

detailed textual information in the dataset. 

G. Data Preprocessing 

This study primarily utilized the Coreferee plugin from the 

spaCy library for coreference resolution. Coreferee is an 
advanced coreference resolution tool that utilizes pre-trained 

neural network models to identify and resolve coreference 

chains in text. Coreferee achieves an accuracy of 81% for 

general English text. 

Firstly, the study used spaCy for the initial processing of 

the text. SpaCy can recognize entities and pronouns in the 

text, thereby establishing preliminary coreference 

relationships. Subsequently, the Coreferee plugin for 

coreference resolution takes over the processing. Building 

upon spaCy's recognition of entities and pronouns, Coreferee 

further analyzes the connections between these coreferences, 
weighing various factors such as semantic consistency and 

syntactic structure, to determine the most appropriate 

resolution strategy. Fig. 4 illustrates the process of 

Coreference Resolution. 

 

 

 
Fig. 4  The process of Coreference Resolution 

 

After coreference resolution, the next step is sentence 

segmentation, which involves breaking down the text into 

independent sentences. In this study, the SpaCy library was 

utilized for sentence segmentation. Firstly, the study used 

SpaCy's language model to parse the text and generate a 

document object (doc) containing all tokens with their 

attributes. Each token in this document object includes its 

position in the original text, text content, and other linguistic 

features. 

Next, the study iterated through this document object, 

processing each token sequentially and assigning it to its 

corresponding sentence based on specific rules. To handle 

substitutions and carry-over replacements across sentences, a 

substitutions dictionary and a carry-over dictionary were 

introduced. The substitutions dictionary stored tokens that 

needed replacement along with their corresponding 

replacement content, while the carry-over dictionary managed 
replacements that spanned across sentences. 

During the iteration of the document object, if the current 

token was found in the substitutions dictionary, it was 

replaced with the corresponding content and added to the 

result of the current sentence. If the token was in the carry-

over dictionary, it was replaced with the carry-over 

replacement content. Additionally, the study needed to check 

if the current token marked the end of a sentence 

(is_sent_end). If it did, it indicated that the current sentence 

processing was complete, and the study moved on to the next 

sentence. 
Throughout this process, the study used a sentence 

identifier (sent_id) to track the current sentence being 

processed and stored the processed sentence content in a result 

dictionary (result). Fig. 5 depicts the process of sentence 

segmentation. 

 

 
Fig. 5  Sentence segmentation 

H. Design and Implementation of Classification Algorithms 

Text feature extraction involves converting input text into 
numerical features that machine learning models can process. 

This forms the foundation for subsequent machine learning 

classification tasks. This study utilized two common feature 

extraction methods: TF-IDF (Term Frequency-Inverse 

Document Frequency) and Count Vectorization. 

Firstly, the study utilized the Count Vectorization method, 

which converts text into a frequency matrix by calculating the 

occurrence frequency of each word in the text. Count 

Vectorization is straightforward and intuitive, effectively 

capturing basic information from the text. However, it may 

encounter information loss when dealing with high-frequency 
or low-frequency words. To overcome this drawback, the 

study also experimented with the TF-IDF method. 

The TF-IDF (Term Frequency-Inverse Document 

Frequency) method measures the importance of each word by 

combining its term frequency (TF) and inverse document 

frequency (IDF). Specifically, term frequency (TF) indicates 

how frequently a word appears in a document, while inverse 

document frequency (IDF) represents the reciprocal of how 

often the word appears across all documents. By multiplying 

these two values together, TF-IDF reduces the weight of 

common words (high-frequency) and increases the weight of 
rare words (low-frequency), thereby better capturing key 

information in the text. 
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During the TF-IDF analysis process, the study extracted the 

most representative keywords for each category and 

calculated the average TF-IDF scores of these words within 

their respective categories. Additionally, word cloud 

visualizations were created to display these keywords 

intuitively. The word cloud's font sizes reflect each word's 

importance in its corresponding category; larger fonts indicate 

higher importance in that category. Fig. 6 and Fig. 7 are the 

word cloud visualizations generated for each category. 

 

 
Fig. 6  Word Cloud for "Class" 

 

 
Fig. 7 Word Cloud for "rel" 

 

After completing text feature extraction, the study 
conducted experiments using multiple machine learning 

classification algorithms to find the best algorithm for binary 

classification of input text into "class" and "relat". The 

following classic classification algorithms were selected for 

comparison and analysis: Bernoulli Naive Bayes, 

Multinomial Naive Bayes, k-Nearest Neighbors, Linear SVC, 

SVC (Support Vector Classifier), Gaussian Naive Bayes, 

AdaBoost, Random Forest, and Logistic Regression. 

To ensure the reliability and scientific rigor of the 

experimental results, the study utilized the `train_test_split` 

function from the `sklearn.model_selection` library to split 
the dataset into training and testing sets with an 80:20 ratio. 

During the model training stage, various classifiers from 

the sklearn library, including naive_bayes, neighbors, 

gaussian_process, and others, were utilized to train the data. 

The applied machine learning methods included Bernoulli 

Naive Bayes, Multinomial Naive Bayes, k-Nearest 

Neighbors, Linear SVC, SVC, Gaussian Process, AdaBoost, 

Random Forest, and Logistic Regression. 

After completing model training, a test function was 

defined to evaluate the model's performance. This function 

uses the trained model to make predictions on the test set and 

generates a classification report using the 
classification_report function from the sklearn.metrics 

library. The report includes metrics such as accuracy, 

precision, recall, and F1-score, which comprehensively assess 

the model's classification performance. 

The TF-IDF vectorized Bernoulli Naive Bayes model was 

chosen as the final classifier. The Bernoulli Naive Bayes 

model demonstrated high accuracy, and due to its simple 

structure and fast execution speed, it showed stable 

performance across different training experiments and text 

datasets, with satisfactory accuracy. 

I. Syntactic Analysis 

This study utilized the en_core_web_sm model from the 

spaCy library for Part-of-Speech Tagging (POS Tagging). 

This is a small English language pre-trained model widely 
used in natural language processing, particularly for 

dependency parsing tasks. POS tagging is automatically 

conducted when performing dependency parsing with the 

en_core_web_sm model in spaCy. The model serves as a full-

fledged language processing pipeline, initially assigning POS 

tags to each word in the text, which are then utilized for 

dependency parsing. This means that before constructing the 

syntactic dependency tree, each word has already been 

assigned a POS tag, such as a noun, verb, adjective, etc. 

Here is a specific example: for the text "A school has 

several departments.", the Part-of-Speech (POS) tagging 
results are as shown in Fig. 8 below: 

 
Fig. 8 Part-of-Speech Tagging 

 

Building upon its part-of-speech tagging capabilities, this 

model analyzes the syntactic dependencies between words to 

generate a dependency tree. This tree clarifies the hierarchical 

relationships among the components of a sentence, such as 

subject-verb relationships, verb-object relationships, relative 

clauses, and more. 

Specifically, the process of dependency parsing involves 

the following steps: 

1) Load the Model: Load the pretrained en_core_web_sm 

model using the spaCy library. 

2) Parse the Text: Pass the input text data to the loaded 

model. The model processes the text, performing tokenization 

and part-of-speech tagging (POS tagging). 

3) Dependency Relation Identification: Analyze the 

syntactic dependency relationships between words in the 

sentence. Dependency relations help determine which words 

modify others (such as adjectives modifying nouns) and 

which words serve as objects of verbs. 

4) Construct Dependency Tree: Based on the identified 

dependency relationships, construct the dependency tree of 

the sentence. This tree structure is crucial for subsequent 

relationship extraction and UML class diagram generation. 

Fig. 9 depicts the dependency parsing results for the text "A 

school has several departments." 

 
Fig. 9 Dependency Parsing Results for "A school has several departments." 

 

Fig. 10 shows the dependency tree for the sentence "A 

school has several departments." 
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Fig. 10  Dependency Tree for "A school has several departments." 

J. Definition and Application of UML Rules 

This project uses a rule-based approach to extract elements 

of UML models from natural language text [20]. The core of 

this method involves parsing and transforming textual 

descriptions using predefined semantic rules to generate 

corresponding UML structures [21]. Nine class rules and six 

relationship rules have been defined based on standard 
software engineering terminology and expressions [22].  

The following nine class rules have been defined. 

1) Rule 1: Simple Copula. Pattern: "The ... is a class ...". 

Functionality: Matches simple sentences where the subject is 

followed by the verb "be" and the noun "class", extracting the 

subject as the class name. Example: Input: "A class named 

Job." Output: Generates a class named "Job"[23]. 

2) Rule 2: There is or Exists. Pattern: "There is a class 

called ...". Functionality: Handles sentences that start with 

"There is" or "There exists", indicating the existence of a 

class. Example: Input: "There is a class called Employee." 

Output: Generates a class named "Employee". 

3) Rule 3: Compound. Pattern: "Employee has a Job.". 

Functionality: Handles sentences containing compound 

nouns, typically not directly used for generating UML, and 

requires further contextual understanding. Example: Input: 

"Employee has a Job." Output: This may not directly generate 

UML as it requires a contextual understanding of 

relationships [24]. 

4) Rule 4: Compound Class Explicit. Pattern: "The Job 

class has a title.". Functionality: Explicitly identifies a class 

and describes its attributes. Example: Input: "The Job class 

has a title." Output: Generates a class named "Job" with an 

attribute named "title". 

5) Rule 5: To Have. Pattern: "An Employee has a Job.". 

Functionality: Parses sentences expressing ownership 

relationships, extracting the subject as a class and the object 

as an attribute. Example: Input: "An Employee has a Job." 

Output: Generates a class named "Employee" with an 

attribute named "Job" of unspecified type [25]. 

6) Rule 6: Class Named. Pattern: "The class named Job.". 

Functionality: Directly specifies the class name. Example: 

Input: "The class named Job." Output: Generates a class 

named "Job"[26]. 

7) Rule 7: Component of Package. Pattern: "Job is a 

component of the Employee package.". Functionality: Parses 

sentences indicating that a component belongs to a specific 

package. Example: Input: "Job is a component of the 

Employee package." Output: Generates a class named "Job" 

and indicates it is part of the "Employee package". 

8) Rule 8: 3 Component and Clause. Pattern: "Employee 

has a Job and a Salary and a Department." Functionality: 

Parses sentences involving multiple components and clauses. 

Example: Input: "Employee has a Job and a Salary and a 

Department." Output: Generates a class named "Employee" 

with properties "Job", "Salary", and "Department"[27]. 

9) Rule 9: 2 Component and Clause. Pattern: "Employee 

has a Job and a Department." Functionality: Parses sentences 

involving two components and clauses. Example: Input: 

"Employee has a Job and a Department." Output: Generates a 

class named "Employee" with properties "Job" and 

"Department". 

The following six relationship rules have been defined. 

1) Rule 1: To Have Multiplicity. Pattern: "An Employee 

can have multiple Jobs." Function: Parses relationships 

indicating that a class can have multiple instances and 

specifies the quantity relationship. Example: Input: "An 
Employee can have multiple Jobs." Output: Establishes a 

relationship between the "Employee" class and the "Jobs" 

class, specifying that there can be multiple instances of 

"Jobs"[28]. 

2) Rule 2: Passive Voice. Pattern: "The Employee 

performs the Job." Function: Handles sentences in passive 

voice to determine the subject and object of an action. 

Example: Input: "The Employee performs the Job." Output: 

Establishes a relationship named "performs" between 

"Employee" and "Job"[29]. 

3) Rule 3: Composed. Pattern: "A Department is 

composed of many Employees." Function: Parses 
composition relationships, expressing that one class is 

composed of multiple instances of another class. Example: 

Input: "A Department is composed of many Employees." 

Output: Establishes a composition relationship between 

"Department" and "Employees". 

4) Rule 4: Active Voice. Pattern: "The Employee 

performs a Job." Function: Handles sentences in active voice 

to determine the subject and action. Example: Input: "The 

Employee performs a Job." Output: Establishes a relationship 

named "performs" between "Employee" and "Job". 

5) Rule 5: Noun With. Pattern: "An Employee with a 

Job." Function: Parses structures containing "with" to indicate 

an additional or inclusive relationship. Example: Input: "An 

Employee with a Job." Output: Establishes an associative 

relationship between "Employee" and "Job"[30]. 

6) Rule 6: Copula Rel. Pattern: "The Job is part of the 

Employee's responsibilities." Function: Parses structures like 

"is part of," determining ownership or composition 

relationships. Example: Input: "The Job is part of the 

Employee's responsibilities." Output: Establishes a "part of" 

relationship between "Job" and "Employee's responsibilities". 

K. Concatenation of UML Fragments 

UML fragment concatenation combines multiple 

independent UML classes and relationship fragments into a 

complete UML class diagram. This study adopts a greedy 

strategy to merge UML fragments into the evolving UML 

model sequentially. The most suitable fragment is selected for 

integration at each merger step until all fragments are merged. 

Conflicts such as attributes and class name conflicts may arise 
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during the merging process. Conflict detection and resolution 

are necessary to ensure the consistency and correctness of the 

final model. Common conflicts include between attribute and 

class names, as well as between attribute and relationship 

names. In such cases, attributes or classes may need to be 

renamed based on the context to maintain model consistency. 

The specific merging and conflict resolution strategies are as 

follows: 

1) Merging Classes: Each class from every fragment is 

sequentially added to the UML model. If classes with the 
same name are encountered, their attributes and methods are 

merged. 

2) Merging Relationships: Relationships from each 

fragment are sequentially added to the UML model. If 

identical relationships are found, they are skipped; otherwise, 

new relationships are added. 

3) Conflict Resolution: During the merging process, 

conflicts involving attribute names, class names, and 

relationship names are detected and addressed in real-time. 

Conflicts are resolved through renaming or merging actions. 

Fig. 11 provides the PlantUML syntax description of the 

merged result of the two sentences. Fig. 12 shows the 

translation of the PlantUML syntax into a UML class 

diagram. 

 
Fig. 11 PlantUML syntax description of the merged result of the two 

sentences. 

 
Fig. 12  Translation of PlantUML syntax into a UML class diagram. 

III. RESULTS AND DISCUSSION 

A. Experimental Validation 

This chapter outlines the experimental validation and 
analysis phase. Through comprehensive testing and validation 

of the model, its accuracy and completeness in generating 

UML class diagrams are confirmed. Accuracy refers to the 

consistency between the automatically generated UML class 

diagrams and the content of the original textual requirements. 

It measures whether the generated diagrams correctly reflect 

the classes, attributes, methods, and relationships described in 

the requirements. Completeness refers to the extent to which 

the automatically generated UML class diagrams cover all 

relevant information in the textual requirements. It evaluates 

whether the diagrams include all the classes, attributes, 

methods, and relationships explicitly or implicitly indicated in 

the requirements.  
The TF-IDF Bernoulli Naive Bayes model will be 

optimized and analyzed. Additional data will be annotated to 

evaluate the model's performance, and the trained model will 

be used for classification to observe its effectiveness and 

performance. Using an automatic tool, a comprehensive test 

and analysis were conducted by manually annotating an 

additional 130 data entries. These entries included 64 class 

definitions and 66 relationship descriptions, maintaining 

consistency with the original dataset distribution to validate 

the model in a similar environment. Subsequently, UML class 

diagrams were generated using the tool. 
Three specialists, each with extensive industry experience 

and academic backgrounds, were invited to evaluate the 

generated UML class diagrams for expert review. They come 

from software engineering, system design, and natural 

language processing and compared these diagrams with those 

manually created by themselves. 

Two parameters can be tuned to explore the optimal 

performance of the Bernoulli Naive Bayes model: Alpha (α) 

and Binarize. 

Alpha (α): This is the smoothing parameter used to prevent 

overfitting. The default value is 1.0, and different values, such 
as 0.1, 0.5, 1, 2, 10, etc., can be tried to determine the best 

performance. 

Binarize: This parameter sets the threshold for binarizing 

input values. If set to None, no binarization is performed. 

The relationship between the Alpha parameter and 

accuracy is depicted in Fig. 13. 

 
Fig. 13  The relationship between the Alpha parameter and model accuracy 

 

The model achieves the highest accuracy of 88.66% when 

the Alpha parameter is set between 0.46 and 0.9. The 

classification report for Alpha values of 0.5 and 1 is shown in 

Fig. 14 and Fig. 15. With Alpha set to 0.5, the accuracy 
improves by 1.35% compared to the default Alpha of 1, 

reaching 87.31%. Additionally, the model shows 

improvements in recall and f1-score values for both 

categories. 
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Fig. 14  Classification_report for Default Alpha=0.5 

 

 

Fig. 15 Classification_report for Optimized Alpha=1 

 

The relationship between the Binarize parameter and 

accuracy is depicted in Fig. 16. 
 

 
Fig. 16  The Relationship between the Binarize Parameter and Accuracy 

 

As observed, the model achieves the highest classification 

accuracy with the default Binarize value of 0 and reaches 

optimal performance with this setting, indicating no need for 
parameter adjustment. 

B. Result Analysis 

Fig. 17 and 18 show that the optimized parameters 

Alpha=0.5 and Binarize=0.0 were selected for generating 

heatmaps and ROC curves. The heatmap results indicate that 

out of 64 samples labeled as "class," the model correctly 

classified 59 and misclassified 5. For the 66 samples labeled as 

"rel," the model correctly classified 56 and misclassified 10. 

This suggests that the model accurately distinguishes between 
"class" and "rel." However, the classification performance of 

"rel" samples is relatively poorer than that of "class" samples. 
 

 
Fig. 17  Confusion Matrix Heatmap 

 

 

Fig. 18  Smoothed ROC Curve with Linear Interpolation 

 

The ROC curve shows that with parameters Alpha=0.5 and 

Binarize=0.0, the model achieves an AUC value of 0.9287, 
close to 1. This indicates that the model can distinguish 

between positive and negative classes. Additionally, the curve 

is positioned near the top-left corner, suggesting a high True 

Positive Rate (TPR) and low False Positive Rate (FPR), 

further confirming the excellent classification performance of 

the model. 

Accuracy Test Results: The overall accuracy indicates the 

model's general performance in class definition and 

relationship description tasks. High accuracy validates the 

model’s stability and effectiveness in handling various types 

of textual data, though it may have limitations with specific 
requirements, such as complex relationship descriptions. 

Table IV displays the detailed accuracy test results. 

TABLE IV 

ACCURACY TEST RESULTS 

Data Type 
Number of 

Correctly Classified 

Total Number 

of 

Classifications 

Accuracy 

Class 

Definitions 
59 64 92.19% 

Relationship 

Descriptions 
56 66 84.85% 

Overall 

Accuracy 
115 130 88.46% 

 

Completeness Test Results: The overall requirement 

coverage rate demonstrates the tool's capability to encompass 
most requirements during the processing and generation of 

UML class diagrams, showcasing its strong performance in 

maintaining completeness. Refer to Table V for detailed 

completeness test results. 

TABLE V 

COMPLETENESS TEST RESULTS 

Data Type 
Total Number of 

Requirements 

Number of 

Covered 

Requirements 

Requirement 

Coverage 

Rate 

Class 

Definitions 
64 60 93.75% 

Relationship 

Descriptions 
66 61 92.42% 

Overall  130 121 93.08% 

IV. CONCLUSION 

This study achieved the complete process of automatically 

generating UML class diagrams from English text using 

natural language processing techniques. Text preprocessing: 
Structured information was extracted from unstructured text 
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through coreference resolution and sentence segmentation. 

Coreference resolution improved the accuracy of identifying 

referents for pronouns and noun phrases, while sentence 

segmentation helped break down the complex text into 

smaller units for easier subsequent processing. 

Sentence Classification: Using a machine learning 

classifier, sentences were classified into "class definition" and 

"relationship description." Through feature extraction and 

vectorization, the model accurately categorized input 

sentences. Test results indicated that the combination of TF-
IDF vectorization and the Bernoulli Bayes classifier 

performed the best, achieving a classification accuracy of 

88.66%. 

Syntactic Analysis: Sentence syntax and semantic structure 

were identified and analyzed through part-of-speech tagging 

and dependency parsing. Part-of-speech tagging helped 

determine each word's grammatical category, while 

dependency parsing further identified the syntactic 

relationships between words, laying the foundation for 

generating UML fragments. 

UML Class Diagram Generation: A series of class and 
relationship rules were defined and applied to map semantic 

information to UML model elements, successfully generating 

UML fragments. Subsequently, these fragments were merged 

using a combination algorithm to resolve conflicts such as 

attribute and class name clashes, creating a complete UML 

class diagram. 

Experimental Validation: Optimizing the Bernoulli Bayes 

model further enhanced the classification performance. With 

optimal parameter settings, the model demonstrated 

outstanding accuracy and AUC values. Analysis of heatmaps 

and ROC curves indicated that the model exhibited high 
accuracy and robustness in distinguishing between "class 

definition" and "relationship description" sentences. 

Future research could consider introducing more complex 

and powerful models, such as neural networks and deep 

learning models, for text classification and syntactic analysis, 

aiming to enhance the model's generalization capability and 

adaptability. Additionally, exploring data-driven approaches 

that combine supervised and unsupervised learning could 

automate the generation and optimization of rules, thereby 

improving the accuracy and robustness of UML class diagram 

generation. 
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