
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Automated UML Class Diagram Generation from Textual

Requirements Using NLP Techniques

Yang Meng a, Ainita Ban a
a Department of Software Engineering and Information Systems, Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Corresponding author: *ainita@upm.edu.my

Abstract—Translating textual requirements into precise Unified Modeling Language (UML) class diagrams poses challenges due to the

unstructured and often ambiguous nature of text, which can lead to inconsistencies and misunderstandings during the initial stages of

software development. Current methods often struggle with effectively addressing these challenges due to limitations in handling diverse

and complex textual requirements, which may result in incomplete or inaccurate UML diagrams. This study aims to propose a Natural

Language Processing (NLP) model that analyzes and comprehends textual requirements to extract relevant information for generating

UML class diagrams, ensuring accuracy and consistency between the diagrams and requirement descriptions. The research employs a

four-step approach: preprocessing to handle text noise and redundancy, sentence classification to distinguish between "class" and

"relationship" sentences, syntactic analysis to examine grammatical structures, and UML class diagram generation based on predefined

rules. The results show that the model achieved a classification accuracy of 88.46% with a high Area Under the Curve (AUC) value of

0.9287, indicating robust performance in distinguishing between class definitions and relationships. This study highlights that existing

methods may not fully address the nuances of translating complex textual requirements into accurate UML diagrams. This study

successfully demonstrates an automated method for generating UML class diagrams from textual requirements and suggests that future

research could expand datasets, optimize feature extraction, explore advanced models, and develop automated rule generation methods

for further improvements.

Keywords—Software engineering; UML class diagrams; Natural Language Processing (NLP); software development.

Manuscript received 15 Apr. 2024; revised 9 Jul. 2024; accepted 12 Sep. 2024. Date of publication 30 Nov. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Requirement gathering and the design phase are crucial

stages in the software development lifecycle within the

software development industry [1]. The duration of these

phases significantly impacts the overall project timeline.

Creating UML diagrams is a critical and time-intensive task

spanning these software development phases. Diagrams,

particularly class diagrams, bridge these phases [2]. Class

diagrams are widely used in Object-Oriented analysis and

design, forming the cornerstone from which other models are
derived [3].

Translating textual requirements into precise UML class

diagrams presents several challenges. Firstly, these

requirements are often unstructured, with verbose,

ambiguous, or incomplete descriptions, making it difficult to

accurately extract information such as identifying classes,

attributes, and their relationships [4]. Secondly, textual

requirements can contain ambiguities, leading to

inconsistencies and misunderstandings [5]. Manual analysis
and mapping of textual requirements to UML class diagrams

are time-consuming and error-prone, requiring significant

time to interpret and understand the descriptions [6]. Existing

tools have explored both semi-automatic and fully automated

methods for generating UML class diagrams:

The semi-automated method refers to the need for human

involvement or guidance, such as editing, validating,

correcting, or supplementing the generated class diagrams.

The approaches presented in [7] propose an NLP-based

framework to generate UML class diagrams from software

requirements. It parses texts using a syntax parser and POS
tagger, identifies linguistic elements, and employs semantic

networks and word sense disambiguation to score and select

candidate classes and relationships. The framework generates

class diagrams and C# code templates. However, it has

limitations with complex language structures and relies on

1905

JOIV : Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow - November 2024 1905-1915

predefined semantic networks that may only be suitable for

some domains. Utilized NLP techniques and heuristic rules

but required users to adhere to grammar rules and necessitated

manual intervention to validate and modify the generated

class diagrams [8]. Proposed RAPID (Requirement analysis

to Provide Instant Diagrams), a tool employing NLP and

domain ontology techniques [9]. However, it might have

limitations with complex sentence structures and require each

sentence to conform to a specific structure. A method for

extracting object-oriented elements through NLP was
presented in [10]. However, refining class diagrams might

necessitate developer involvement for complex problem

statements.

The fully automated method refers to a process that doesn't

require manual intervention or interaction. The approaches

presented in [11] propose a system named Requirements

Engineering Analysis and Design (READ) for generating

UML class diagrams from informal natural language

requirements using NLP and domain ontology techniques.

The system preprocesses requirement text with sentence

segmentation, tokenization, stop-word removal, stemming,

and POS tagging using the NLTK library, then extracts UML

concepts like class names, attributes, methods, and

associations through heuristic rules. However, the method’s

rules may be incomplete, leading to potential errors in class

name filtering. A study by [12] relied on syntactic parsing and

GKP (Grammar Knowledge Patterns), using the Stanford

parser for requirements. It needs help with complex language

and parser accuracy dependency. In [13], AGUML was

proposed for automated UML class diagram generation,
utilizing text normalization, semantic analysis, and parsing.

The system improves accuracy and reduces manual effort but

lacks the adaptability to new language structures and detailed

evaluation against existing tools. An NLP-based approach for

automated UML class diagram generation from textual

requirements, integrating text analysis and word

vectorization, was proposed in [14]. This enhances efficiency

and accuracy but may require further adaptation for complex

texts. Table 1 evaluates prior research endeavors related to

similar work in this domain.

TABLE I

EVALUATION OF EXISTING RESEARCH

Study Input Automation
Method /

Technique used
Output and advantages Limitations

[7] Software
Requirements
Specification
(SRS)

Semi-
automatic

NLP + POS tagger Produced UML class diagrams and C#

code templates. The advantages lie in

automated generation, enhancing

efficiency in understanding requirements

and generating code.

Need help to handle complex

language structures and semantics,

relying on pre-defined semantic

networks and vocabulary.

[8] NL textual
requirements

Semi-
automatic

NLP techniques +
heuristic rules

Class diagram. The advantages lie in

handling multiple elements and guiding

users to standardize requirement

documents, enhancing generation

accuracy.

Requires adherence to syntax rules

in document writing. Involves

manual intervention for irrelevant

class identification and diagram

validation.

[9] Informal NL
requirements

Semi-
automatic

NLP + domain
ontology

Class diagram. Its strengths lie in

extracting concepts using various

technologies and offering an interactive

interface.

Limits with complex sentence

structures. Requires specific

sentence structure compliance. It

may restrict the accurate parsing of

complex requirements. Limited

applicability for intricate

requirement documents.

[10] NL problem
statements

Semi-
automatic

NLP + Relative
extraction method
+ Dependency
Graph

Automatic extraction of object-oriented

elements from natural language text.

Utilizes an intermediate representation

(dependency graph). Conversion of

dependency graph to UML class diagram.

Simplified graphical representation allows

user manipulation.

Accuracy reduction in complex

problem statements. Utilizes an

intermediate representation

(dependency graph). - Developer

involvement is needed for class

diagram refinement.

[11] Informal NL
textual
requirements

Automatic NLP + domain
ontology

Class diagram. The READ system

features a user-friendly Tkinter interface,

reduces over-generation issues by

introducing strong and weak thresholds,

and includes a refinement module to

eliminate irrelevant elements.

The method's rules might be

imperfect or unsuitable for all

cases, potentially resulting in valid

class names being incorrectly

filtered out or invalid ones being

mistakenly retained.

[12] Informal NL
textual
requirements

Automatic Syntactic
dependency
analysis + GKPs

UML class diagram's textual

representation". Utilizes syntactic

dependency analysis and grammatical

knowledge patterns, avoiding the need to

rewrite or annotate requirement

statements and having no restrictions on

input formats.

Depends on the accuracy of the

parser, unable to handle anaphora

resolution, ambiguity, and

polysemy, cannot identify the

multiplicity of relationships, and

lacks direct generation of graphical

class diagrams.

[13] Informal NL
textual
requirements

Automatic NLP + text
normalization,
syntactic and

semantic analysis,
parsing,
information
extraction

Class diagram. Reduces time and effort

for manual creation. Improves accuracy of

component recognition

Dependent on input text quality.

Limited context understanding for

complex scenarios. Relies on

predefined rules

1906

Moreover, translating requirements into sequence and class

diagrams also faces additional limitations [15]. The

generation of sequence diagrams and class diagrams may
encounter the following issues: the interpretation of

requirements might be influenced by personal understanding,

leading to inconsistencies in the models; complex business

logic and system behaviors can be challenging to represent in

sequence diagrams comprehensively; class diagrams and

sequence diagrams have limitations in capturing dynamic

system behaviors and interactions, which can affect the

completeness and accuracy of the system design[16].

Therefore, existing methods often need help in handling these

translations, impacting the accuracy and effectiveness of the

generated models [17].

Despite advancements, existing methods require
substantial manual involvement or face limitations with

complex text and domain adaptability [18]. More effective

approaches are needed that minimize human intervention

while accurately generating UML class diagrams from textual

requirements, handling ambiguities, and ensuring

completeness [19].

The outlined objectives achieved throughout the research

project encompass proposing an NLP model capable of

analyzing and comprehending given textual requirements,

extracting pertinent information related to software design

such as classes, attributes, and methods. Implementing this
NLP model to generate UML class diagrams that align with

provided requirements automatically ensures consistency and

accuracy between the diagrams and requirement descriptions.

The research also aimed to validate the tool's accuracy and

completeness in generating UML class diagrams through case

studies or experimental validation.

The research will reduce the time and effort required to

create UML class diagrams, improving accuracy and

consistency in reflecting textual requirements. This has

significant implications for enhancing efficiency in software

design processes and addressing the gaps identified in existing

methods.

II. MATERIAL AND METHOD

A. General Framework

This study employs natural language processing techniques

to automatically generate UML class diagrams from English

text. The framework, illustrated in Fig. 1, includes four main

steps: preprocessing, sentence classification, syntactic

analysis, and UML class diagram generation. Through these

steps, the study achieves the automatic conversion of natural
language text into UML class diagram models, providing tool

support for requirements modeling in software engineering

and system design.

The goal of the preprocessing stage is to identify structured

information from natural language text. The objective of the

sentence classification stage is to distinguish between "class"

and "relationship" types of sentences in the text, clarifying the

type of each sentence so that specific parsing rules can be

applied in subsequent steps. In the syntactic analysis stage,
techniques such as part-of-speech tagging and dependency

parsing are used to analyze sentences' grammatical and

semantic information.

Fig. 1 Framework for Automatically Generating UML Class Diagrams from

Textual Requirements Using Natural Language Processing Techniques

B. Preprocessing Stage

The English text is typically unstructured and may contain

a lot of redundant, consistent, and clear information. To
address these issues, this paper first preprocesses the English

text, transforming the raw text into a more accessible format

for analysis and processing. In this study, text preprocessing

mainly includes two steps: coreference resolution and

sentence segmentation.

Coreference Resolution: English text often contains

numerous pronouns, nouns, and other lexical items that may

refer to the same entity. While humans easily understand the

referents of these terms in the context of surrounding

sentences, computers often struggle to identify them.

Therefore, the study performs coreference resolution in the

input text to clarify the specific referents of pronouns and

Study Input Automation
Method /

Technique used
Output and advantages Limitations

[14] Textual
requirements

Automatic NLP Class diagram. Increased software design

efficiency by reducing manual effort.

Enhanced quality and accuracy through

automated consistency checks. Decreased

human errors in diagram creation.

Dependency on input text quality

and clarity. Challenges with

complex domain-specific

terminologies and ambiguous

language structures.

1907

nouns. This ensures that pronouns retain their meaning during

sentence segmentation by correctly referencing their targets.

Sentence Segmentation: Sentence segmentation is breaking

down text into individual sentences by identifying

punctuation marks and specific sentence boundaries. This

process effectively divides complex, multi-sentence texts into

smaller units. It is crucial for text preprocessing in natural

language processing, especially when dealing with intricate

and multi-sentence inputs. Sentence segmentation reduces

contextual dependencies, thereby enhancing the accuracy of
subsequent parsing and processing tasks.

C. Binary Sentence Classification

The purpose of binary sentence classification is to

categorize input natural language sentences into two types:

"class definition" or "relationship description." In the dataset,

sentences are labeled as either "class definition" or

"relationship description," and our goal is to determine

whether an input sentence belongs to the "class definition"
category or the "relationship description" category.

D. Syntactic Analysis

The process of syntactic analysis includes two steps: part-

of-speech tagging and dependency parsing. Part-of-speech

tagging's primary task is to assign an appropriate grammatical

tag to each word in a sentence. This process identifies the

grammatical category of each word, including nouns, verbs,

adjectives, etc., enhancing understanding of sentence

structure and laying the groundwork for subsequent
information extraction.

In software requirements text, UML class diagrams involve

numerous dependency relationships. For instance, there are

subject-verb relationships between classes and their own

attributes and between classes and relationships. Dependency

parsing helps us identify these elements and their

relationships. The primary task of dependency parsing is to

determine the dependency relationships between components

within a sentence, such as subject-verb relationships (SBV),

verb-object relationships (VOB), and coordination

relationships (COO).

E. UML Class Diagram Generation

A series of class and relationship rules are defined to handle

different categories of sentences to accurately extract the

various components of a UML class diagram from natural

language text. These rules extract the necessary structures for

constructing the UML class diagram from syntactically

analyzed text. By parsing the sentence structure, these rules

identify classes, attributes, and their relationships, mapping

these elements to the UML model to generate UML
fragments.

After extracting multiple independent UML fragments

from the text, including information such as classes,

attributes, and relationships, the next step is concatenating

these fragments into a complete UML class diagram. Issues

like attribute and class name conflicts may arise during the

fragment concatenation process. To ensure the consistency

and correctness of the model, conflict detection and resolution

are performed, addressing conflicts such as attribute names

conflicting with class names or relationship names. When

necessary, attributes or classes are renamed based on context

to maintain model consistency and integrity.

F. Dataset Overview

To develop and evaluate the automated UML class diagram

generation system, a suitable dataset was created for training

and testing machine learning classifiers. This dataset was

compiled from software requirement documents across
various domains and complexities, including 600 high-quality

UML class diagrams. From these, 100 diagrams were

meticulously selected for detailed processing and broken

down into independent class and relationship units. The

dataset includes UML class diagrams from various domains,

specifically healthcare, finance, and education. The

healthcare domain encompasses electronic medical record

systems and medical management systems; the finance

domain includes banking management systems and securities

trading systems; and the education domain involves learning

management systems and online education platforms. In total,
there are three different types of domains. This domain

diversity helps validate the model's performance and

robustness across different application scenarios.

After the steps above, the extracted and annotated dataset

consists of 756 rows and three columns. Each row represents

a UML fragment. Table II provides descriptions for columns

in the dataset.

TABLE II

DATASET COLUMN DESCRIPTIONS

Column

Name
Description DataType

fragments_id

Unique identifier for the
UML fragment, used to
trace the original UML
dataset information before
segmentation.

String

English

Contains the English
description of each UML
fragment, explaining the
content of the fragment.

String

kind

Indicates the category of the
UML fragment, possible
values include "class" (for
classes) and "rel" (for
relationships).

Enum ('class',
'rel')

For example, one of the Relationship UML fragments from

the class diagram named GWPNV0 in our dataset (Fig. 2) has

a fragments_id of 50, and its annotation results are shown in

Table III.

Fig. 2 Example of a UML Fragment Depicting a Relationship

1908

TABLE III

ANNOTATION RESULTS FOR THE UML FRAGMENTS EXAMPLE

fragments_id English kind

50
In a Petri Net a Place may
be the destination of a
Transition

rel

The study first analyzed the distribution of categories for

the dataset. The analysis results are shown in Fig. 3, indicating

that the numbers of "rel" and "class" categories are similar,

with no imbalance between categories.

Fig. 3 Distribution of Class and Relationship Types

Furthermore, considering the presence of numerous long
texts in the dataset and significant differences in text lengths

between the two types, introducing more sophisticated feature

extraction methods, such as TF-IDF, is being considered. This

approach aims to better capture subtle relationships within the

texts, enhancing the model's ability to process and learn from

detailed textual information in the dataset.

G. Data Preprocessing

This study primarily utilized the Coreferee plugin from the

spaCy library for coreference resolution. Coreferee is an
advanced coreference resolution tool that utilizes pre-trained

neural network models to identify and resolve coreference

chains in text. Coreferee achieves an accuracy of 81% for

general English text.

Firstly, the study used spaCy for the initial processing of

the text. SpaCy can recognize entities and pronouns in the

text, thereby establishing preliminary coreference

relationships. Subsequently, the Coreferee plugin for

coreference resolution takes over the processing. Building

upon spaCy's recognition of entities and pronouns, Coreferee

further analyzes the connections between these coreferences,
weighing various factors such as semantic consistency and

syntactic structure, to determine the most appropriate

resolution strategy. Fig. 4 illustrates the process of

Coreference Resolution.

Fig. 4 The process of Coreference Resolution

After coreference resolution, the next step is sentence

segmentation, which involves breaking down the text into

independent sentences. In this study, the SpaCy library was

utilized for sentence segmentation. Firstly, the study used

SpaCy's language model to parse the text and generate a

document object (doc) containing all tokens with their

attributes. Each token in this document object includes its

position in the original text, text content, and other linguistic

features.

Next, the study iterated through this document object,

processing each token sequentially and assigning it to its

corresponding sentence based on specific rules. To handle

substitutions and carry-over replacements across sentences, a

substitutions dictionary and a carry-over dictionary were

introduced. The substitutions dictionary stored tokens that

needed replacement along with their corresponding

replacement content, while the carry-over dictionary managed
replacements that spanned across sentences.

During the iteration of the document object, if the current

token was found in the substitutions dictionary, it was

replaced with the corresponding content and added to the

result of the current sentence. If the token was in the carry-

over dictionary, it was replaced with the carry-over

replacement content. Additionally, the study needed to check

if the current token marked the end of a sentence

(is_sent_end). If it did, it indicated that the current sentence

processing was complete, and the study moved on to the next

sentence.
Throughout this process, the study used a sentence

identifier (sent_id) to track the current sentence being

processed and stored the processed sentence content in a result

dictionary (result). Fig. 5 depicts the process of sentence

segmentation.

Fig. 5 Sentence segmentation

H. Design and Implementation of Classification Algorithms

Text feature extraction involves converting input text into
numerical features that machine learning models can process.

This forms the foundation for subsequent machine learning

classification tasks. This study utilized two common feature

extraction methods: TF-IDF (Term Frequency-Inverse

Document Frequency) and Count Vectorization.

Firstly, the study utilized the Count Vectorization method,

which converts text into a frequency matrix by calculating the

occurrence frequency of each word in the text. Count

Vectorization is straightforward and intuitive, effectively

capturing basic information from the text. However, it may

encounter information loss when dealing with high-frequency
or low-frequency words. To overcome this drawback, the

study also experimented with the TF-IDF method.

The TF-IDF (Term Frequency-Inverse Document

Frequency) method measures the importance of each word by

combining its term frequency (TF) and inverse document

frequency (IDF). Specifically, term frequency (TF) indicates

how frequently a word appears in a document, while inverse

document frequency (IDF) represents the reciprocal of how

often the word appears across all documents. By multiplying

these two values together, TF-IDF reduces the weight of

common words (high-frequency) and increases the weight of
rare words (low-frequency), thereby better capturing key

information in the text.

1909

During the TF-IDF analysis process, the study extracted the

most representative keywords for each category and

calculated the average TF-IDF scores of these words within

their respective categories. Additionally, word cloud

visualizations were created to display these keywords

intuitively. The word cloud's font sizes reflect each word's

importance in its corresponding category; larger fonts indicate

higher importance in that category. Fig. 6 and Fig. 7 are the

word cloud visualizations generated for each category.

Fig. 6 Word Cloud for "Class"

Fig. 7 Word Cloud for "rel"

After completing text feature extraction, the study
conducted experiments using multiple machine learning

classification algorithms to find the best algorithm for binary

classification of input text into "class" and "relat". The

following classic classification algorithms were selected for

comparison and analysis: Bernoulli Naive Bayes,

Multinomial Naive Bayes, k-Nearest Neighbors, Linear SVC,

SVC (Support Vector Classifier), Gaussian Naive Bayes,

AdaBoost, Random Forest, and Logistic Regression.

To ensure the reliability and scientific rigor of the

experimental results, the study utilized the `train_test_split`

function from the `sklearn.model_selection` library to split
the dataset into training and testing sets with an 80:20 ratio.

During the model training stage, various classifiers from

the sklearn library, including naive_bayes, neighbors,

gaussian_process, and others, were utilized to train the data.

The applied machine learning methods included Bernoulli

Naive Bayes, Multinomial Naive Bayes, k-Nearest

Neighbors, Linear SVC, SVC, Gaussian Process, AdaBoost,

Random Forest, and Logistic Regression.

After completing model training, a test function was

defined to evaluate the model's performance. This function

uses the trained model to make predictions on the test set and

generates a classification report using the
classification_report function from the sklearn.metrics

library. The report includes metrics such as accuracy,

precision, recall, and F1-score, which comprehensively assess

the model's classification performance.

The TF-IDF vectorized Bernoulli Naive Bayes model was

chosen as the final classifier. The Bernoulli Naive Bayes

model demonstrated high accuracy, and due to its simple

structure and fast execution speed, it showed stable

performance across different training experiments and text

datasets, with satisfactory accuracy.

I. Syntactic Analysis

This study utilized the en_core_web_sm model from the

spaCy library for Part-of-Speech Tagging (POS Tagging).

This is a small English language pre-trained model widely
used in natural language processing, particularly for

dependency parsing tasks. POS tagging is automatically

conducted when performing dependency parsing with the

en_core_web_sm model in spaCy. The model serves as a full-

fledged language processing pipeline, initially assigning POS

tags to each word in the text, which are then utilized for

dependency parsing. This means that before constructing the

syntactic dependency tree, each word has already been

assigned a POS tag, such as a noun, verb, adjective, etc.

Here is a specific example: for the text "A school has

several departments.", the Part-of-Speech (POS) tagging
results are as shown in Fig. 8 below:

Fig. 8 Part-of-Speech Tagging

Building upon its part-of-speech tagging capabilities, this

model analyzes the syntactic dependencies between words to

generate a dependency tree. This tree clarifies the hierarchical

relationships among the components of a sentence, such as

subject-verb relationships, verb-object relationships, relative

clauses, and more.

Specifically, the process of dependency parsing involves

the following steps:

1) Load the Model: Load the pretrained en_core_web_sm

model using the spaCy library.

2) Parse the Text: Pass the input text data to the loaded

model. The model processes the text, performing tokenization

and part-of-speech tagging (POS tagging).

3) Dependency Relation Identification: Analyze the

syntactic dependency relationships between words in the

sentence. Dependency relations help determine which words

modify others (such as adjectives modifying nouns) and

which words serve as objects of verbs.

4) Construct Dependency Tree: Based on the identified

dependency relationships, construct the dependency tree of

the sentence. This tree structure is crucial for subsequent

relationship extraction and UML class diagram generation.

Fig. 9 depicts the dependency parsing results for the text "A

school has several departments."

Fig. 9 Dependency Parsing Results for "A school has several departments."

Fig. 10 shows the dependency tree for the sentence "A

school has several departments."

1910

Fig. 10 Dependency Tree for "A school has several departments."

J. Definition and Application of UML Rules

This project uses a rule-based approach to extract elements

of UML models from natural language text [20]. The core of

this method involves parsing and transforming textual

descriptions using predefined semantic rules to generate

corresponding UML structures [21]. Nine class rules and six

relationship rules have been defined based on standard
software engineering terminology and expressions [22].

The following nine class rules have been defined.

1) Rule 1: Simple Copula. Pattern: "The ... is a class ...".

Functionality: Matches simple sentences where the subject is

followed by the verb "be" and the noun "class", extracting the

subject as the class name. Example: Input: "A class named

Job." Output: Generates a class named "Job"[23].

2) Rule 2: There is or Exists. Pattern: "There is a class

called ...". Functionality: Handles sentences that start with

"There is" or "There exists", indicating the existence of a

class. Example: Input: "There is a class called Employee."

Output: Generates a class named "Employee".

3) Rule 3: Compound. Pattern: "Employee has a Job.".

Functionality: Handles sentences containing compound

nouns, typically not directly used for generating UML, and

requires further contextual understanding. Example: Input:

"Employee has a Job." Output: This may not directly generate

UML as it requires a contextual understanding of

relationships [24].

4) Rule 4: Compound Class Explicit. Pattern: "The Job

class has a title.". Functionality: Explicitly identifies a class

and describes its attributes. Example: Input: "The Job class

has a title." Output: Generates a class named "Job" with an

attribute named "title".

5) Rule 5: To Have. Pattern: "An Employee has a Job.".

Functionality: Parses sentences expressing ownership

relationships, extracting the subject as a class and the object

as an attribute. Example: Input: "An Employee has a Job."

Output: Generates a class named "Employee" with an

attribute named "Job" of unspecified type [25].

6) Rule 6: Class Named. Pattern: "The class named Job.".

Functionality: Directly specifies the class name. Example:

Input: "The class named Job." Output: Generates a class

named "Job"[26].

7) Rule 7: Component of Package. Pattern: "Job is a

component of the Employee package.". Functionality: Parses

sentences indicating that a component belongs to a specific

package. Example: Input: "Job is a component of the

Employee package." Output: Generates a class named "Job"

and indicates it is part of the "Employee package".

8) Rule 8: 3 Component and Clause. Pattern: "Employee

has a Job and a Salary and a Department." Functionality:

Parses sentences involving multiple components and clauses.

Example: Input: "Employee has a Job and a Salary and a

Department." Output: Generates a class named "Employee"

with properties "Job", "Salary", and "Department"[27].

9) Rule 9: 2 Component and Clause. Pattern: "Employee

has a Job and a Department." Functionality: Parses sentences

involving two components and clauses. Example: Input:

"Employee has a Job and a Department." Output: Generates a

class named "Employee" with properties "Job" and

"Department".

The following six relationship rules have been defined.

1) Rule 1: To Have Multiplicity. Pattern: "An Employee

can have multiple Jobs." Function: Parses relationships

indicating that a class can have multiple instances and

specifies the quantity relationship. Example: Input: "An
Employee can have multiple Jobs." Output: Establishes a

relationship between the "Employee" class and the "Jobs"

class, specifying that there can be multiple instances of

"Jobs"[28].

2) Rule 2: Passive Voice. Pattern: "The Employee

performs the Job." Function: Handles sentences in passive

voice to determine the subject and object of an action.

Example: Input: "The Employee performs the Job." Output:

Establishes a relationship named "performs" between

"Employee" and "Job"[29].

3) Rule 3: Composed. Pattern: "A Department is

composed of many Employees." Function: Parses
composition relationships, expressing that one class is

composed of multiple instances of another class. Example:

Input: "A Department is composed of many Employees."

Output: Establishes a composition relationship between

"Department" and "Employees".

4) Rule 4: Active Voice. Pattern: "The Employee

performs a Job." Function: Handles sentences in active voice

to determine the subject and action. Example: Input: "The

Employee performs a Job." Output: Establishes a relationship

named "performs" between "Employee" and "Job".

5) Rule 5: Noun With. Pattern: "An Employee with a

Job." Function: Parses structures containing "with" to indicate

an additional or inclusive relationship. Example: Input: "An

Employee with a Job." Output: Establishes an associative

relationship between "Employee" and "Job"[30].

6) Rule 6: Copula Rel. Pattern: "The Job is part of the

Employee's responsibilities." Function: Parses structures like

"is part of," determining ownership or composition

relationships. Example: Input: "The Job is part of the

Employee's responsibilities." Output: Establishes a "part of"

relationship between "Job" and "Employee's responsibilities".

K. Concatenation of UML Fragments

UML fragment concatenation combines multiple

independent UML classes and relationship fragments into a

complete UML class diagram. This study adopts a greedy

strategy to merge UML fragments into the evolving UML

model sequentially. The most suitable fragment is selected for

integration at each merger step until all fragments are merged.

Conflicts such as attributes and class name conflicts may arise

1911

during the merging process. Conflict detection and resolution

are necessary to ensure the consistency and correctness of the

final model. Common conflicts include between attribute and

class names, as well as between attribute and relationship

names. In such cases, attributes or classes may need to be

renamed based on the context to maintain model consistency.

The specific merging and conflict resolution strategies are as

follows:

1) Merging Classes: Each class from every fragment is

sequentially added to the UML model. If classes with the
same name are encountered, their attributes and methods are

merged.

2) Merging Relationships: Relationships from each

fragment are sequentially added to the UML model. If

identical relationships are found, they are skipped; otherwise,

new relationships are added.

3) Conflict Resolution: During the merging process,

conflicts involving attribute names, class names, and

relationship names are detected and addressed in real-time.

Conflicts are resolved through renaming or merging actions.

Fig. 11 provides the PlantUML syntax description of the

merged result of the two sentences. Fig. 12 shows the

translation of the PlantUML syntax into a UML class

diagram.

Fig. 11 PlantUML syntax description of the merged result of the two

sentences.

Fig. 12 Translation of PlantUML syntax into a UML class diagram.

III. RESULTS AND DISCUSSION

A. Experimental Validation

This chapter outlines the experimental validation and
analysis phase. Through comprehensive testing and validation

of the model, its accuracy and completeness in generating

UML class diagrams are confirmed. Accuracy refers to the

consistency between the automatically generated UML class

diagrams and the content of the original textual requirements.

It measures whether the generated diagrams correctly reflect

the classes, attributes, methods, and relationships described in

the requirements. Completeness refers to the extent to which

the automatically generated UML class diagrams cover all

relevant information in the textual requirements. It evaluates

whether the diagrams include all the classes, attributes,

methods, and relationships explicitly or implicitly indicated in

the requirements.
The TF-IDF Bernoulli Naive Bayes model will be

optimized and analyzed. Additional data will be annotated to

evaluate the model's performance, and the trained model will

be used for classification to observe its effectiveness and

performance. Using an automatic tool, a comprehensive test

and analysis were conducted by manually annotating an

additional 130 data entries. These entries included 64 class

definitions and 66 relationship descriptions, maintaining

consistency with the original dataset distribution to validate

the model in a similar environment. Subsequently, UML class

diagrams were generated using the tool.
Three specialists, each with extensive industry experience

and academic backgrounds, were invited to evaluate the

generated UML class diagrams for expert review. They come

from software engineering, system design, and natural

language processing and compared these diagrams with those

manually created by themselves.

Two parameters can be tuned to explore the optimal

performance of the Bernoulli Naive Bayes model: Alpha (α)

and Binarize.

Alpha (α): This is the smoothing parameter used to prevent

overfitting. The default value is 1.0, and different values, such
as 0.1, 0.5, 1, 2, 10, etc., can be tried to determine the best

performance.

Binarize: This parameter sets the threshold for binarizing

input values. If set to None, no binarization is performed.

The relationship between the Alpha parameter and

accuracy is depicted in Fig. 13.

Fig. 13 The relationship between the Alpha parameter and model accuracy

The model achieves the highest accuracy of 88.66% when

the Alpha parameter is set between 0.46 and 0.9. The

classification report for Alpha values of 0.5 and 1 is shown in

Fig. 14 and Fig. 15. With Alpha set to 0.5, the accuracy
improves by 1.35% compared to the default Alpha of 1,

reaching 87.31%. Additionally, the model shows

improvements in recall and f1-score values for both

categories.

1912

Fig. 14 Classification_report for Default Alpha=0.5

Fig. 15 Classification_report for Optimized Alpha=1

The relationship between the Binarize parameter and

accuracy is depicted in Fig. 16.

Fig. 16 The Relationship between the Binarize Parameter and Accuracy

As observed, the model achieves the highest classification

accuracy with the default Binarize value of 0 and reaches

optimal performance with this setting, indicating no need for
parameter adjustment.

B. Result Analysis

Fig. 17 and 18 show that the optimized parameters

Alpha=0.5 and Binarize=0.0 were selected for generating

heatmaps and ROC curves. The heatmap results indicate that

out of 64 samples labeled as "class," the model correctly

classified 59 and misclassified 5. For the 66 samples labeled as

"rel," the model correctly classified 56 and misclassified 10.

This suggests that the model accurately distinguishes between
"class" and "rel." However, the classification performance of

"rel" samples is relatively poorer than that of "class" samples.

Fig. 17 Confusion Matrix Heatmap

Fig. 18 Smoothed ROC Curve with Linear Interpolation

The ROC curve shows that with parameters Alpha=0.5 and

Binarize=0.0, the model achieves an AUC value of 0.9287,
close to 1. This indicates that the model can distinguish

between positive and negative classes. Additionally, the curve

is positioned near the top-left corner, suggesting a high True

Positive Rate (TPR) and low False Positive Rate (FPR),

further confirming the excellent classification performance of

the model.

Accuracy Test Results: The overall accuracy indicates the

model's general performance in class definition and

relationship description tasks. High accuracy validates the

model’s stability and effectiveness in handling various types

of textual data, though it may have limitations with specific
requirements, such as complex relationship descriptions.

Table IV displays the detailed accuracy test results.

TABLE IV

ACCURACY TEST RESULTS

Data Type
Number of

Correctly Classified

Total Number

of

Classifications

Accuracy

Class

Definitions
59 64 92.19%

Relationship

Descriptions
56 66 84.85%

Overall

Accuracy
115 130 88.46%

Completeness Test Results: The overall requirement

coverage rate demonstrates the tool's capability to encompass
most requirements during the processing and generation of

UML class diagrams, showcasing its strong performance in

maintaining completeness. Refer to Table V for detailed

completeness test results.

TABLE V

COMPLETENESS TEST RESULTS

Data Type
Total Number of

Requirements

Number of

Covered

Requirements

Requirement

Coverage

Rate

Class

Definitions
64 60 93.75%

Relationship

Descriptions
66 61 92.42%

Overall 130 121 93.08%

IV. CONCLUSION

This study achieved the complete process of automatically

generating UML class diagrams from English text using

natural language processing techniques. Text preprocessing:
Structured information was extracted from unstructured text

1913

through coreference resolution and sentence segmentation.

Coreference resolution improved the accuracy of identifying

referents for pronouns and noun phrases, while sentence

segmentation helped break down the complex text into

smaller units for easier subsequent processing.

Sentence Classification: Using a machine learning

classifier, sentences were classified into "class definition" and

"relationship description." Through feature extraction and

vectorization, the model accurately categorized input

sentences. Test results indicated that the combination of TF-
IDF vectorization and the Bernoulli Bayes classifier

performed the best, achieving a classification accuracy of

88.66%.

Syntactic Analysis: Sentence syntax and semantic structure

were identified and analyzed through part-of-speech tagging

and dependency parsing. Part-of-speech tagging helped

determine each word's grammatical category, while

dependency parsing further identified the syntactic

relationships between words, laying the foundation for

generating UML fragments.

UML Class Diagram Generation: A series of class and
relationship rules were defined and applied to map semantic

information to UML model elements, successfully generating

UML fragments. Subsequently, these fragments were merged

using a combination algorithm to resolve conflicts such as

attribute and class name clashes, creating a complete UML

class diagram.

Experimental Validation: Optimizing the Bernoulli Bayes

model further enhanced the classification performance. With

optimal parameter settings, the model demonstrated

outstanding accuracy and AUC values. Analysis of heatmaps

and ROC curves indicated that the model exhibited high
accuracy and robustness in distinguishing between "class

definition" and "relationship description" sentences.

Future research could consider introducing more complex

and powerful models, such as neural networks and deep

learning models, for text classification and syntactic analysis,

aiming to enhance the model's generalization capability and

adaptability. Additionally, exploring data-driven approaches

that combine supervised and unsupervised learning could

automate the generation and optimization of rules, thereby

improving the accuracy and robustness of UML class diagram

generation.

REFERENCES

[1] Y. Rigou and I. Khriss, “A Deep Learning Approach to UML Class

Diagrams Discovery from Textual Specifications of Software

Systems,” 2023, pp. 706–725. doi: 10.1007/978-3-031-16078-3_49.

[2] M. Jahan, Z. S. H. Abad, and B. Far, “Generating Sequence Diagram

from Natural Language Requirements,” in 2021 IEEE 29th

International Requirements Engineering Conference Workshops

(REW), IEEE, Sep. 2021, pp. 39–48.

doi:10.1109/rew53955.2021.00012.

[3] O. S. Dawood Omer and S. Eltyeb, “Towards an Automatic Generation

of UML Class Diagrams from Textual Requirements using Case-based

Reasoning Approach,” in 2022 4th International Conference on

Applied Automation and Industrial Diagnostics (ICAAID), IEEE, Mar.

2022, pp. 1–5. doi: 10.1109/icaaid51067.2022.9799502.

[4] M. A. Ahmed, I. Ahsan, U. Qamar, and W. H. Butt, “A Novel Natural

Language Processing approach to automatically Visualize Entity-

Relationship Model from Initial Software Requirements,” in 2021

International Conference on Communication Technologies

(ComTech), IEEE, Sep. 2021, pp. 39–43.

doi:10.1109/ComTech52583.2021.9616949.

[5] A. Abdalazeim and F. Meziane, “A review of the generation of

requirements specification in natural language using objects UML

models and domain ontology,” Procedia Comput Sci, vol. 189, pp.

328–334, 2021, doi: 10.1016/j.procs.2021.05.102.

[6] J. Shivamurthy, T. Uppal, and D. Vidyarthi, “NLP-based Auto

Generation of Graph Database from Textual Requirements,” in 2024

IEEE International Conference on Electronics, Computing and

Communication Technologies (CONECCT), IEEE, Jul. 2024, pp. 1–6.

doi: 10.1109/CONECCT62155.2024.10677144.

[7] Fatma Alharbia, Shadi R .Masadeh, and Faiz Alshrouf, “A Framework

for the Generation of Class Diagram from Text Requirements using

Natural Language Processing,” International Journal of Advanced

Trends in Computer Science and Engineering, vol. 10, no. 1, pp. 25–

31, Feb. 2021, doi: 10.30534/ijatcse/2021/041012021.

[8] E. A. Abdelnabi, A. M. Maatuk, T. M. Abdelaziz, and S. M. Elakeili,

“Generating UML Class Diagram using NLP Techniques and

Heuristic Rules,” in 2020 20th International Conference on Sciences

and Techniques of Automatic Control and Computer Engineering

(STA), IEEE, Dec. 2020, pp. 277–282.

doi:10.1109/STA50679.2020.9329301.

[9] P. More and R. Phalnikar, “Generating UML Diagrams from Natural

Language Specifications,” Int J Appl Inf Syst, vol. 1, no. 8, pp. 19–23,

Apr. 2012, doi: 10.5120/ijais12-450222.

[10] H. Krishnan and P. Samuel, “Relative Extraction Methodology for

class diagram generation using dependency graph,” in 2010

International Conference on Communication Control and Computing

Technologies, IEEE, Oct. 2010, pp. 815–820.

doi:10.1109/ICCCCT.2010.5670730.

[11] N. Bashir, M. Bilal, M. Liaqat, M. Marjani, N. Malik, and M. Ali,

“Modeling Class Diagram using NLP in Object-Oriented Designing,”

in 2021 National Computing Colleges Conference (NCCC), IEEE,

Mar. 2021, pp. 1–6. doi: 10.1109/nccc49330.2021.9428817.

[12] R. Sharma, P. K. Srivastava, and K. K. Biswas, “From natural

language requirements to UML class diagrams,” in 2015 IEEE Second

International Workshop on Artificial Intelligence for Requirements

Engineering (AIRE), IEEE, Aug. 2015, pp. 1–8.

doi:10.1109/aire.2015.7337625.

[13] A. Gupta, G. Poels, and P. Bera, “Generating multiple conceptual

models from behavior-driven development scenarios,” Data Knowl

Eng, vol. 145, p. 102141, May 2023,

doi:10.1016/j.datak.2023.102141.

[14] S. Yang and H. Sahraoui, “Towards automatically extracting UML

class diagrams from natural language specifications,” in Proceedings

of the 25th International Conference on Model Driven Engineering

Languages and Systems: Companion Proceedings, New York, NY,

USA: ACM, Oct. 2022, pp. 396–403. doi: 10.1145/3550356.3561592.

[15] Z. Babaalla, E. M. Bouziane, A. Jakimi, and M. Oualla, “From text-

based system specifications to UML diagrams: A bridge between

words and models,” in 2024 International Conference on Circuit,

Systems and Communication (ICCSC), IEEE, Jun. 2024, pp. 1–6.

doi:10.1109/iccsc62074.2024.10616686.

[16] A. Ferrari, S. Abualhaija and C. Arora, "Model Generation with LLMs:

From Requirements to UML Sequence Diagrams," in 2024 IEEE 32nd

International Requirements Engineering Conference Workshops

(REW), Reykjavik, Iceland, 2024, pp. 291-300,

doi:10.1109/rew61692.2024.00044.

[17] E. A. Abdelnabi, A. M. Maatuk, and M. Hagal, “Generating UML

Class Diagram from Natural Language Requirements: A Survey of

Approaches and Techniques,” in 2021 IEEE 1st International

Maghreb Meeting of the Conference on Sciences and Techniques of

Automatic Control and Computer Engineering MI-STA, IEEE, May

2021, pp. 288–293. doi: 10.1109/mi-sta52233.2021.9464433.

[18] Z. Babaalla, A. Jakimi, M. Oualla, R. Saadane, and A. Chehri,

“Towards an Automatic Extracting UML Class Diagram from

System’s Textual Specification,” in Proceedings of the 7th

International Conference on Networking, Intelligent Systems and

Security, New York, NY, USA: ACM, Apr. 2024, pp. 1–5.

doi:10.1145/3659677.3659742.

[19] Z. Babaalla, H. Abdelmalek, A. Jakimi, and M. Oualla, “Extraction of

UML class diagrams using deep learning: Comparative study and

critical analysis,” Procedia Comput Sci, vol. 236, pp. 452–459, 2024,

doi: 10.1016/j.procs.2024.05.053.

[20] M. A. Umar and K. Lano, “Advances in automated support for

requirements engineering: a systematic literature review,” Requir Eng,

vol. 29, no. 2, pp. 177–207, Jun. 2024, doi: 10.1007/s00766-023-

00411-0.

1914

[21] S. Zhong, A. Scarinci, and A. Cicirello, “Natural Language Processing

for systems engineering: Automatic generation of Systems Modelling

Language diagrams,” Knowl Based Syst, vol. 259, p. 110071, Jan.

2023, doi: 10.1016/j.knosys.2022.110071.

[22] S. M. Cheema, S. Tariq, and I. M. Pires, “A natural language interface

for automatic generation of data flow diagram using web extraction

techniques,” Journal of King Saud University - Computer and

Information Sciences, vol. 35, no. 2, pp. 626–640, Feb. 2023,

doi:10.1016/j.jksuci.2023.01.006.

[23] S. Kumar, Aryaman, Aryan, and D. Yadav, “Natural Language

Processing based Automatic Making of Use Case Diagram,” in 2023

5th International Conference on Inventive Research in Computing

Applications (ICIRCA), IEEE, Aug. 2023, pp. 1026–1032.

doi:10.1109/icirca57980.2023.10220849.

[24] A. A. Almazroi, L. Abualigah, M. A. Alqarni, E. H. Houssein, A. Q.

M. AlHamad, and M. A. Elaziz, “Class Diagram Generation from Text

Requirements: An Application of Natural Language Processing,”

2021, pp. 55–79. doi: 10.1007/978-3-030-79778-2_4.

[25] A. Akundi, J. Ontiveros, and S. Luna, “Text-to-Model Transformation:

Natural Language-Based Model Generation Framework,” Systems,

vol. 12, no. 9, p. 369, Sep. 2024, doi: 10.3390/systems12090369.

[26] D. Peral-García, J. Cruz-Benito, and F. J. García-Peñalvo, “Using

Quantum Natural Language Processing for Sentiment Classification

and Next-Word Prediction in Sentences Without Fixed Syntactic

Structure,” 2024, pp. 235–243. doi: 10.1007/978-3-031-48981-5_19.

[27] J. Chen, B. Hu, W. Diao, and Y. Huang, “Automatic generation of

SysML requirement models based on Chinese natural language

requirements,” in Proceedings of the 2022 6th International

Conference on Electronic Information Technology and Computer

Engineering, New York, NY, USA: ACM, Oct. 2022, pp. 242–248.

doi: 10.1145/3573428.3573470.

[28] R. Bougacha, R. Laleau, S. Collart-Dutilleul, and R. Ben Ayed,

“Extending SysML with Refinement and Decomposition Mechanisms

to Generate Event-B Specifications,” 2022, pp. 256–273.

doi:10.1007/978-3-031-10363-6_18.

[29] R. Saini, G. Mussbacher, J. L. C. Guo, and J. Kienzle, “Automated,

interactive, and traceable domain modelling empowered by artificial

intelligence,” Softw Syst Model, vol. 21, no. 3, pp. 1015–1045, Jun.

2022, doi: 10.1007/s10270-021-00942-6.

[30] V. Danylyk, V. Lytvyn, and S. Mushasta, “Information system of

identification of terms and abbreviations in text documents,” Herald

of Khmelnytskyi National University. Technical sciences, vol. 319, no.

2, pp. 81–87, Apr. 2023, doi: 10.31891/2307-5732-2023-319-1-81-83.

1915

