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Abstract: This study introduces a novel methodology for enhancing the efficiency of solar-powered
unmanned aerial vehicles (UAVs) through azimuthal solar synchronization and aerodynamic neuro-
optimization, leveraging the principles of slime mold neural networks. The objective is to broaden
the operational capabilities of solar UAVs, enabling them to perform over extended ranges and in
varied weather conditions. Our approach integrates a computational model of slime mold networks
with a simulation environment to optimize both the solar energy collection and the aerodynamic
performance of UAVs. Specifically, we focus on improving the UAVs’ aerodynamic efficiency in
flight, aligning it with energy optimization strategies to ensure sustained operation. The findings
demonstrated significant improvements in the UAVs’ range and weather resilience, thereby enhancing
their utility for a variety of missions, including environmental monitoring and search and rescue
operations. These advancements underscore the potential of integrating biomimicry and neural-
network-based optimization in expanding the functional scope of solar UAVs.

Keywords: solar energy; aerodynamics; neural networks; evolutionary-based optimization; range
optimization; UAVs; simulation

1. Introduction

Unmanned aerial vehicles (UAVs) have become increasingly important across various
fields, from agriculture to defense [1]. These UAVs are used in a wide range of applications,
such as monitoring crops, conducting surveillance, and delivering goods [2]. UAVs operate
under a range of environmental conditions, from indoor operations to the challenging and
unpredictable conditions of outdoor missions. The materials used in the construction of
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UAVs determine their performance characteristics, such as weight, durability, and aero-
dynamics [3,4]. Common structural components include the airframe, wings, propulsion
system, landing gear, and control surfaces. The airframe forms the backbone of the UAV,
providing the necessary support for all other components. It is typically designed to be
as light as possible while ensuring sufficient strength and rigidity [5]. Wings are designed
to generate lift and are often equipped with ailerons, flaps, and other control surfaces to
facilitate maneuverability. The propulsion system, which includes motors and propellers or
turbines, is optimized for efficiency and thrust. Each part must be meticulously connected,
and advanced modeling of the structure is required to ensure aerodynamic efficiency and
structural integrity. Strong bolts and other fasteners must be used for durable connections,
ensuring that the UAV can withstand operational stresses without component failure [6].
Advanced modeling techniques, such as computational fluid dynamics (CFD) and finite
element analysis (FEA), are often employed to simulate and optimize the performance of
UAVs under various conditions [7]. Despite structural considerations, the type of energy
source also significantly impacts the range, endurance, and overall efficiency of UAVs [8].
As UAV usage expands, enhancing their flight paths for energy efficiency has become
a significant engineering challenge [9–13]. This challenge is particularly significant for
solar-powered UAVs that depend on a limited and variable supply of solar energy. Solar
energy is not always available, and its availability can change based on the time of day and
weather conditions. This reliance on solar power presents unique challenges, such as the
need to maximize energy capture during sunlight hours and efficiently store this energy
for continued operation [9,14–25].

1.1. Evolution and Integration of Solar Power

Initially conceptualized for military purposes, UAVs have evolved to become versatile
tools in civilian and commercial domains [18]. Early UAV technology focused on mili-
tary reconnaissance and target practice, but advancements in electronics, navigation, and
materials science have enabled broader applications. The quest to extend the operational
capabilities of UAVs led to the exploration of solar power as an additional energy source.
Solar-powered UAVs emerged as a solution to the endurance limitations posed by onboard
battery systems, marking a significant milestone with the integration of photovoltaic (PV)
cells into UAV designs. High-altitude, long-endurance (HALE) UAVs, designed to operate
at altitudes with intense and consistent solar radiation, have significantly extended mission
durations [16–18,20,26–28].

1.2. Challenges in Solar Power Integration

Integrating solar power into UAVs presents several challenges. The efficiency of photo-
voltaic cells, the variability of solar energy, and the added weight of solar panels and energy
storage systems impact UAV performance. For example, the efficiency of photovoltaic
cells can vary significantly under different weather conditions. On cloudy days, these cells
might not generate as much electricity as on sunny days. Additionally, batteries and other
storage devices must be lightweight enough to allow the UAV to fly efficiently, but they
also need to store enough energy to power the UAV for extended periods. To address these
challenges, engineers have developed lightweight, high-efficiency photovoltaic cells and
aerodynamically optimized designs to enhance energy efficiency [9,14,15,18,29,30].

1.3. Importance of Path Planning and Energy Management

Path planning is crucial for managing the energy consumption of UAVs. By opti-
mizing their routes, UAVs can avoid areas where energy expenditure is high and take
advantage of conditions favorable for solar energy capture. The integration of heuristic
algorithms and machine learning techniques, particularly neural networks, offers promis-
ing avenues for improving flight path optimization. These technologies enable adaptive
management of UAV flight paths in real time, enhancing their responsiveness to dynamic
environmental conditions that impact solar energy availability. For instance, if a UAV
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encounters unexpected cloud cover, it can adjust its flight path to move to an area with
better sunlight [17–19,29,31–38].

The literature presents a range of strategies for path planning, from real-time adaptive
algorithms to predetermined paths with minor in-flight adjustments. Real-time adaptive
algorithms allow UAVs to continuously update their flight paths based on current con-
ditions, while predetermined paths with minor adjustments provide a balance between
flexibility and predictability. This diversity highlights the need for a balanced approach
that harmonizes adaptability, energy efficiency, and operational reliability. An effective
path planning strategy must be able to adapt to changing conditions without consuming
too much energy in the process [9,14,15,17,19,39,40].

1.4. Heuristic Algorithms and Neural Networks

Heuristic algorithms play a significant role in refining neural networks for optimizing
flight paths of solar-powered UAVs. Traditional methods may struggle with the dynamic
nature of these paths, but heuristic approaches, such as Genetic Algorithms (GAs), Particle
Swarm Optimization (PSO), or Simulated Annealing (SA), allow neural networks to adjust
flight paths in real time. These heuristic methods are inspired by natural processes and are
effective at finding solutions to complex problems. For example, Genetic Algorithms mimic
the process of natural selection, while Particle Swarm Optimization is inspired by the social
behavior of birds flocking together. This adaptability enhances UAVs’ responsiveness to
environmental changes affecting the solar energy availability. Heuristic algorithms are
particularly advantageous because they efficiently navigate complex, multidimensional
search spaces, finding optimal or near-optimal solutions with lower computational cost
and time. This is crucial in scenarios with unpredictable environmental fluctuations,
ensuring that solar-powered UAVs maintain optimal energy efficiency and operational
reliability [17–19,41,42].

1.5. Proposed Method: Genetic Algorithm over Neural Network

The primary aim of this work is to explore the utility of heuristic algorithms in refining
the neural networks that guide the flight paths of solar-powered UAVs. By combining
these heuristic methods with realistic terrain simulations, we propose an efficient process
for flight path optimization. Genetic Algorithms (GAs) mimic natural selection processes,
generating potential solutions and iteratively refining them to find the most efficient
paths. By combining GAs with neural networks, we aim to enhance real-time flight path
adjustment and energy resource management. Realistic terrain simulations can mimic the
conditions UAVs will face in actual missions, allowing for better testing and refinement of
path planning strategies. This approach ensures optimal energy utilization, extending the
operational duration and mission reliability [9,14,15,17,19,39,40].

This study contributes to UAV efficiency by offering a methodological advancement
in flight path optimization for solar-powered UAVs. The integration of heuristic algorithms
with realistic terrain simulations provides a novel perspective on maximizing energy
capture and optimizing storage. By improving the energy efficiency, we can extend the
operational duration of UAVs and increase their reliability in various applications, ulti-
mately making them more effective tools for the tasks they are designed to perform. This
research reflects a commitment to harmonizing technological progress with sustainability
and operational excellence, promising significant advancements in solar-powered UAV
technology [9,14,15,17–19,32,33,39,40,43].

1.6. Review of Existing Methods and Approaches

In recent years, various optimization techniques have been employed to enhance the
efficiency of solar-powered UAVs, focusing on both energy management and aerodynamic
performance. Traditional methods, such as Genetic Algorithms (GAs), Particle Swarm
Optimization (PSO), and Simulated Annealing (SA), have been widely used to optimize
UAV flight paths by dynamically adjusting to environmental conditions. These heuristic
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approaches are effective at finding solutions to complex problems and have been extensively
discussed in the literature [1,16].

For instance, Genetic Algorithms mimic the process of natural selection to iteratively
refine potential solutions, making them suitable for real-time UAV path optimization in
dynamic environments [8]. Similarly, Particle Swarm Optimization is inspired by the
social behavior of birds flocking together and has been successfully applied to enhance
the adaptive capabilities of UAVs, particularly in uncertain and fluctuating environmental
conditions [15,20].

Despite the effectiveness of these methods, they often require significant computa-
tional resources and may struggle with real-time adaptation when environmental variables
change rapidly [14,18]. Furthermore, conventional approaches tend to focus either on
energy efficiency or aerodynamic optimization, rather than integrating both aspects holisti-
cally [19,21].

In contrast, this study leverages the Slime Mold Optimization (SMO) algorithm, a
novel heuristic inspired by the foraging behavior of slime molds, to optimize the neural
networks guiding UAV flight paths. The SMO algorithm not only balances exploration and
exploitation effectively, but also adapts in real time to dynamic environmental changes,
offering a more comprehensive solution for solar UAVs that must operate efficiently in
varying conditions [36,44].

This approach represents advancement over traditional methods by integrating aero-
dynamic calculations and energy management strategies into a unified framework, thereby
enhancing the operational duration and reliability of solar-powered UAVs [4,17,45].

2. Materials and Methods

The primary goal of this study was to enhance the control systems of an UAV by opti-
mizing its neural network weights and biases through the use of Slime Mold Optimization
(SMO). The UAV navigated a simulated terrain influenced by various factors, including
solar angles, aerodynamic forces, and obstacles.

As illustrated in Figure 1, the process flow for optimizing the UAV control systems
involved two main stages: neural network optimization and environmental interaction.

Figure 1a outlines the neural network optimization using SMO, while Figure 1b shows
the environmental interaction, including terrain initialization, collision detection, and
determining environmental difficulty.

2.1. Software and Libraries

All computational models and algorithms were implemented using Python3. The
following libraries were used: NumPy (1.26.4) for numerical computations, TensorFlow
(2.16.1) for neural network implementations, MealPy (3.0.1) for evolutionary-based opti-
mizations, and Matplotlib (3.8.4) for data visualizations.

2.2. Neural Network Architecture

The study utilized a neural network architecture tailored for the optimization of the
UAV control systems. The network was constructed to efficiently process inputs and
generate precise control outputs, ensuring optimal UAV navigation.

Figure 1 illustrates the architecture of the neural network, detailing the flow from
the input layer, through the hidden layers, and ending at the output layer. Each node
in the input layer represents a specific input feature, while the nodes in the hidden and
output layers represent the transformed features and final predictions, respectively. The
connections indicate the flow of information, with weights and biases optimizing this flow,
as described by the equation.
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The neural network is structured as a sequential model with three layers. Mathemati-
cally, each layer can be represented as:

hi = tan h(Wi·xi + bi) (1)

where hi is the output after activation, tanh is the hyperbolic tangent activation function, Wi
denotes the weight matrix, xi represents the input vector, and bi is the bias term [32,44,46].

2.2.1. Activation Function

The neural network employed the hyperbolic tangent (tanh) function as its activation
mechanism. The tanh function is advantageous, as it normalizes the output of neurons to a
range between −1 and 1. This feature is particularly beneficial for this network, as it ensures
smoother gradients, effectively mitigating the risk of neuron saturation. Consequently, this
facilitates a more efficient backpropagation process, crucial for the network’s learning and
adaptation capabilities [47].

2.2.2. Layer-Wise Breakdown

(i) Input layer specifications—neuron count: The input layer comprises 22 neurons, each
designed to process specific elements of the incoming data.
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(ii) Functional overview: The primary function of this input layer is to assimilate raw
data, which, in the context of this study, encompasses a variety of environmental and
operational parameters encountered by the UAV.

(iii) Input parameters: The layer receives the following inputs, each representing critical
aspects of the UAV’s operational environment:

1. Pitch: Reflecting the UAV’s angular orientation along the lateral axis.
2. Roll: Indicating the UAV’s angular orientation along the longitudinal axis.
3. Yaw: Representing the UAV’s rotation around the vertical axis.
4. Position (x, y, z): Spatial coordinates capturing the UAV’s location in three-

dimensional space.
5. Span: Denoting the UAV’s wingspan or a similar dimensional measurement

relevant to its structure.
6. Net force in y and z: Representing the total forces acting on the UAV in the

vertical and lateral planes.
7. Relative sunlight angle: Indicating the angle of sunlight relative to the UAV’s

orientation, crucial for solar-powered operations.
8. Reduction of sunlight intensity due to clouds: Quantifying the decrease in solar

energy availability due to cloud coverage.
9. Time of day (azimuthal angle): Reflecting the sun’s position, essential for under-

standing diurnal variations in environmental conditions [43].
10. Current battery capacity: Indicating the UAV’s available energy resources at any

given moment.
11. Maximum battery capacity: Denoting the UAV’s total energy storage capability.
12. Motor power and motor torque: Providing insights into the UAV’s propulsion

system’s current operational status.
13. Velocity (x, y, z): Capturing the UAV’s speed across three dimensions.
14. Closest object in x, y, z coordinates: Identifying the proximal objects in the UAV’s

immediate vicinity, critical for collision avoidance and navigational purposes.

These parameters collectively formed a comprehensive dataset, facilitating the neural
network’s initial processing phase and laying the foundation for complex, subsequent
analytical processes.

2.2.3. Hidden Layers and Output Layer Architecture

The first hidden layer comprises 64 neurons, significantly enhancing the network’s
capability to discern complex patterns within the input data. This layer is pivotal in
transforming the raw input into a more abstract representation, which facilitates deeper
analysis in subsequent layers. The relatively high neuron count is instrumental in capturing
intricate patterns and relationships within the data.

The second hidden layer consists of 32 neurons and further refines the data processing
initiated by the first layer. Its primary role is to refine and consolidate the abstract represen-
tations formulated by the first hidden layer, ensuring that only the most critical patterns
and features are preserved and passed on to the output layer. This enhances the neural
network’s efficiency and accuracy in processing data.

The output layer is configured with four neurons and serves as the final stage in the
data-processing pipeline. It interprets the refined data from the hidden layers and generates
the ultimate control commands for the UAV. The utilization of four neurons suggests that
the network is designed to produce four distinct output parameters, each governing a
specific aspect of UAV control.

2.2.4. Dynamic Weight Adjustment

During the optimization process, the weights of the neural network were adjusted
as follows:

Wnew
i = Wi ⊙ s (2)
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where new Wi new represents the new weights, Wi the original weights, s the solution
vector from the optimization algorithm, and ⊙ denotes element-wise multiplication. Fine-
tuning the network in such a manner enhanced the UAV’s energy management and
operational efficiency, directly contributing to more sustainable and extended missions
under varying environmental conditions. This approach ensured that the UAV could
adapt to different environmental scenarios, optimizing its performance and reducing en-
ergy consumption.

2.3. Slime Mold Algorithm (SMA)

The application of the Slime Mold Algorithm (SMA) targeted the optimization of the
neural network’s weights and biases to enhance the UAV’s operational efficiency in diverse
environmental conditions. The optimization process was designed over the neural network
as in [44].

2.3.1. Optimization Goal

The principal objective was to optimize the UAV’s operational parameters to achieve
maximal efficiency, defined by a meticulously crafted fitness function. This function
assessed the UAV’s performance based on its energy management, adaptability to environ-
mental conditions, and effective utilization of operational time.

2.3.2. Fitness Function

The UAV’s fitness for operation was quantitatively assessed through the following
fitness function:

Fitness = 19 · (end_battery)− 2 ·(start_time) + start_battery
+ num_clouds + num_obstacles + flight_time

(3)

In this formula, end_battery represents the battery level at the end of the flight, start_time
is the time at which the UAV starts its operation, start_battery denotes the battery level
at the start of the flight, num_clouds indicates the number of clouds encountered during
the flight, num_obstacles refers to the number of obstacles encountered during the flight,
and flight_time is the total duration of the flight. This fitness function evaluates the UAV’s
performance by considering both its operational efficiency and the environmental con-
ditions encountered. By optimizing these variables, the UAV can achieve better energy
management and operational efficiency, ensuring more sustainable and extended missions
under varying environmental conditions.

2.3.3. Conditions and Saturations

Battery status: Limited within the range [0, 1], where 1 signifies full battery capacity,
and 0 indicates complete depletion.

Environmental constraints: These parameters are bounded by the physical and en-
vironmental characteristics of the operational domain, affecting navigation and sensor
performance.

Operational time: This parameter incorporates diurnal variations, impacting mission
planning and execution.

2.3.4. Cost Function

The cost function inherent within the fitness function aims to minimize adverse
operational impacts, such as excessive energy consumption and reduced adaptability, while
maximizing the UAV’s operational efficiency. The optimization process thus involves
a delicate balance, adjusting the UAV’s operational parameters to optimize the overall
fitness score.
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2.3.5. Optimization Process

Initiated with a population size of 100, the SMA underwent 1000 iterations to ensure
convergence to optimal solutions. A unique computational strategy was employed, where
the weights in each row were multiplied by a common factor during each iteration to
enhance the exploration efficiency within the solution space.

Through the SMA, the optimization of the neural network’s weights and biases was
methodically conducted, aligning with the defined fitness function. This strategic approach
enabled the precise tuning of UAV operational parameters, underscoring the efficacy of
SMA in complex system optimizations, particularly in enhancing UAV efficiency against a
backdrop of variable environmental conditions and operational constraints.

2.4. Simulated Environment in Python

The simulated environment is pivotal for evaluating solar-powered UAVs’ operational
efficacy under varied conditions. This Python-based simulation incorporated azimuthal
solar angles to mirror the sun’s positional changes over time, which directly impacted
the efficiency of the solar panels and, consequently, the energy availability for the UAVs.
This simulation also introduced complex navigational scenarios with randomly distributed
obstacles and cloud cover, which not only challenged flight path optimization but also
realistically affected solar energy capture. Such a comprehensive setup is crucial for
assessing the UAVs’ adaptability to environmental dynamics and optimizing their flight
paths for improved energy efficiency and reliability [21,43,48].

The environment factors were as follows:

1. Grid size: Defines the dimensions of the 3D environment.
2. Number of obstacles: Specifies the quantity of physical obstacles within the environment.
3. Obstacle size: The fixed side length of each cubic obstacle.
4. Number of clouds: Indicates the amount of cloud formations affecting sunlight.
5. Cloud size: The fixed side length of each cubic cloud.
6. Sunlight intensity: Varies based on time of day and cloud coverage, impacting solar

energy calculations.
7. Sun direction: Determined by azimuth and altitude angles, influencing the solar

panel efficiency.
8. Temperature: Changes with altitude, affecting atmospheric conditions.
9. Pressure: Atmospheric pressure, which decreases with altitude.
10. Sunlight reduction factor: Fraction of sunlight blocked by cloud coverage.
11. Time of day: Impacts the position of the sun and overall sunlight intensity.

2.5. Aerodynamics Calculation through the Vortex Lattice Method in Aerodynamics

The Vortex Lattice Method (VLM) is a semi-empirical approach used predominantly
for estimating the aerodynamic properties of wings and aircraft bodies at subsonic speeds.
Its fundamental principle lies in representing lifting surfaces as an assembly of bound
vortices, offering a balance between computational efficiency and accuracy [35,46,49].

In VLM, discretization is essential for practical computation. In Figure 2, the discretiza-
tion is drawn out. The aircraft’s lifting surface is segmented into numerous discrete panels,
typically rectangles or triangles. This segmentation facilitates a manageable yet detailed
representation of the lifting surface. Each panel is endowed with a vortex that symbolizes
the circulation over it, allowing for a granular analysis of the aerodynamic properties. The
panels’ center point is marked by the colored dot over the mesh.
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2.5.1. Horseshoe Vortex Model

The horseshoe vortex model is instrumental in VLM, simulating the aerodynamic
effect of each panel on an aircraft. By representing the aerodynamic flow around the panel
as a combination of a bound vortex and trailing vortices, this model allows for a detailed
analysis of the lift generated by each panel. The strength of these vortices is directly tied
to the circulation around the panel, providing a foundational parameter for calculating
aerodynamic forces. This approach enables precise modeling of the lift forces acting on
the aircraft.

2.5.2. Flow Tangency Condition

Integral to potential flow theory and VLM is the flow tangency condition. It posits that
airflow remains tangent to the body’s surface, preventing flow penetration. Mathematically,
for a 2D panel j with vortex strength Γj, the condition is articulated as:

∑j Γj · Influence of vortex j on panel i = −V∞,i · ni (4)

and · is the symbol for the inner product.
This equation is fundamental in determining the vortex strengths, Γj, across all panels,

where V∞,i represents the free-stream velocity at panel i, and ni is the unit normal to panel
i [46].

After determination of the vortex strengths, the next step is computing the aerody-
namic forces on each panel. The lift per unit span for a 2D panel is given by the formula:

L′ = ρV∞Γ (5)

In this equation, ρ signifies air density, V∞ is the free-stream velocity, and Γ is the
circulation around the panel [9,14,39,50].

The total lift is then the sum of the lift contributions from all the panels. Similarly,
other aerodynamic quantities, such as drag, can also be estimated using additional con-
siderations. In conclusion, VLM provides a computationally efficient way to compute
aerodynamic properties of wings and aircraft bodies. While it does not capture viscous
effects and is typically limited to subsonic flow, it is quite effective for preliminary design
and analysis tasks.

Integrating the horseshoe vortex model and the flow tangency condition, VLM pro-
vides a robust framework for predicting the aerodynamic forces on an aircraft. The cal-
culation of lift, through the determination of vortex strengths and the enforcement of
flow tangency, showcases the method’s capability in simulating complex aerodynamic
interactions. Although VLM abstracts away some complexities, such as viscous effects,
its computational efficiency and effectiveness in preliminary design and analysis remain
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unparalleled. In our study, applying VLM to UAV aerodynamics allowed for a nuanced
understanding of how design and environmental factors influence flight efficiency and
responsiveness.

2.5.3. Discretization Calculations

To accurately model physical phenomena within the simulated environment, it is
essential to compute the geometric properties of discrete elements.

Considering three points in 3D space, p1, p2, and p3, the area of the triangle they form
is calculated as:

Area =
1
2
∥ v1 × v2 ∥ (6)

where:
v1 = p2 − p1 (7)

v2 = p3 − p1 (8)

and the symbol × means the outer (vector) product.
For a quadrilateral defined by four points, the total area is the sum of the areas of two

triangles formed by splitting the quadrilateral:

Total_Area = Areatriangle1 + Areatriangle2 (9)

The normal vector to the wing (or UAV surface) is calculated using the cross-product
of vectors formed by its diagonal points:

UAVnormal =
(points[2]− points[0])× (points[3]− points[1])
(points[2]− points[0])× (points[3]− points[1])

(10)

For a rotation defined by angles α, β, and γ, being pitch, roll, and yaw, respectively,
the rotation matrix, D, is:

D =

cos(β)cos(γ) sin(α)sin(β)cos(γ)− cos(α)sin(γ) cos(α)sin(β)cos(γ) + sin(α)sin(γ)
cos(β)sin(γ) sin(α)sin(β)sin(γ) + cos(α)cos(γ) cos(α)sin(β)sin(γ)− sin(α)cos(γ)
−sin(β) sin(α)cos(β) cos(α)cos(β)

 (11)

For mirroring points along a given axis, the reflection matrix is calculated as:

Reflection_Matrix = I − 2·axis × axisT (12)

where I is the identity matrix and axis is the unit vector along which reflection is performed.

2.5.4. VLM Calculations

The Vortex Lattice Method (VLM) is a computational technique used to estimate the
aerodynamic forces and velocity fields around lifting surfaces, such as the wings of an
aircraft or, in our case, a UAV. These calculations are crucial for predicting aerodynamic
performance and informing the design and control system optimization.

The velocity induced at a point p by a trailing vortex line starting at r and ending at r2
is given by:

Vtrail =
α + 1
4πh

(13)

where:

h =
∥ (p − r)× (p − r2) ∥

∥ r2 − r ∥ (14)

and:

α = − (p − r) · (r2 − r)
∥ r2 − r ∥ (15)
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The velocity induced at a point p by a bound vortex line between r and s is:

Vbound =
α + β

4π(−h)
(16)

where:

h = −∥ (p − r)× (p − s) ∥
∥ s − r ∥ (17)

and:

β =
(s − r) · (p − r)

∥ p − r ∥ (18)

and:

α = − (s − r) · (p − s)
∥ p − s ∥ (19)

The AIC matrix is computed using the velocities induced by the trailing and bound
vortex lines. For each panel i and j, the AIC matrix element, AIC[i][j], is given by:

AIC[i][j] = bv + lv − rv (20)

where bv, lv, and rv are the velocities due to bound, left trailing, and right trailing vortex
lines, respectively, computed using the above formulas.

2.5.5. Solving the VLM System

The VLM system is solved by calculating the circulation strength (γ) for each panel.
This is achieved by solving the linear system:

AIC·γ = Vin f (21)

where Vinf is the free-stream velocity vector, and γ is the circulation strength vector.

2.5.6. Lift and Drag Calculation

The lift and drag are then computed using:

Lift = ∑ ρVmagγispani (22)

Drag = ∑ ργispaniVIDi (23)

where ρ is the air density, Vmag is the magnitude of the free-stream velocity, γi is the
circulation strength of the i-th panel, spani is the span of the i-th panel, and VIDi is the
down wash velocity induced at the i-th panel.

2.6. Dynamic Environment

A dynamic element was introduced through the application of VLM at every simula-
tion time step. This continuous recalibration of aerodynamic forces allowed the UAV to
adjust promptly to changing conditions and maneuvers, showcasing the method’s adapt-
ability in dynamic scenarios. In this dynamic environment, we had to consider performing
calculations of the environment at given moments, and they are shown below.

2.6.1. Calculation of Pressure

The pressure at a given altitude, H (in meters), is calculated using the barometric
formula:

P = P0

(
1 − L·H

T0

) g·M
R·L

(24)
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where P0 is the pressure at sea level, L is the lapse rate, T0 is the standard temperature at
sea level, g is the acceleration due to gravity, M is the molar mass of dry air, and R is the
ideal gas constant.

2.6.2. Calculation of Density

The density of the air at a given pressure and temperature is calculated using the ideal
gas law:

ρ =
P

0.2869·temperature
(25)

2.6.3. Relative Sunlight Angle

The relative sunlight angle is crucial for accurately calculating the solar power output
of the UAV. It determines the efficiency of solar energy capture by the UAV’s panels, as the
power output is directly influenced by how directly sunlight strikes the panels. A more
perpendicular angle (closer to 0 degrees) between sunlight and the UAV surface maximizes
energy absorption, while an acute or obtuse angle reduces it [51]. This calculation, incorpo-
rating the angle of incidence and later potential cloud cover reduction, allows for precise
estimation of available power, critical for energy management and flight path optimization
in solar-powered UAVs [13]. The relative angle between the sunlight direction and a UAV
normal vector is calculated using the dot product:

angle = arccos
(

sun_direction · uav_normal
∥ sun_direction ∥ · ∥ uav_normal ∥

)
(26)

2.6.4. Calculation of Solar Output

The solar power output, considering the angle of incidence and cloud cover, is given
by:

output = wing_area·1000·cos(angle)·cloud_sunlight_reduction (27)

2.7. Simulated Battery Cycles

Simulating battery cycles mimics the charging and discharging patterns a battery
undergoes throughout its lifecycle. This process is critical for understanding energy man-
agement within the UAV system, especially in relation to battery sizing and its compatibility
with the propulsion system. The developed model incorporates key factors, such as flight
duration, energy consumption rates, and charge/discharge frequencies, to emulate real-
world UAV operations.

The simulation not only predicts potential capacity loss, changes in internal resistance,
and overall battery degradation, but also assesses the suitability of the battery configuration
for the UAV’s propulsion demands. Specifically, the battery’s capacity and voltage are
carefully calculated to ensure that they are sufficient to power the motor under various
operating conditions. The equations used in the model include:

minvoltage = 3.25·seriescells (28)

maxvoltage = 4.2·seriescells (29)

maxcapacity = cellcapacity·parallelcells (30)

By analyzing these simulated cycles, we can make informed decisions about the
optimal battery size and capacity required for the UAV’s propulsion system. This analysis
could also be further improved on via integration of hybrid storage systems, such as
combining batteries with supercapacitors, to enhance energy management. A hybrid
storage system could provide the UAV with the capability to handle short bursts of high-
power demand while maintaining overall energy efficiency during longer missions.
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2.7.1. Voltage Calculation Based on Capacity

The voltage based on the current capacity is calculated using a polynomial equation:

Voltage = −3· 10−10·bp5 + 1 × 10−7·bp4 − 1·10−5·bp4 + 8·10−4·bp3

− 0.027·bp2 + 0.4345·bp + min_voltage
(31)

where bp is the battery percentage, calculated as 100 · capacity/max battery capacity.

2.7.2. Cycle Calculation

The number of cycles is calculated based on the change in voltage:

cycles =
1

210·(max_voltage-end_v)
− 1

210·(max_voltage-start_v)
(32)

2.8. Battery Life and Thrust-to-Power Analysis

Battery life is pivotal for UAVs, especially when considering energy management for
long-duration missions or remote operations. The thrust-to-power ratio, which determines
the efficiency of the motor–propeller combination, plays a key role in this context. By
analyzing this ratio, we can determine the most energy-efficient configurations that align
with the UAV’s power availability and battery capacity.

In our analysis, simulated battery cycles were used to evaluate battery health over
time, taking into account the impact of energy management strategies, such as optimal
charging, propulsion needs, and the potential for integrating hybrid storage systems. The
findings from this analysis inform decisions on mission length, payload capabilities, and
energy-intensive operations, ensuring that the UAV operates within its energy constraints
while maximizing performance [9,12,45,52].

2.9. Analysis with Different Configurations

Two distinct motor types and two propeller configurations were analyzed, with a
total of four combinations studied to optimize energy utilization. The analysis involved
generating thrust-to-power plots for each combination to evaluate the efficiency of each
motor–propeller pair.

The data collected from this analysis were crucial not only for identifying the optimal
configuration but also for understanding the energy management trade-offs inherent in
each setup. For instance, one motor–propeller combination might offer more thrust at a
higher power cost, making it suitable for short, high-intensity missions, while another
might provide lower thrust but with greater energy efficiency, making it ideal for longer,
low-power missions. Integrating insights from these analyses with energy management
strategies, such as the potential use of hybrid storage systems, allowed us to optimize the
UAV’s operational capabilities and extend its mission endurance.

2.10. Dynamic Environment in the Code

In the simulation framework, a conceptual buffer mechanism is proposed, based on
the UAV’s hypothetical current position, to enhance the loading time of the environment.
In simulation contexts, the buffer is a preloaded segment of data or precomputed results
that encompass a dynamic point of interest. This approach avoids the need for continuous
computation or loading of data for the entire simulated environment. Instead, the simula-
tion dynamically concentrates on a localized area around the current focal point, which, in
practice, would be the UAV’s position.

The benefits of such a buffer system, if implemented, would include that the simulation
would manage a smaller, localized dataset, allowing for rapid loading or computation of
pertinent data, resulting in faster response times. By focusing on a buffered region rather
than an extensive landscape, computational power is allocated more efficiently, processing
only the immediate vicinity of the UAV’s hypothetical position.
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The buffer system is designed to adapt as the focal point shifts, such as if a UAV were
to traverse through the environment. The buffer is not static—it would be programmed to
predict the UAV’s movement and start processing data for the upcoming region in advance,
while phasing out data no longer pertinent to the UAV’s trajectory.

Integration with UAV systems is a key aspect of the buffer’s operational concept.
Navigation and sensor data, such as the UAV’s projected position and path, would inform
the buffer’s updates, keeping relevant data ready for use.

This buffering strategy is particularly useful for handling environments with varying
complexity. As the simulated UAV approaches areas with more intricate details, the buffer’s
algorithms would prioritize the loading of these specifics, ensuring that the simulation
remains as efficient as possible.

2.11. Propulsion and Mission Phases

Regarding the propulsion system’s performance and its relation to different mission
phases, it is important to note that the proposed layout was designed to handle the specific
requirements due to the UAV’s spawn point being mid-air, and the primary focus during
the initial phase of the simulation was on cruising rather than takeoff or landing. This
configuration assumes the UAV is already at an altitude, thus bypassing the complexities
of ground-based takeoff and focusing on efficient navigation and energy management
once airborne.

The UAV is required to navigate efficiently once it has reached a sufficient altitude,
where the propulsion system is optimized for sustaining long-duration flights at cruising
altitudes. The buffer mechanism and the dynamic environment were thus calibrated to
respond to the UAV’s movement in this specific context, ensuring that data processing
remained relevant to the cruising phase, where energy efficiency and real-time adaptability
are paramount.

This approach aligned the simulation more closely with realistic mission profiles
that emphasized extended operation at altitude, where the UAV’s primary tasks, such
as surveillance or communication relay, take place. Future work could expand on this
framework by simulating additional mission phases, such as takeoff and landing, to provide
a more comprehensive evaluation of the propulsion system’s performance across all mission
profiles.

3. Results
3.1. Iterative Analysis

The first iteration involved significant time investment, primarily due to the initial
exploration phase and the complexities in defining the neural network’s end goals. This
foundational phase was critical in laying the groundwork for effective optimization in
subsequent iterations.

The observed decrease in computational time for the simulation is illustrated in
Figure 3. The system had a 12th Gen Intel Core i7-12700H processor, which provides a
robust platform for the intensive calculations required in the optimization process. Initially,
the simulations’ first iteration took between 2 and 3 h to complete. However, subsequent
iteration runs showed a significant reduction in time, with optimization processes taking
1 h or less.

By the fifth run, exploration constituted about 50% of the algorithm’s process, indicat-
ing a well-balanced approach in probing new strategies for the neural network’s learning.
This balance between exploration and exploitation is graphically represented in Figure 4a,
and Figure 4b shows the runtime.
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3.2. Time Analysis

The temporal efficiency of the Slime Mold Algorithm in optimizing the UAV’s neural
network was a big aspect of this study. The initial iteration was the most time-consuming
due to the intricate process of defining and tuning the neural network’s parameters, which
was critical for establishing a robust foundation for the algorithm’s subsequent operations.

A consistent decrease in processing time was observed across iterations, highlighting
the neural network’s improving computational efficiency and accelerated learning rate.
This trend reflects the algorithm’s capacity to adapt and optimize more effectively with
each iteration.

The balanced approach between exploration and exploitation within the algorithm
underscores its adaptability to the neural network’s evolving learning needs. The ini-
tial time investment, though substantial, was justified by the efficiency gains in subse-
quent iterations.

The Slime Mold Algorithm showed promise in optimizing the neural network for a
solar-powered UAV. Its ability to balance exploration and exploitation led to enhanced
performance over successive iterations, with the initial investment in time proving crucial
to the optimization process.

Future studies should consider expanding the scope by increasing the number of
iterations and incorporating a wider range of performance metrics. Additionally, applying
the Slime Mold Algorithm to different types of neural networks or UAV applications could
provide further insights into its adaptability and efficiency in various contexts.

This study contributes to the field of AI-powered control systems for UAVs, partic-
ularly those relying on solar energy. By utilizing the Slime Mold Algorithm for neural
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network optimization, this study offered an alternative approach to traditional methods.
The results demonstrated the potential of such algorithms in fine-tuning the weights and
biases of neural networks, thereby enhancing the functionality and autonomy of solar-
powered UAVs. The successful application of this algorithm in developing an AI-driven
solar UAV control system supports its potential effectiveness in similar contexts.

The success of the Slime Mold Algorithm in this study suggests new avenues for
integrating hyper-heuristic algorithms into UAV control systems, especially in challeng-
ing environments. As current systems approach performance limits, exploring multiple
optimization algorithms could further improve UAVs’ efficiency and decision-making
capabilities. This direction is promising for the future of UAV technology, particularly in
scenarios requiring autonomous operation in complex environments.

4. Conclusions

This study marks as an effort in the application of the Slime Mold Algorithm for
optimizing neural networks in solar-powered UAV control systems. The findings high-
lighted the complexities and challenges of integrating AI and optimization algorithms into
advancing UAV technologies. Although the Slime Mold Algorithm demonstrated potential
in achieving rapid convergence in the solution space and a balance between exploration
and exploitation, its overall effectiveness in enhancing UAV performance encountered
certain limitations.

The integration of the Vortex Lattice Method (VLM) into our UAV simulation frame-
work was a crucial aspect of our study. VLM provided a balance between computational
efficiency and accuracy, which was valuable for our simulation needs.

The advancement in our research also involved incorporating solar panel efficiency
calculations as a function of the azimuthal solar angle. This consideration allowed for
optimized energy capture, which is essential for the prolonged operation of solar-powered
UAVs. The ability to adapt flight paths and maneuvers based on solar energy availability
was a key factor in enhancing the UAV’s energy efficiency.

Furthermore, the UAV’s control system, designed to navigate through simulated
terrain, leveraged outputs from the optimized neural network. This integration translated
into adjustments in thrust and changes in the UAV’s pitch, roll, and yaw, enabling efficient
maneuverability and responsiveness to environmental variables.

Insights into solar panel efficiency during flight for the simulation were also taken into
account for the UAV’s operational decisions. This adaptability, informed by continuous up-
dates on solar efficiency, equipped the neural network to make informed control decisions.
It could prioritize energy conservation during periods of low efficiency or allocate more
power for energy-intensive tasks when efficiency was high. The neural network’s capa-
bility to learn and adapt based on historical data further enhanced the UAV’s operational
efficiency.

In conclusion, the synergy of aerodynamics, control logic, and energy optimization,
through the integration of VLM, a sophisticated control system, and adaptive solar energy
management, underscores the potential of integrating multiple technologies for enhanced
UAV performance in varied operational scenarios. Incorporating the efficiency of solar
panels as a function of the azimuthal solar angle into the UAV’s neural network control
system enabled dynamic, adaptive, and energy-efficient decision-making. This holistic
approach ensured that the UAV not only responded to immediate environmental and
operational challenges but also learned from them for future operations.

While the study demonstrated advancements in utilizing the Slime Mold Algorithm
for neural network optimization in solar-powered UAVs, it also brought to light certain
limitations that warrant further exploration. One notable area was the reliance on a
restricted set of inputs, which presented challenges for integrating real-time data during
actual flight operations. Additionally, the integration of technologies—such as the Vortex
Lattice Method with solar panel efficiency calculations into the UAV’s control systems—
merits further refinement to achieve seamless operation. These challenges, coupled with
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the complexities of real-time AI integration for autonomous UAV operation in dynamic
environments, highlight the necessity of continued research. By addressing these aspects,
future studies can expand upon the work laid out here, exploring a broader range of
technologies and strategies to enhance the adaptability and efficiency of UAV systems, thus
fully realizing the transformative potential of AI in autonomous UAV technology.
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