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A B S T R A C T

Chemical attack is one of the most significant issues affecting porous ceramic systems employed as membranes 
for separation technologies, which necessitate frequent system reliability testing. In this work, the non-linear 
predictive power of a hybridized machine learning prediction model, specifically Jaya-XGBoost to predict the 
corrosion-induced mass loss of monolithic and nickel-reinforced porous alumina ceramics has been examined. 
This study demonstrates the mass loss of monolithic and Ni-reinforced porous alumina developed using rice husk 
and sugarcane bagasse in acidic and alkaline corrosive media. Based on empirical findings, the formation of a 
very stable Ni3Al2SiO8 spinelloid phase in the RH-graded composites increased their chemical stability in the 
corrosive environments compared to their monolithic and corresponding SCB-graded counterparts. Corrosion 
testing data of these specimens were collected and fitted into both XGBoost and Jaya-XGBoost machine learning 
algorithms. The results showed that the Jaya-XGBoost model performed better in predicting the corrosion- 
induced mass loss of both the monolithic and the nickel-reinforced porous alumina than the regular XGBoost 
model in terms of statistical accuracy measures. The Jaya-XGBoost model developed in this study effectively 
predicted the mass loss in NaOH (R2 = 0.9984; MAE = 0.0168) and mass loss in H2SO4 (R2 = 0.9824; MAE =
0.0217) of the monolithic and nickel-reinforced porous alumina. The precision that can be obtained by modifying 
hyper-parameters with the Jaya method, combined with the well-known accuracy of XGBoost, renders the 
proposed model novel.

1. Introduction

The rapidly growing field of membrane technology for wastewater 
treatment and solid separation has recently attracted the attention of 
industry experts and researchers seeking to fabricate porous materials 
with the properties required to perform well under these demanding 
operating environments [1–8]. In contrast to alternative porous 

materials, alumina has been thoroughly researched as a viable ceramic 
for the manufacturing of porous systems owing to its remarkable 
inherent qualities and affordable price [9–14]. Nevertheless, the 
intrinsic brittleness and sensitivity to post-fabrication procedures of 
porous alumina materials, like those of other ceramics, have limited 
their potential as a good fit for a variety of load-bearing and harsh 
operating conditions [15,16]. In order to give the best microstructural 
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resilience in extremely corrosive discharges related to any of the 
aforementioned separation processes, new porous materials with 
excellent characteristics are required.

The remarkable mechanical and corrosion-resistant properties of 
nickel have made it a popular choice for enhancing the durability of 
ceramic materials [17–20]. Nickel offers microstructural refinement and 
chemical stability, making it a promising reinforcing element for 
alumina. These benefits come from spinel being created in-situ by a 
chemical reaction between nickel and alumina under high pressure and 
temperature. Numerous studies have reported on the enhancement of 
pore-matrix constituents in the NiAl2O4/Al2O3 membrane composites 
produced by the in-situ reaction between nickel (II) oxide and alumina 
[21,22]. NiAl2O4/Al2O3 membrane composites have been the subject of 
numerous investigations that have shown the improvement of 
pore-matrix components. Given this, earlier studies [23–25] have 
demonstrated that the nickel aluminate spinel structure (NiAl2O4) dis-
plays a high level of resilience when subjected to severe acid and alkali 
attacks.

With a view to advancing the campaign for ‘zero waste’ [26,27], 
especially in developing nations that have not yet discovered permanent 
remedies for global environmental issues, a number of agricultural 
waste materials have been sought in developing porous ceramic systems 
through the pore-forming agent processing technique [28–30]. Their 
ability to function as a complimentary silica (SiO2) source and a pore 
former in the resulting porous ceramics has led to the rise in prominence 
of agro-waste pore-forming agents. In light of this, it is thought that 
agricultural wastes can be used as effective pore-forming materials to 
modify the intrinsic properties of porous ceramics [31,32]. This is 
because of the different capacities that these materials have for retaining 
SiO2 residue after thermal degradation. Selecting agro-waste PFA can be 
a helpful processing parameter for enhancing the resistance of porous 
ceramic materials to chemical attack, as we discovered in our earlier 
study [33]. This offers information on the optimal operating conditions 
that ensure the materials will perform to their maximum potential.

Predictive models for porous ceramics and associated fields have 
been developed in recent times using precise and reliable computational 
intelligence, such as neural networks (ANN) [34,35], random forests 
(RF) [36,37], adaptive neuro-fuzzy inference system (ANFIS) [38,39], 
and gaussian process regression (GPR) [40]. An ANN model was utilized 
in our previous study [35] to predict the corrosion-induced mass loss of 
porous Al2O3/Ni composites. Unfortunately, the model’s statistical 
evaluation criteria suggested that the prediction accuracy may be 

improved, in contrast to prior studies [41,42] that revealed ANN’s 
instability as a predictor. Artificial neural networks are impaired by 
concerns of algorithm parameter alteration, over-fitting, inefficient 
training, and inefficient testing. Therefore, for the purpose of improving 
the generalization and robustness of prediction models, it is essential to 
investigate alternative highly effective machine learning algorithm 
methods.

One of the most advanced algorithms based on Friedman’s gradient 
boosting decision [43] is the extreme gradient boosting (XGBoost) al-
gorithm developed by Chen and Guestrin [44]. Natural selection and 
successful use of the algorithm for regression problems in a wide range 
of scientific and technological disciplines can be attributed to its sig-
nificant flexibility and versatility, which enable it to provide greater 
performance and accuracy than other algorithms. Through correlation 
analysis between physical parameters like porosity and corrosion 
resistance behavior, the XGBoost model can provide new insights into 
determining the durability of porous ceramics and aid in the optimiza-
tion of material composition for use in specific environments. Never-
theless, choosing the XGBoost hyperparameters, which have a huge 
impact on the prediction outcomes, is very difficult. Previous studies 
suggest that an efficient heuristic approach can overcome this constraint 
[45,46].

Inspired by the popularity and potential applications of the TLBO 
(teaching–learning based optimization) method, Rao [47] introduced 
the parameter-less Jaya algorithm to solve both constrained and un-
constrained optimization problems. The Jaya algorithm is unique in that 
it relies only on two parameters: the number of iterations and the size of 
the population. This algorithm’s attractiveness lies in its ability to lower 
the worst solution in the same iteration while still providing the ideal 
solution. Abhishek et al. [48] demonstrated the computational 
simplicity and reliable prediction outcome of fuzzy inference system 
(FIS) integrated with Jaya optimization algorithm in selecting the 
optimal process parameters during the machining of carbon 
fibre-reinforced epoxy composites. The artificial neural network (ANN) 
model optimized using the Jaya algorithm demonstrated superior 
convergence and a very acceptable error rate in predicting the me-
chanical properties of glass fibre-reinforced composites when compared 
to particle swarm optimization (PSO), as demonstrated by Fahem et al. 
[49].

While some attempts have been made to analyze porous ceramic 
systems using machine learning techniques, most of the research that 
have already been done are based on simple models that are prone to 

Fig. 1. FESEM microstructures of (a) rice husk (RH), and (b) sugarcane bagasse (SCB) pore formers; (c) the developed porous ceramic samples, (d,e) preparation of 
TEM sample from a selected spot and sample thinning on Cu grid.
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overfitting, algorithm tweaking, and ineffective training. With XGBoost 
and the optimization of the representative model by the Jaya algorithm, 
the current work thus aims to develop a predictive model for predicting 
the corrosion-induced mass loss of monolithic and nickel-reinforced 
porous alumina subjected to strong corrosive environments. To our 
knowledge, this is the first technique of using the Jaya-XGBoost model to 
predict the corrosion resistance performance of porous ceramic 
materials.

2. Experimental study

2.1. Starting materials and fabrication

In this work, the pore formers were rice husk and sugarcane bagasse, 
while the ceramic matrix was made of alumina and the reinforcing 
material was nickel. Before being introduced as pore formers, rice husk 
and sugarcane bagasse (Fig. 1a and b) were crushed, processed in an 
acidic solution and screened to get particles measuring between 63 and 
125 μm in size. The alumina and pore forming powders (5, 10, and 15 wt 
%) for the monolithic porous alumina ceramics were manually mixed 
with sucrose solution for 5 min in an agate mortar after being dry milled 
for 1 h at 300 rpm. A slightly different strategy was applied in the 
instance of the Ni-reinforced porous alumina. First, the alumina and 
nickel powders (2, 4, 6, and 8 wt%) were wet milled in ethanol for 12 h 
at 550 rpm, followed by a 6-h dry milling period at the same speed. 
Following that, the very same process described above for the mono-
lithic samples was applied to the pore formers (fixed at 10 wt%) and 
composite blend. The entire sample compositions were cold pressed at 
95 MPa in a steel die. The heat treatment method for the pore former 
decomposition in the samples was optimized using the thermal behavior 
of the agro-waste PFAs. This involved a stepwise temperature increment 
of 1 ◦C/min and a 1-h dwell time at each of the following temperature 
ranges: 200, 300, 500, and 800 ◦C. Subsequently, the samples were 
sintered at 1450 ◦C for 2 h, with a heating rate of 5 ◦C/min. Fig. 1c shows 
the defect-free monolithic and Ni-reinforced porous alumina produced 
in this study.

2.2. Sample characterization

The ratio of density measured using the Archimedes approach to the 
ideal density of completely dense monolithic/composite samples was 
used to calculate the porosity. An X-ray diffractometer with CuKα ra-
diation (wave length = 1.5406 Å) at 40 kV and 40 mA was used to 
determine the phase composition. The samples were ground, polished, 
and ultrasonically treated in order to examine the structure of the 
monolithic and Ni-reinforced porous ceramics. The pore morphology of 
the samples and the granular microstructure of the composite samples 
were both observed using field emission scanning electron microscopy 
(FESEM) and transmission electron microscopy (TEM), respectively. 
Additionally, a dual beam system’s focused ion beam (FIB) and SEM 
were employed to provide a high-quality electron transparent sample 
(lamella thickness <80 nm) for the TEM investigation (Fig. 1d and e).

2.3. Corrosion resistance test

The mass loss upon heating in alkaline and acidic environments was 
used to characterize the chemical durability of the monolithic and Ni- 
reinforced porous ceramics. After being ultrasonically cleaned in 
ethanol and weighed, the samples were then immersed in hot aqueous 
solutions (110 ◦C) containing 10 wt% NaOH and 20 wt% H2SO4 (ac-
cording to the Chinese standard, GB/T 1970-96) for 2, 4, 6, and 8 h. 
Samples were ultrasonically washed after each corrosion test to get rid of 
any remaining solution and loose corrosion products. After that, samples 
were allowed to dry to achieve a fixed mass so that the % mass loss could 
be calculated. For each sample composition, the test was repeated twice 
to guarantee the consistency of the empirical data. Finally, FESEM 

equipment was used to analyze the microstructures of porous ceramic 
samples that had corroded in strong alkaline and acidic environments.

3. Proposed models

3.1. Extreme gradient boosting (XGBoost)

Considering the microstructural degradation and strength deterio-
ration of porous ceramic systems used as separation membrane units 
under extreme service conditions, XGBoost algorithm was utilized in this 
study for developing the prediction model for corrosion-induced mass 
loss of agricultural waste-based porous ceramics. XGBoost, a tree 
ensemble algorithm developed by Chen and Guestrin, builds upon 
Friedman’s gradient boosting (GB) method. Its exceptional efficiency 
and great forecast accuracy have garnered significant attention in recent 
times. Its ability to produce boosted trees and operate concurrently 
makes it adept at handling regression and classification tasks efficiently. 
Similar to many optimization techniques, XGBoost’s essence lies in 
identifying the best variables for a given objective function (OA) 
through machine learning methodologies, particularly gradient boosting 
criteria [44].

XGBoost may also simultaneously enhance trees, just like GB deci-
sion trees and GB machines. This enables it to quickly generate trust-
worthy models for various engineering simulations. Notably, XGBoost is 
distinguished by its ’regularized boosting’ technology, a feature not 
found in traditional gradient boosting implementations. By integrating 
this innovative algorithm with the gradient boosting approach, XGBoost 
ultimately achieves improved model accuracy. The description of 
XGBoost is as: Let D1 =

{(
xi, yi

)}
be a dataset with n samples and m 

features 
(
|D1| = n,xiϵRm,yiϵR

)
. The proposed tree ensemble model em-

ploys additive functions to approximate the system’s response [44]: 

ŷi =φ(xi)=
∑Z

z=1
fz(xi), fz ϵ F (1) 

where, F is the regression tree space. It is described as 

F=
{
f(x)=ωq(x)

}(
q : Rm → T,ω ϵ RT) (2) 

in which q is the structure of trees, ω indicates e weight of the leaf, and T 
indicates the quantity of leaves on the tree. Meanwhile, a function that 
correlates to q is termed fk, and ω correlates to an independent tree. 
XGBoost minimizes its objective function (OA) in order to optimize the 
ensemble tree and minimize error [44]. 

L(t) =
∑n

i=1
l
(
yi,
̂y(t− 1)
i + ft(xi)

)
+Ω(ft) (3) 

Ω(fk)= γT +
1
2

λ‖w‖
2 (4) 

in which, the difference between measured and predicted values is 
quantified using the convex loss function, l, ŷi is predicted value, yi is 
measured value, t is number of iterations to minimize the errors, Ω is the 
model’s complexity.

3.2. Jaya algorithm

The Jaya heuristic algorithm is a swarm intelligence-based method. 
It is a straightforward yet effective optimization strategy meant to 
handle optimization issues that are both confined and unconstrained. 
Unlike previous heuristic algorithms such as the Genetic Algorithm 
(GA), which used certain selection operators, crossover probability, and 
mutation probability as control parameters, the Jaya algorithm distin-
guishes itself by using only commonly utilized control parameters. It 
eliminates the need for algorithm-specific control parameters, simpli-
fying its application and setting it apart from other heuristic techniques.
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Fig. 2. The structure of Jaya-XGBoost model for prediction.

Fig. 3. (a) TGA plots for the rice husk and sugarcane bagasse, (b) XRD patterns of the different porous systems; plots of (c) porosity values, and (d) pore sizes of the 
RH and SCB-derived porous ceramics.
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The underlying principle of the Jaya algorithm is to continuously 
avoid the least favorable outcome within the objective function while 
actively pursuing the most optimal solution in each iteration. Imagine 
the objective function as f(a). In a given iteration i, where there exist 
design variables (M = 1,2,…,m) and candidate solutions (N = 1,2,…,

n), let AMNi represent the value of the M − th variable of the N− th 
candidate during the i − th iteration. We can then derive the following 
formula [46]: 

Aʹ
MNi

=R1Mi

(
AM besti −

⃒
⃒AMNi

⃒
⃒+AMNi − R2Mi

(
AM worst i −

⃒
⃒AMNi

⃒
⃒
)

(5) 

in which, AM besti representing the M− variable value for the best 
candidate, AM worst i representing the M− variable value for the worst 
candidate, and AḾNi 

signifying the updated value of the M− variable. R1 
and R2 denote two random numbers for the M− variable within the 
range [0, 1] in the i − th iteration. Whenever the formula yields a su-

perior target value, AMNi undergoes replacement [50].
Fig. 2 illustrates the theoretical procedure and the overall study 

operation for the designed hybrid Jaya-XGBoost.

3.3. Evaluation criteria

This work uses a training set to train the predictive model and a test 
set to validate the trained model, as shown in Fig. 2. Furthermore, the 
quality of the models is compared and assessed using performance 
scores of model evaluation indices, namely the determination coefficient 
(R2), the mean absolute error (MAE), and the root mean square error 
(RMSE), in order to evaluate the accuracy and reliability of the hybrid 
model in this work. These assessment indices are used to describe how 
the measured and predicted values of databases relate to one another. 
The following are the formulas for calculating these assessment in-
dicators [51]. 

Fig. 4. FESEM images showing microstructures of RH-derived (a) monolithic porous alumina, (b) Ni-reinforced porous alumina and its corresponding (c) EDS 
elemental maps; (d), (e) FETEM microstructures of the RH-derived Ni-reinforced porous alumina, and (f) EDS spectrum of spot A.
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RMSE=

(
1
N
∑N

i=1
(ŷi − yi)

2

)1/2

(6) 

R2 =

1 −
∑

i
(yi − ŷi)

2

∑

i
(yi − yi)

2 (7) 

MAE=
1
N
∑N

i=1
|yi − ŷi | (8) 

in which yi shows the observed database value, ŷi is the predicted 
database value of the model, yi is the average of the observed database 
values, and N denotes the number of samples in the training or testing 
stages.

4. Results and discussion

4.1. Porosity and microstructure

The thermal behaviors of the sugarcane bagasse and rice husk PFAs 
utilized in this study are shown in the thermogravimetric plot of Fig. 3a. 
Four stages can be distinguished in the weight loss process of rice husk 
and sugarcane bagasse: (i) removal of moisture and extremely volatile 
components (<120 ◦C); (ii) hemicellulose decomposition (220–315 ◦C); 
(iii) lignin and cellulose decomposition (315–400 ◦C); and (iv) lignin 
decomposition (>450 ◦C) [52,53]. Lignin decomposition, on the other 
hand, proceeds more slowly and over a larger temperature range of 
180–900 ◦C [54]. It is also important to note that after the decomposi-
tion process, the ash content levels in the two samples varied. Compared 
to rice husk, which had a residue of roughly 28% silica (SiO2) known as 
rice husk ash (RHA), sugarcane bagasse had almost no ash. A compa-
rable range of RHA value (13–29%) was observed in another investi-
gation [55]. Therefore, the organic burnout method in this work was 
optimized and depended on the weight loss properties of rice husk and 
sugarcane bagasse in order to generate defect-free porous alumina 

ceramics.
While new phases of nickel alumosilicate (N3Al2SiO8) spinelloid and 

nickel aluminate (NiAl2O4) spinel were observed in the RH and SCB 
derived composites, it is clear from the results of the XRD (Fig. 3b) that 
the corundum and cristobalite (resulting from RHA in the RH-derived 
porous alumina) phases in the monolithic samples are absent. Equa-
tions (9) and (10) show, respectively, the chemical reactions that result 
in the creation of the NiAl2O4 spinel and N3Al2SiO8 spinelloid. Never-
theless, as was previously mentioned elsewhere [56], it is crucial to note 
that the existence of minimal ferrierite phase in the composites was 
caused by the trapped H2O gas in addition to the substantial affinity of 
hydrated Ni + for the tectosilicate (ferrierite) group. 

Ni+Al2O3 +
1
2
O2 ↔ NiAl2O4 (9) 

3NiO+Al2O3 + SiO2 ↔ NiAl2O4 .Ni2SiO4 ↔ Ni3Al2SiO8 (10) 

As shown in Fig. 3c, porosity increased with increasing PFA content 
in both sample types from 5 to 15 wt% due to the development of a 
hierarchical porosity gradient in relation to increasing PFA-matrix ratio 
in the samples. Because the hard-textured rice husk particles prevented 
the alumina grains from densifying, RH-derived porous alumina 
generally exhibited more porosity than its SCB-derived counterparts (see 
Fig. 1a and b). Meanwhile, when nickel reinforcement increased, the 
porosity of the two sample grades also rose. It is noteworthy that the low 
wettability and thermal expansion difference between the initial Al2O3 
matrix (8.1 x 10− 6 m/mk) and the Ni reinforcing metal (13 x 10− 6 m/ 
mk) hindered the simultaneous processes of densification and spinelli-
zation in the course of sintering [57]. Thus, increasing Ni reinforcement 
causes the porosity to increase. The generated N3Al2SiO8 spinelloid, 
which aided in the densification mechanism and restricted the porosity 
of the intergranular matrix in this group of composites, is responsible for 
the RH-derived composites’ lower porosity when compared to their 
SCB-derived counterparts.

In fact, it is believed that the developed N3Al2SiO8 spinelloid will 
greatly improve the chemical stability (explained in more detail in the 

Fig. 5. FESEM images showing microstructures of SCB-derived (a) monolithic porous alumina, and (b) Ni-reinforced porous alumina; (c),(d) FETEM microstructures 
of the SCB-derived Ni-reinforced porous alumina.
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following section) of the RH-derived composites in corrosive environ-
ments when compared to their monolithic and SCB-derived counter-
parts. The pores cavities from the FESEM microstructures were 
characterized using microscopic image analysis to measure the pore size 
as presented in Fig. 3d. As expected, the pore size increased with 
increasing contents of pore formers and Ni-reinforcement in the mono-
lithic and Ni-reinforced samples, respectively. More so, the sizes of pores 
retained in RH-graded samples are way higher than their corresponding 
SCB-graded counterparts. This result is best explained by the inherent 
textural characteristics of the pore-forming agents, since the rice husk 
particles’ harder texture than sugarcane bagasse’s prevented the former 
from disintegrating during the exploited processing route.

The microstructures of the porous ceramics generated from rice husk 
and sugarcane bagasse are shown in Figs. 4 and 5, respectively. The pore 
cavities displayed by the composite samples clearly have similar mor-
phologies to those of their monolithic counterparts, as shown in Fig. 4(a 
and b) and 5(a,b). Furthermore, as the EDS elemental maps in Fig. 4c 
illustrate, the Ni3Al2SiO8 spinelloid in the RH-derived porous composite 
was produced by the sintering of the original materials with the 
involvement of an additional phase of silica that was retained during the 
process. The bright-field FETEM microstructures of the RH and SCB 
derived porous ceramic composites exhibit varying degrees of interca-
lated Ni particles, or dark particles, on the surfaces of the matrix alumina 
grains that correspond to the Ni3Al2SiO8 spinelloid and the NiAl2O4 
spinel identified in the crystallographic patterns.

The morphology (Fig. 4d) of the RH-derived sample shows a refined 
grain structure (0.4–0.9 μm) and a significantly superior spinel coating, 
indicating good wettability of the Ni particles, higher densification, and 
lower granular porosity. This is further supported by the SAED pattern 
(inset), which shows considerable electron diffraction and indicates that 
this sample grade contains a fairly substantial number of polycrystalline 

phases of both nickel and silica. Additionally, as shown in the EDS 
spectrum (Fig. 4f) of spot A (Fig. 4e), silica retention in the RH-derived 
sample activated the interlocking of the Ni3Al2SiO8 spinelloid interface 
with the amorphous grain. The SCB-derived porous composite, on the 
other hand, exhibits a severely limited dispersion of the Ni phase, which 
in turn raises the possibility of a partially flawed NiAl2O4 spinel crys-
tallization (Fig. 5c). In addition, defects are also generated, such as 
broader granular porosity, undesirable grain growth (0.7–1.5 μm), and 
the coalescence of nickel particles at the periphery of the spinel 
precipitated grains (Fig. 5d).

4.2. Corrosion resistance

The mass loss as a function of corrosion time is shown in Fig. 6 for the 
monolithic and composite samples obtained from RH and SCB pore 
forming agents. Similar to their corresponding monolithic counterparts, 
the mass loss of the composites increased with greater duration in the 
hot acidic and alkaline solutions, regardless of the pore former type. 
Additionally, it is clear from the plots that different porous ceramic 
grades (RH and SCB) maintained similar patterns of corrosion resistance 
when compared to their monolithic counterparts after corrosion, with 
the RH and SCB derived porous ceramics demonstrating better resis-
tance to chemical attack in hot 20 wt% H2SO4 and 10 wt% NaOH so-
lutions, respectively.

Irrespective of the sample grade, a sharp rise in the percent mass loss 
of the monolithic samples prepared with PFA contents of 5–15 wt% can 
be evidenced. Porosity and corrosion rate can therefore be inferred to be 
directly related. More specifically, the enhanced porosity-associated 
quick dissolving rate results from both the severe crystal grain exfolia-
tion from fragile sintering necks and the attacking fluid’s ease of passage 
via the expanding interconnected pore space. The percent mass loss of 

Fig. 6. Mass loss of monolithic and Ni-reinforced porous alumina after various durations in (a,c) alkali, and (b,d) acid solutions.
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both sample grades for the composites also rose with increasing Ni 
reinforcement. This finding aligns with research conducted elsewhere, 
which established a relationship between the physical features of porous 
ceramics, including criteria for porosity and density, and the resistance 
to corrosion in any liquid medium [58,59].

Furthermore, the RH-derived monolithic and Ni-reinforced porous 
ceramics showed greater corrosion resistance in strong acid as compared 
to the strong alkali solution, although their SCB counterparts showed a 
divergent pattern. Clearly, the findings of Nickel and Seipel [60] provide 
additional evidence that the presence of glassy grain boundaries domi-
nated by secondary silica phase increased the susceptibility of the 
monolithic RH-derived porous ceramics in hot alkali media. The 
comparatively minimal % mass loss reported for the composite equiv-
alents, in contrast to the corresponding monolithic sample prepared 
with 10 wt% PFA, is best explained by: (i) the viscosity of the liquid 
medium, which increased due to the Ni3Al2SiO8 spinelloid’s capacity to 
accommodate cations (Na+) from the corrosion medium on its cation 
sites (Al3+ and Si4+) preventing the hot NaOH solution from quickly 
infiltrating the composite samples, and (ii) the Ni3Al2SiO8 spinelloid 
reaction with the NaOH medium (supported by Eq. (11)) stimulated the 
generation of sodium silicate (Na2SiO3) layer, serving as a hindrance to 
the samples’ continued disintegration in the medium. 

Ni3Al2SiO8 +4NaOH + H2O ↔ 3Ni(OH)2 + Na2SiO3 +2NaAlO2 (11) 

with the exception of the RH-derived composite prepared with 2 wt% Ni, 
the other composites’ flawed performance in strong acid solution 
compared to their monolithic counterpart can be attributed to inade-
quate spinel crystallization, impaired densification, and an increase in 
porosity with rising nickel content. When compared to their RH- and 
SCB-derived monolithic sample with 10 wt% PFA counterparts, the SCB- 
graded composites performed poorly in the two corrosive media. The 
continuous development of poorly crystallized NiAl2O4 spinel and the 
impact of comparatively high porosity values with increased Ni rein-
forcement were the main factors responsible for this. This is in contrast 
to how much SiO2 retention affected how well the RH-derived porous 

alumina composites performed in the corrosion media compared to their 
monolithic counterparts. The microstructures of the monolithic and Ni- 
reinforced porous alumina, both uncorroded and corroded, are shown in 
Fig. 7. Similar to their monolithic counterparts, exfoliated crystal-like 
formations developed on the surface of the composites regardless of 
the corrosion medium employed. In addition, the formation of the 
Ni3Al2SiO8 spinelloid, despite the crystal exfoliation, supported the 
microstructure stability of the samples derived from RH as opposed to 
those derived from SCB, where additional surface fissures were noticed 
due to the dissolution of the extremely susceptible NiAl2O4 spinel phase.

5. Machine learning methods

The computational analysis’ goal is to develop two models, XGBoost 
and Jaya-XGBoost that can predict the corrosion-induced mass loss of 
monolithic and nickel-reinforced porous alumina ceramics in hot 
aqueous solutions (110 ◦C) containing 10 wt% NaOH and 20 wt% 
H2SO4. The dataset utilized to create the models’ algorithms was ob-
tained from the experimental study in our earlier investigation [33,35]. 
The collection contains 112 distinct data patterns. Five input variables 
(rice husk loading, sugarcane bagasse loading, nickel reinforcement 
loading, porosity value, and corrosion duration) and two output pa-
rameters (mass loss in NaOH and mass loss in H2SO4) were derived from 
this database to build the models examined in this work. The following 
two significant experiments provided the basis for the model develop-
ment framework that was suggested. The primary objective of the first 
experiment is to evaluate the prediction performance of the XGBoost 
technique for the mass loss values of monolithic and nickel-reinforced 
porous alumina ceramics in various corrosion conditions, throughout 
the whole original dataset. The second experiment aims to assess the 
effectiveness of the suggested Jaya-XGBoost method, which uses an 
automatic data detection and model selection-oriented optimization 
process, in improving the XGBoost model’s accuracy. The MATLAB 
r2021b environment, a laptop with a 12th Gen Intel ® Core i7-1255U 
2.60 GHz CPU, and 16 GB of installed RAM were used to carry out the 
given experiments.

Fig. 7. FESEM microstructures of both (a,c) monolithic porous alumina and (b,d) Ni-reinforced porous alumina after corrosion for 8h in different media. Subscripts 1, 
2 and 3 denote un-corroded, 10 wt% NaOH and 20 wt% H2SO4, respectively.
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5.1. Predictive performance of XGBoost model

Changes in the behavior of the XGBoost machine become evident 
when adjusting various initial hyper-parameters such as the number of 
trees, learning rate, maximum depth, minimum child weight, subsample 
ratio, colsample ratio, as well as regularization factors γ, α, and λ. The 
number of trees reflects the number of regression trees in the XGBoost 
model; the learning rate determines the step size for each training round; 
maximum depth controls the tree’s complexity by defining the number 
of branches from the root to the leaf; minimum child weight influences 
the complexity of the tree, with lower values leading to potentially 
overfitted models; subsample indicates the portion of the training set 
used in each tree; colsample ratio defines the proportion of attributes 

considered in each tree; and γ, α, and λ serve as regularization factors, 
employed to counter overfitting tendencies in the model [44]. Table 1
illustrates appropriate selections of hyperparameters of the XGBoost 
decision tree model by trial and error.

Two portions of the dataset were taken: 75% (84 data patterns) were 
utilized for training, and the remaining 25% (28 data patterns) were 
utilized for testing. The variations in training, validation, and testing 
criteria are shown in Table 2. The table shows that as the number of trees 
in the XGBoost model increased, the mean values of the training, vali-
dation, and testing set R2 shifted. The R2 values for the XGBoost model’s 
training, validation, and testing sets show appreciable variations based 
on these data. Moreover, it is clear that the mean values of RMSE and 
MAE are substantially near to one another when compared to other error 
values in Table 2.

5.2. Predictive performance of Jaya-XGBoost model

This experiment was conducted to evaluate the effectiveness of the 
proposed Jaya-XGBoost model in enhancing the accuracy of the XGBoost 
model through an automatic data detection and model selection- 
oriented optimization process. It is essential to emphasize how the 
Jaya algorithm is distinct from a few well-known heuristic algorithms, 
which call for both common and unique control parameters. These al-
gorithms include the genetic algorithm (GA), differential evolution 
(DE), particle swarm optimization (PSO), and moth-flame optimization 
[61]. Nevertheless, the Jaya method just uses general control parame-
ters, such as population size and number of generations, and does not 
rely on any algorithm-specific parameters. Regarding the hybrid model 
built on XGBoost, Jaya aims to optimize parameters such as 

Table 1 
Hyper-parameters of XGBoost decision tree model.

Hyper- 
parameters

Initial 
value

[Test range] (increment size) Control 
value

Number of trees 40 [1200] (10) 120
Learning rate 0.2 [0.01, 0.05, 0.07, 0.1, 0.2, 0.5, 1, 

2, 4]
0.1

Max-depth 4 [3,10] (1) 5
Min-child- 

weight
5 [1,10] (1) 5

Subsample 0.6 [0.1, 1.0] (0.1) 0.8
Colsample- 

bytree
0.6 [0.1, 1.0] (0.1) 0.5

γ 0 [0, 0.6] (0.1) 0
λ 1 [0, 0.05, 0.1, 1, 2, 3, 4] 1
ᵃ 0 [0, 0.05, 0.1, 1, 2, 3, 4] 0

Table 2 
Performance of XGBoost under different numbers of trees.

Tree-number Training Validation Testing

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

20 0.9048 0.1069 0.0763 0.8047 0.1243 0.1141 0.8065 0.1369 0.1040
30 0.9074 0.1016 0.0600 0.6412 0.1787 0.1267 0.9012 0.0438 0.0355
50 0.9760 0.0188 0.0143 0.9721 0.0216 0.0176 0.9664 0.0089 0.0085
60 0.9559 0.0920 0.0401 0.9663 0.0229 0.0211 0.9013 0.0786 0.0495
70 0.8684 0.0934 0.0719 0.9486 0.1312 0.1089 0.6825 0.1113 0.0884
80 0.9202 0.0574 0.0283 0.9726 0.0430 0.0356 0.9225 0.0243 0.0137
100 0.8943 0.0901 0.0652 0.8567 0.0843 0.0645 0.8903 0.1609 0.1180
110 0.9442 0.0785 0.0573 0.9166 0.0531 0.0368 0.9153 0.0883 0.0685
120 0.9757 0.0356 0.0294 0.9674 0.0421 0.0263 0.9445 0.0466 0.0353
140 0.9679 0.0464 0.0343 0.9284 0.0849 0.0637 0.9334 0.0260 0.0214
160 0.9312 0.0271 0.0199 0.7347 0.0907 0.0576 0.9258 0.1943 0.1371
170 0.9274 0.0544 0.0378 0.9234 0.0688 0.0453 0.9771 0.0427 0.0357
180 0.9662 0.0662 0.0411 0.8952 0.0271 0.0165 0.9216 0.0300 0.0220
200 0.8811 0.1034 0.0858 0.9329 0.0671 0.0458 0.9413 0.0917 0.0739

Table 3 
Performance of Jaya-XGBoost based on parameter optimizations.

Iteration Fitness value Training Testing Tree-number

R2 RMSE MAE R2 RMSE MAE

1 0.9369 0.9157 0.0982 0.0701 0.8163 0.1257 0.0955 20
2 0.9434 0.9185 0.0933 0.0551 0.9122 0.0402 0.0326 9
3 0.9506 0.9766 0.0173 0.0132 0.9753 0.00821 0.0078 18
4 0.9469 0.967 0.0845 0.0369 0.9123 0.0721 0.0454 14
5 0.9367 0.8789 0.0858 0.0661 0.6908 0.1022 0.0812 11
6 0.9301 0.931 0.0528 0.0261 0.9328 0.0223 0.0126 22
7 0.9209 0.9052 0.0827 0.0599 0.9010 0.1478 0.1084 9
8 0.9538 0.9556 0.0721 0.0527 0.9265 0.0811 0.0635 12
9 0.9643 0.9774 0.0327 0.0269 0.9559 0.0428 0.0324 15
10 0.9725 0.9765 0.0426 0.0314 0.9448 0.0238 0.0196 17
11 0.9571 0.9424 0.0249 0.0182 0.9369 0.1785 0.1260 10
12 0.9350 0.9386 0.0501 0.0347 0.9754 0.0392 0.0329 18
13 0.9692 0.9725 0.0609 0.0378 0.9327 0.0275 0.0202 28
14 0.9270 0.8918 0.0950 0.0789 0.9528 0.0842 0.0679 24
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"num_boosting_rounds," "learning_rate," and "reg_lambda" in XGBoost. In 
the process of optimization, the ranges of parameters are specified as 
(1–200), (0.0001–1), and (0.001–10), respectively. Several experiments 
revealed that when the number of iterations increased, too many swarms 
would cause computation time to increase, while too few swarms would 
cause fitness values in each optimization step to fluctuate. Consequently, 
after ten independent runs, the number of iterations and population size 
were changed to 14 and 50, respectively. The optimal parameters were 
determined as follows: “num boosting round” = 128; “learning rate” =

0.4874; and “reg lambda” = 0.0768.
The optimal tree-number and selected data for Jaya-XGBoost are 

shown in Table 3. The best results at a specific iteration and the corre-
sponding tree-number are highlighted in bold as the best solution.

5.3. Performance comparison

The comparative plots illustrating the experimental and predicted 
results using the Jaya-XGBoost and XGBoost for mass loss in NaOH and 
mass loss in H2SO4 are depicted in Figs. 8 and 9. Panels a and c represent 
the results for the training set, while panels b and d represent the results 
for the testing set. Clearly visible from the figures, most of the data 
points in the training set for both models are distributed on both sides of 
the fitted line, as indicated by R2 values. This suggests that both models 
exhibit a strong fitting ability. For both the training and testing datasets, 
the researched Jaya-XGBoost model outperforms XGBoost in terms of R2 

fitting ability. Notable is also the fact that the training dataset has a 
substantially higher R2 than the testing dataset.

Analyzing the performance metrics of each model reveals that the 
Jaya-XGBoost model outperformed the conventional XGBoost model. 

For the prediction of mass loss in NaOH, the XGBoost model achieved R2 

and RMSE values of 0.9932 and 0.0242, respectively, while the Jaya- 
XGBoost model generated 0.9984 and 0.0232, respectively. In a 
similar way, the XGBoost model achieved R2 and RMSE values of 0.9773 
and 0.0287, accordingly, for the prediction of mass loss in H2SO4, 
whereas the Jaya-XGBoost model produced values of 0.9824 and 
0.0273, respectively. It is commonly acknowledged that a low RMSE 
value indicates a high success rate for the method [35]. The RMSE value 
signifies the average difference between the predicted value and the real 
value, and a smaller RMSE value corresponds to higher model accuracy. 
Therefore, the superior prediction capacity demonstrated by the 
Jaya-XGBoost model (Fig. 10) is attributed to the incorporation of the 
Jaya optimizer algorithm.

The proposed Jaya-XGBoost performance surpasses those of Wang 
et al. [62] and Abdullah et al. [63] on the prediction of corrosion sus-
ceptibility of high strength concrete subjected to different chemical at-
tacks, where R2 of 0.87 and 0.9379, respectively were obtained for the 
single XGBoost models. The proposed Jaya-XGBoost model has proven 
to be able to accurately predict the behavior of corrosion resistance in 
both monolithic and nickel-reinforced porous alumina ceramics, as well 
as effectively control the material selection process. This is supported by 
the figures, which demonstrate a strong fit between the predicted and 
experimental results. Thus, it can be concluded that by employing 
available data for the prediction of the corrosion resistance behavior of 
the materials, the models developed in this work, especially the 
Jaya-XGBoost algorithm, can have benefits in terms of cutting down on 
the time and cost of experimental testing of porous ceramic materials 
under various harsh chemical environments.

Fig. 8. Comparison of predicted and experimental (True) values for mass loss in NaOH using XGBoost and Jaya- XGBoost models.
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6. Conclusions

A rapidly developing technique to reduce the time required for 
reliability testing of new and advanced materials is machine learning, 
which is based on statistics and large data. Large-scale experimentation 
to determine compatibility in a variety of industrial processes requiring 
harsh service conditions has been the main focus of the majority of prior 
investigations on the corrosion behavior of porous ceramics. In this 
study, however, we employed a hybridized machine learning prediction 

model called Jaya-XGBoost to predict the corrosion-induced mass loss of 
monolithic and nickel-reinforced porous alumina ceramics. Empirical 
findings showed that the emergence of a very stable Ni3Al2SiO8 spine-
lloid phase in the RH-graded composites was responsible for improving 
their chemical stability in both the 10 wt% NaOH and 20 wt% H2SO4 
corrosive environments compared to their monolithic and correspond-
ing SCB-graded counterparts. Whereas, an abysmal performance was 
demonstrated by the SCB-graded composites in both corrosive media in 
contrast to their plain counterpart due to the existence of poorly 

Fig. 9. Comparison of predicted and experimental (True) values for mass loss in H2SO4 using XGBoost and Jaya- XGBoost models.

Fig. 10. Comparison of data for mass loss in NaOH and mass loss in H2SO4 using XGBoost and the Jaya-XGBoost models.
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crystallized NiAl2O4 spinel. Thus, the kind of agro-waste PFA used 
provides insights into the ideal operating conditions that can provide the 
best possible performance and chemical stability for the developed 
porous ceramics. These specimens’ corrosion test results were gathered 
and fitted into the machine learning algorithms of XGBoost and Jaya- 
XGBoost. Based on statistical accuracy criteria, the Jaya-XGBoost 
model outperformed the normal XGBoost model in predicting the 
corrosion-induced mass loss of both the monolithic and nickel- 
reinforced porous alumina. For the prediction of mass loss in NaOH, 
the XGBoost model achieved R2 and RMSE values of 0.9932 and 0.0242, 
respectively, whereas the Jaya-XGBoost model achieved values of 
0.9984 and 0.0232, respectively. Similarly, for the prediction of mass 
loss in H2SO4, the XGBoost model yielded R2 and RMSE values of 0.9773 
and 0.0287, respectively, while the Jaya-XGBoost model provided 
values of 0.9824 and 0.0273, respectively. The proposed model can be 
used as a decision support system by design engineers working in the 
field of macroporous ceramics to assess the corrosion resistance capa-
bilities of novel porous ceramic systems formed using PFAs from agri-
cultural waste.
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[36] Karakoç A, Keleş Ö. A predictive failure framework for brittle porous materials via 
machine learning and geometric matching methods. J Mater Sci 2020;55(11): 
4734–47. https://doi.org/10.1007/s10853-019-04339-1.

[37] Swaminathan S, Shah T, Sirkeci-Mergen B, Keles O. Machine learning models for 
predicting fracture strength of porous ceramics and glasses. In: Proceedings of the 
2018 international conference on data science; 2018.

[38] Nakai ME, Junior HG, Spadoto M. ANFIS applied to the prediction of surface 
roughness in grinding of advanced ceramics. In: Iasted conf. Artificial intelligence 
soft computing. vol. 30. Greece: Crete; 2011. p. 329–34.

[39] Mandal S, Pramanick A, Chakraborty S, Dey PP. ANFIS based model to forecast the 
Wire-EDM parameters for machining an Ultra High Temperature Ceramic 
composite. IOP Conf Ser Mater Sci Eng 2018;377(1):012088.

[40] Jiang D, Wang Z, Zhang J, Jiang D, Liu F, Hao L. Predictive modelling for contact 
angle of liquid metals and oxide ceramics by comparing Gaussian process 
regression with other machine learning methods. Ceram Int 2022;48(1):665–73. 
https://doi.org/10.1016/j.ceramint.2021.09.146.

[41] Kabiru OA, Owolabi TO, Ssennoga T, Olatunji SO. Performance comparison of SVM 
and ANN in predicting compressive strength of concrete. IOSR J Comput Eng 2014; 
16(5):88–94.

[42] Abd AM, Abd SM. Modelling the strength of lightweight foamed concrete using 
support vector machine (SVM). Case Stud Constr Mater 2017;6:8–15. https://doi. 
org/10.1016/j.cscm.2016.11.002.

[43] Friedman JH. Greedy function approximation: a gradient boosting machine. Ann 
Stat 2001:1189–232. https://www.jstor.org/stable/2699986.

[44] Chen T, Guestrin C. Xgboost: a scalable tree boosting system. InProceedings of the 
22nd acm sigkdd international conference on knowledge discovery and data 
mining. 2016. p. 785–94. https://doi.org/10.1145/2939672.2939785.
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