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Abstract
This article presents two variants of memoryless quasi-Newton methods with
backtracking line search for large-scale unconstrained minimization. These updating
methods are derived by means of a least-change updating strategy subjected to
some weaker form of secant relation obtained by projecting the secant equation onto
the search direction. In such a setting, the search direction can be computed without
the need of calculation and storage of matrices. We establish the convergence
properties for these methods, and their performance is tested on a large set of test
functions by comparing with standard methods of similar computational cost and
storage requirement. Our numerical results indicate that significant improvement has
been achieved with respect to iteration counts and number of function evaluations.

Keywords: Large-scale optimization; Quasi-Newton-type methods; Weak secant
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1 Introduction
We introduce two variants of memoryless quasi-Newton methods for the unconstrained
optimization problem

min f (x), (1.1)

where f is a continuously twice differentiable function of n variables. Like most quasi-
Newton methods, these variants undergo iterative algorithm in the following form:

xk+1 = xk + αkdk , k = 0, 1, 2, . . . , (1.2)

and the search direction dk used in quasi-Newton-type methods is generally as follows:

dk = –Hkgk ,

where gk is the gradient of f at xk , the kth approximation to the solution, Hk is some ap-
proximation to the inverse Hessian, [G(xk)]–1 and the scalar αk is a step length parameter,
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which is obtained through an exact line search [6] or an inexact line search. The inexact
line search strategy ensures that the step length αk gives a sufficient decrease in the ob-
jective function f along the descent direction dk , if the following inequality holds (Armijo
[4]):

f (xk + αkdk) ≤ f (xk) + c1αkdT
k gk , (1.3)

for some constant c1 ∈ (0, 1). The details of this line search algorithm will be given in
Sect. 3. Traditionally, the Hk in quasi-Newton methods obeys the secant equation

Hk+1yk = sk , (1.4)

where yk = gk+1 – gk and sk = xk+1 – xk . The general idea of quasi-Newton-type methods is
finding the best approximation to the Hessian or its inverse, without explicitly evaluating
it at every iteration. Such updating formulae can be generated via variational formulation
as follows:

min‖Hk+1 – Hk‖

subject to

Hk+1yk = sk ,

Hk+1 = HT
k+1,

where ‖·‖ is some matrix norm. The first constraint is included to preserve the symmetry
of H . A different setup of the minimization problem above will generate a different solu-
tion, and hence different quasi-Newton updating formulae (Greenstadt [11], Nocedal and
Wright [19]). On the other hand, Dennis and Wolkowicz [9] introduced a weaker form of
the secant equation, given by

yT
k Hk+1yk = yT

k sk , (1.5)

in the derivation of some symmetric rank-one methods. One can see that (1.5) is the scalar-
projection of the secant Eq. (1.4) along yk . The motivation is that, by relaxing the secant
relation, it encourages a higher degree of freedom in incorporating more desirable prop-
erties (such as positive-definiteness of the updating matrix) into the updating formula.
Motivated by the approach of Dennis and Wolkowicz [9] (see also Nazareth [15], Sim et
al. [19]), the updating formulae proposed in this article are constructed based on the least-
change updating strategy via the nonsecant Eq. (1.4) above, as well as a variant of it. The
other variant is obtained by performing the same scalar-projection, but along a different
vector, namely sk :

sT
k Hk+1yk = sT

k sk , (1.6)

where sk = αkdk also represents the search direction. We shall give the full derivations of
these memoryless formulae based on the weak secant equations in the following section.
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The rest of this paper is organized as follows: Sect. 2 presents two types of memoryless
updating methods via the least-change updating strategy. Section 3 discusses the conver-
gence properties of these new algorithms, and numerical results are reported in Sect. 4.

2 Weak secant updates via the least-change updating strategy
Suppose that a new approximate inverse Hessian is updated from the previous approxi-
mation as

Hk+1 = Hk + Ek ,

where Ek is the correction between two successive approximations of the inverse Hessian
H . There are choices to achieve the “best” correction in some sense, one of them is look-
ing for the smallest correction Ek , preventing the elements of H from getting too large
and causing undesirable numerical instability. One could achieve this by minimizing the
correction with respect to some norm. By taking the Frobenius norm, we have

‖Ek‖2
F = tr(EkET

k ), (2.1)

where tr represents the trace of a matrix. The minimization of the norm (2.1) can be writ-
ten as the following variational problem:

min
1
2

tr(EkET
k ) (2.2)

subject to (1.5) with (2.1) and the symmetry condition,

Ek = ET
k . (2.3)

In a memoryless setting, the previous approximation Hk is not stored in each iteration.
Instead, the update is restarted, i.e., Hk is replaced by a multiple of the identity matrix, θkI ,
where the scalar θk can be further chosen to incorporate Hk+1 with a desirable property
such as hereditary positive-definiteness. This implies that we restrict our update to the
following form:

Hk+1 = θkI + Ek . (2.4)

In doing so, one can avoid the needs of storing matrices throughout the iterations, and
thus renders a method with only O(n) storage requirement. For the rest of this derivation,
we shall ignore the subscript k. We solve the constrained minimization problem above
using Lagrange multipliers, see Greenstadt [11]. The Lagrangian function for (2.2) subject
to (1.5) and (2.3), where Hk+1 is defined by (2.4), can be written as

L (E,ω,λ) =
1
2

tr
(
EET)

+ ω
(
θyT y + yT Ey – yT s

)
+ λT (ET – E)λ, (2.5)

where ω and λ are the Lagrange multipliers for (1.5) and (2.3), respectively.
It can be observed that the last term of L (E, ω, λ) is expressible as

λT (
ET – E

)
λ = λT ETλ – λT Eλ = tr(ETλλT ) – tr(EλλT ). (2.6)
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Recall that

∂

∂E
[
tr

(
EλλT)]

= λλT (2.7)

and

∂

∂E
[
tr

(
ETλλT)]

= λλT . (2.8)

Hence, differentiating (2.5) we obtain

∂L
∂E

= E + ωyyT + λλT – λλT . (2.9)

Setting the partial derivative to zero yields

E = –ωyyT . (2.10)

Note that (2.10) satisfies the symmetry condition (2.4). Substituting Eq. (2.10) into the
weak secant relation (1.5) gives

ω =
θyT y – yT s

(yT y)2 . (2.11)

Replacing ω in (2.10) with (2.11), we obtain the formula for E as follows:

E =
yT s – θyT y

(yT y)2 yyT .

Thus, the approximate inverse Hessian is updated as follows:

Hk+1 = θkI +
yT

k sk – θkyT
k yk

(yT
k yk)2 ykyT

k , (2.12)

where the choice of θk will be explained later.
Alternatively, if the weak secant Eq. (1.6) is considered, we can solve the constrained

minimization problem in a similar fashion and arrive at the following result:

E =
sT s – θsT y

sT syT y + (sT y)2

(
syT + ysT)

,

Hence, the second updating formula for the inverse Hessian approximation is as follows:

Hk+1 = θkI +
sT

k sk – θsT
k yk

sT
k skyT

k yk +
(
sT

k yk
)2

(
skyT

k + yksT
k
)

. (2.13)

It is worth mentioning that, using different norms, such as the Frobenius norm with
weighting matrix W , namely ‖E‖2

W = tr(WEWET ),
may lead to distinct updates and convergence behaviors, potentially improving the sta-

bility or efficiency in certain problems. This approach could open up new possibilities for
designing memoryless updates tailored to specific applications or problem structures.
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Note that none of the updating formulae (2.12) and (2.13) can preserve positive-
definiteness, but the property of hereditary positive-definiteness can be incorporated into
the updates with a suitable choice of θk . We shall again omit the subscript k for simplic-
ity and denote Hk+1 = H+ for the following derivation process for θk . To ensure positive-
definiteness for H+, one possible way is to have θ satisfying yT s – θyT y ≥ 0, i.e.,

θ ≤ yT s
yT y

. (2.14)

If yT s
yT y ≥ 1, one can simply take θ = 1. Otherwise, if yT s

yT y < 1, there are many possible
choices for θ that can satisfy (2.14). To choose the “best” θ in some sense, one could con-
sider a value that can improve the overall condition number of H+. In general, having a
well-conditioned updating matrix will yield a more numerically stable updating scheme,
and thus improve convergence speed numerically. It can be observed that the trace of
(2.12) can be written as

tr (H+) = tr (θ I) + tr
(
γ yyT)

= nθ + γ yT y,

where γ = yT s–θyT y
(yT y)2 and tr

(
yyT)

= yT y. Since y ∈ Rn, we can assume that there exist n – 1
vectors pi, i = 1, 2, . . . , n – 1, that are orthogonal to vector y, and this implies that the set
{

y, p1, . . . , pn–1
}

forms a basis for Rn. By multiplying these vectors with (2.12), we have
the following set of equations:

H+pi = θpi, for i = 1, 2, . . . , n – 1.

This suggests that H+has (n – 1) repeated eigenvalues, namely θ and the remaining eigen-
value denoted by ρ . Since the trace is the sum of all eigenvalues, it leads to

tr (H+) = nθ + γ yT y = (n – 1) θ + ρ

and yields

ρ =
yT s
yT y

. (2.15)

Since we require yT s – θyT y ≥ 0, the latter implies that

θ ≤ yT s
yT y

= ρ.

Then, ρ would be the largest eigenvalue for matrix H+. Minimizing the condition num-
ber with respect to θ and subject to the positive definiteness condition, we arrive at the
following minimization problem:

min
θ

ρ

θ
(2.16)

subject to

yT s – θyT y ≥ 0, (2.17)
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θ > 0. (2.18)

The associated Lagrangian function for (2.16) to (2.18) is then given as follows:

L (θ , ξ) =
ρ

θ
+ ξ (θyT y – yT s), θ > 0, (2.19)

where ξ is the Lagrange multiplier associated with (2.17). Differentiating (2.19) with re-
spect to θ and using the Karush–Kuhn–Tucker (KKT) (see [5, 12, 16]) conditions, we ob-
tain the following:

∂L (θ , ξ)

∂θ
= –

ρ

θ2 + ξyT y = 0, (2.20)

ξ
(
θyT y – yT s

)
= 0, (2.21)

θyT y – yT s ≤ 0, (2.22)

ξ ≥ 0. (2.23)

If we consider ξ = 0, then (2.20) becomes

ρ

θ2 = 0,

indicating that ρ = yT s
yT y = 0, which is not admissible as yT s �= 0. Therefore, ξ �= 0 and (2.21)

gives

θyT y – yT s = 0 ⇒ θ =
yT s
yT y

, (2.24)

where it also satisfies the inequality (2.14). Combining with the case when yT s
yT y ≥ 1, we can

choose

θk = min

(
1,

yT
k sk

yT
k yk

)
. (2.25)

Similarly, suppose we want to preserve the positive-definiteness of the second updating
formula (2.13), that is, sT s – θsT y ≥ 0, then we need the following condition:

θ ≤ sT s
sT y

. (2.26)

Suppose that s and y are not parallel. Then we can assume that there exist n – 2 vectors
pi, i = 1, 2, . . . , n – 2, that are orthogonal to the subspace spanned by s and y. By multiplying
these vectors with (2.13), we have

H+pi = θpi, for i = 1, 2, . . . , n – 2.

This implies that the H+ given by (2.13) has (n – 2) repeated eigenvalues θ , and the re-
maining two eigenvalues are denoted by ρ1 and ρ2. In a similar manner, we obtain

tr (H+) = nθ + 2γ sT y = (n – 2) θ + ρ1 + ρ2,
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where γ = sT s–θsT y
sT syT y+(sT y)2 , and it follows that ρ1 + ρ2 = 2(θ + γ sT y). For γ sT y > 0, it implies

that either ρ1 > θ or ρ2 > θ (or both), and thus one of them would be the largest eigenvalue
of H+. Without loss of generality, let us assume ρ1 is the largest eigenvalue of H+ given by
(2.13). To obtain θ such that the condition number of H+ is sufficiently close to 1 while
maintaining positive-definiteness, we shall consider the following minimization problem:

min
θ

ρ1

θ
(2.27)

subject to

sT s – θsT y ≥ 0, (2.28)

θ > 0. (2.29)

Again the KKT conditions will lead to θ = sT s
sT y and, together with the case sT s

sT y ≥ 1 where
we shall take θ = 1, we have

θk = min

(
1,

sT
k sk

sT
k yk

)
. (2.30)

Finally, our two updates Hk+1 with their corresponding θk are given respectively by

HQN1
k+1 = θkI +

yT
k sk – θkyT

k yk

(yT
k yk)2 ykyT

k , where θk = min

(
1,

yT
k sk

yT
k yk

)
, (2.31)

and

HQN2
k+1 = θkI +

sT
k sk – θksT

k yk

sT
k skyT

k yk + (sT
k yk)2

(
skyT

k + yksT
k
)

, where θk = min

(
1,

sT
k sk

sT
k yk

)
. (2.32)

To obtain the search direction, dk+1 = –Hk+1gk+1, for k ≥ 0, it is not necessary to compute
and store Hk+1 explicitly. Instead, we can obtain the product Hk+1gk+1 directly as follows:

dQN1
k+1 = –HQN1

k+1 gk+1 = –θkgk+1 –
(

yT
k sk – θkyT

k yk

(yT
k yk)2 yT

k gk+1

)
yk (2.33)

and

dQN2
k+1 = –HQN2

k+1 gk+1 = –θkgk+1 –
sT

k sk – θksT
k yk

sT
k skyT

k yk +
(
sT

k yk
)2

(
skyT

k gk+1 + yksT
k gk+1

)
. (2.34)

The first search direction (2.33) involves a linear combination of two vectors, namely gk+1

and yk , while the second one (2.34) is denoted by a linear combination of three vectors,
i.e., gk+1, sk , and yk . Both formulae require only 3n storage units and a couple of scalar-
products to compute. We can now present the full algorithms for the memoryless formulae
proposed, incorporating a backtracking line search condition to preserve monotonicity in
function values. By a backtracking line search, we mean an algorithm of the following form
for computing the step length α:
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Algorithm 2.1 (Backtracking line search with Armijo [4] condition)
Step 1. Set α = 1.
Step 2. Test the Armijo condition (1.3), where c1 ∈ (0, 1).

If the condition (1.3) is not satisfied, choose a new α := τα where 0 < τ < 1 and go to step
2. Else if the condition (1.3) is satisfied, set αk = α.

Using the updating formulae (2.31) and (2.32), along with the backtracking line search
above, the full algorithms are as follows:

QNWS1 algorithm
Step 1. Given an initial guess x0, set a positive definite matrix H0 = I . Set k = 0 and

d0 = –g0, then compute the norm of the gradient,
∥∥gk

∥∥.
Step 2. If

∥
∥gk

∥
∥ ≤ ε or k ≥ 1000 then stop. Otherwise, perform Algorithm 2.1 to choose a

suitable α.
Step 3. Compute xk+1 = xk + αkdk and gk+1, where αk is the latest step length obtained in

step 2.
Step 4. Compute sk = xk+1 – xk and yk = gk+1 – gk , respectively. Then, update dk+1 by

(2.33).
Step 6. Set k := k + 1 and return to step 2.

QNWS2 algorithm Similar to QNWS1 algorithm except that the search direction dk in
step 4 is computed by (2.34).

Observe that due to these modifications, these algorithms involve only vectors. As a
result, the storage and number of evaluations at each iteration are greatly reduced. We
shall study the convergence properties of these algorithms for convex problems in the
next section.

3 Convergence analysis
To investigate the convergence properties, we first present the following assumption for
the objective function f . The Hessian matrix of f will be denoted by G. The starting point
for the algorithm is x0, and we define the level set D = {x ∈ Rn | f (x) ≤ f (x0)}.

Assumption 3.1
1. The objective function f is twice continuously differentiable and the level set D is

convex.
2. The gradient of f is Lipschitz continuous, i.e., there exists a positive constant M > 0

such that

∥
∥g (x) – g(y)

∥
∥ ≤ M

∥
∥x – y

∥
∥ ,∀x, y ∈ D. (3.1)

3. The Hessian matrix G is positive definite and their eigenvalues are bounded away
from 0, i.e., there exists a positive constant m > 0 such that

zT G (x) z ≥ m‖z‖2 (3.2)

for all x, z ∈ D.
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Note that the assumptions above imply that f has at least one (local) minimizer x∗ in D.
If we define the average Hessian of the function along sk as

Gk(x) =
∫ 1

0
G (xk + τ sk)dτ ,

then, by the mean value theorem, we have

yk = Gksk . (3.3)

Premultiplying (3.3) with vector sk and using (3.2), one can obtain

sT
k yk ≥ m‖sk‖2 .

Moreover, using Assumption 3.1.2, we have

sT
k yk = sT

k
(
gk+1 – gk

) ≤ ‖sk‖
∥∥gk+1 – gk

∥∥ ≤ M ‖sk‖2 ,

and, together with the lower bound, get

m‖sk‖2 ≤ sT
k yk ≤ M ‖sk‖2 . (3.4)

On the other hand, condition (3.2) and the inverse of (3.3) imply

yT
k sk = yT

k G–1
k yk ≤ 1

m
∥∥y

∥∥2 ,

and from (3.1)– (3.2), we have yT
k sk ≥ m‖sk‖2 ≥ m

M

∥
∥yk

∥
∥2. Hence, we can finally obtain

m
M

∥∥yk
∥∥2 ≤ yT

k sk ≤ 1
m

∥∥yk
∥∥2 . (3.5)

To proceed further, we introduce the following lemmas that relate backtracking line
search with the convergence to a minimizer x∗.

Lemma 3.1 Under Assumption 3.1, there exist positive constant η1 and η2 such that, for
any xk and dk with gT

k dk < 0, the steplength αk produced by backtracking line search with
Armijo condition (1.3) will satisfy either

f (xk + αkdk) – f (xk) ≤ –η1
(gT

k dk)2

‖dk‖2 (3.6)

or

f (xk + αkdk) – f (xk) ≤ η2gT
k dk , (3.7)

where η1 and η2 are positive constants.

Proof See Byrd and Nocedal [5]. �
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To establish the convergence of our proposed methods, we present the following result
where the boundedness and conditions from Assumption 3.1 and Lemma 3.1, respectively,
will guarantee the necessary condition for optimality.

Lemma 3.2 Suppose that f (x) satisfies Assumption 3.1. Consider a line search method,
namely

xk+1 = xk + αkdk ,

where αk is obtained by the backtracking line search with Armijo condition and dk = –Hkgk ,
where Hk is chosen such that

c1 ‖z‖2 ≤ zT Hkz ≤ c2 ‖z‖2 , (3.8)

for any nonzero vector z ∈ Rn and some positive constants c1 and c2. Then,

lim
k→∞

∥∥gk
∥∥ = 0. (3.9)

Proof If

dk = –Hkgk , (3.10)

then the first condition (3.6) becomes

f (xk + αkdk) – f (xk) ≤ –η1

(
gT

k Hkgk
)2

gT
k H2

k gk
. (3.11)

Observe that when z = gk , (3.8) becomes

c1
∥∥gk

∥∥2 ≤ gT
k Hkgk ≤ c2

∥∥gk
∥∥2 .

On the other hand, from (3.8) we have

c2
1 ‖z‖2 ≤ zT H2

k z ≤ c2
2 ‖z‖2 ,

c2
1
∥∥gk

∥∥2 ≤ gT
k H2

k gk ≤ c2
2
∥∥gk

∥∥2 .
(3.12)

Then, (3.11) becomes

f (xk + αkdk) – f (xk) ≤ –η1
c2

1
∥
∥gk

∥
∥4

c2
2
∥∥gk

∥∥2 = –
η1c2

1
c2

2

∥
∥gk

∥
∥2 . (3.13)

Since the Armijo condition implies that f (xk+1) < f (xk) and f is bounded below, taking
the limit k → ∞ on both sides of (3.13) gives

0 = lim
k→∞

f (xk + αkdk) – f (xk) ≤ –
η1c2

1
c2

2
lim

k→∞
∥∥gk

∥∥2 .
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As η1, c2
1, and c2

2 are positive constants, the right-hand limit becomes

lim
k→∞

∥∥gk
∥∥ = 0.

Similarly, using (3.10) and (3.8), the second condition (3.7) can be rewritten as

f (xk + αkdk) – f (xk) ≤ –η2gT
k Hkgk ≤ –η2c1

∥∥gk
∥∥2 . (3.14)

Taking the limit as k → ∞ on both sides, with f being bounded below and both η2, c1 >
0, one obtains

0 = lim
k→∞

f (xk + αkdk) – f (xk) ≤ –η2c1 lim
k→∞

∥∥gk
∥∥2 ,

which also implies that

lim
k→∞

∥
∥gk

∥
∥ = 0.

�

Using both Assumption 3.1 and Lemma 3.2, we can now show the convergence for the
proposed algorithms.

Theorem 3.1 Let x0 be the starting point for which f satisfies Assumption 3.1. Suppose
that {xk+1} is generated by (1.2), with the search direction dk = –Hkgk , under the line search
conditions (3.6) and (3.7) for all k ≥ 0. Then for H0 = I , the memoryless QNWS1 algorithm
generates iterations xk which converge to the minimizer x∗.

Proof Suppose we update the matrix at every iteration according to (2.32), then for a
nonzero vector z ∈ Rn,

zT H0z = ‖z‖2 , (3.15)

since H0 = I . We shall show that Hk+1 along any vector z is bounded both below and above.
For any k ≥ 0, we have two possible updates as in (2.31), which are

Case I: If Hk+1 = yT
k sk

yT
k yk

I , when θk = yT
k sk

yT
k yk

, then

zT Hk+1z =
yT

k sk

yT
k yk

‖z‖2 =
yT

k sk
∥∥yk

∥∥2 ‖z‖2 , (3.16)

which, using (3.5), becomes

m
M

‖z‖2 ≤ zT Hk+1z ≤ 1
m

‖z‖2 , (3.17)

clearly showing that the sequence is bounded.
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Case II: If Hk+1 = I + yT
k sk –yT

k yk
(yT

k yk )2 ykyT
k , when θk = 1, then

zT Hk+1z = ‖z‖2 +
yT

k sk – yT
k yk

(
yT

k yk
)2

(
zT yk

)2 , (3.18)

which is positive as yT
k sk – yT

k yk > 0. A lower bound of (3.18) can be obtained by simply

removing the fraction term yT
k sk –yT

k yk
(

yT
k yk

)2

(
zT yk

)2, that is,

zT Hk+1z ≥ ‖z‖2 . (3.19)

For the upper bound, using the Cauchy–Schwarz inequality in (3.18), we have (zT yk)2 ≤
‖z‖2 ∥

∥yk
∥
∥2 which, with (3.5), gives an upper bound as follows:

zT Hk+1z = ‖z‖2 +
yT

k sk – yT
k yk

(
yT

k yk
)2

(
zT yk

)2

≤ ‖z‖2 +
1
m

∥
∥yk

∥
∥2 –

∥
∥yk

∥
∥2

∥∥yk
∥∥4 ‖z‖2 ∥

∥yk
∥
∥2

=
(

1 +
1
m

– 1
)

‖z‖2

=
1
m

‖z‖2 (3.20)

since yT
k yk =

∥∥yk
∥∥2 and

(
yT

k yk
)2 =

∥∥yk
∥∥4. Combining (3.15), (3.17), (3.19), and (3.20), we can

generalize the bounds as follows:

β1 ‖z‖2 ≤ zT Hk+1z ≤ β2 ‖z‖2 , (3.21)

where β1 = min
{ m

M , 1
}

and β2 = max
{ 1

m , 1
}

. The lower and upper bounds from (3.21), to-
gether with Lemma 3.2, will imply that limk→∞

∥∥gk
∥∥ = 0. This indicates that the iterations

from memoryless QNWS1 algorithm will converge to the minimizer, and hence the proof
is completed. �

Theorem 3.2 Let x0 be the starting point for which f satisfies Assumption 3.1. Suppose
that {xk+1} is generated by (1.2), with the search direction dk = –Hkgk , under the line search
conditions (3.6) and (3.7) for all k ≥ 0. Then for H0 = I , the memoryless QNWS2 algorithm
generates iterations xk which converge to the minimizer x∗.

Proof The proof is generally the same as that of Theorem 3.1, except that now we use
updates from (2.32). At k = 0, for a nonzero vector z ∈ Rn, we have

zT H0z = ‖z‖2 (3.22)

as H0 = I . Once again, for any k ≥ 0, it can be shown that zT Hk+1z is bounded in both cases
below.

Case I: Hk+1 = sT
k sk

sT
k yk

I , when θk = sT
k sk

sT
k yk

.
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For any k ≥ 0, we have

zT Hk+1z =
sT

k sk

sT
k yk

‖z‖2 =
‖sk‖2

sT
k yk

‖z‖2 . (3.23)

Using (3.4), the latter becomes

1
M

‖z‖2 ≤ zT Hk+1z ≤ 1
m

‖z‖2 , (3.24)

which is bounded below and above.
Case II: Hk+1 = I + sT

k sk –sT
k yk

sT
k skyT

k yk +(sT
k yk )2

(
skyT

k + yksT
k
)
, when θk = 1. Now

zT Hk+1z = ‖z‖2 +
sT

k sk – sT
k yk

sT
k skyT

k yk + (sT
k yk)2

(
zT skyT

k z + zT yksT
k z

)

= ‖z‖2 +
‖sk‖2 – sT

k yk

‖sk‖2 ∥
∥yk

∥
∥2 + (sT

k yk)2
·2zT skyT

k z (3.25)

as sT
k sk = ‖sk‖2, yT

k yk =
∥
∥yk

∥
∥2 and zT skyT

k z = zT yksT
k z. Since (3.25) is always positive, remov-

ing the fraction term from the equation will give a lower bound as follows:

zT Hk+1z ≥ ‖z‖2 . (3.26)

Consider the following for (3.2):

∥
∥yk

∥
∥2 =

∥
∥Gksk

∥
∥2 =

(
Gksk

)T (
Gksk

)
= sT

k G2
ksk . (3.27)

From (3.4), we have

m2 ‖sk‖2 ≤ ∥∥yk
∥∥2 ≤ M2 ‖sk‖2

or

m‖sk‖ ≤ ∥
∥yk

∥
∥ ≤ M ‖sk‖ . (3.28)

By using the Cauchy–Schwarz inequality in (3.25) and since zT skyT
k z ≤ ‖z‖2 ‖sk‖

∥∥yk
∥∥,

using (3.4) together with inequalities from (3.28) gives an upper bound as follows:

zT Hk+1z = ‖z‖2 +
‖sk‖2 – sT

k yk

‖sk‖2 ∥
∥yk

∥
∥2 + (sT

k yk)2
·2zT skyT

k z

≤ ‖z‖2 +
‖sk‖2 – m‖sk‖2

‖sk‖2 ∥
∥yk

∥
∥2 + m2 ‖sk‖4

·2‖z‖2 ‖sk‖
∥∥yk

∥∥

≤ ‖z‖2 +
(1 – m)‖sk‖2

m2 ‖sk‖4 + m2 ‖sk‖4 ·2M ‖z‖2 ‖sk‖2

= ‖z‖2 +
(1 – m)

m2 ·M ‖z‖2



Lim and Leong Journal of Inequalities and Applications        (2024) 2024:155 Page 14 of 17

=
(

1 +
(1 – m)M

m2

)
‖z‖2 . (3.29)

Combining the results from (3.22), (3.24), (3.26), and (3.29) gives the bounds for all k ≥ 0
as follows:

γ1 ‖z‖2 ≤ zT Hk+1z ≤ γ2 ‖z‖2 , (3.30)

where γ1 = min
{ 1

M , 1
}

and γ2 = max
{

1
m , 1 + (1–m)M

m2 , 1
}

. The lower and upper bounds
from (3.30), together with Lemma 3.2, will imply that limk→∞

∥∥gk
∥∥ = 0. This suggests that

the iterations from memoryless QNWS2 algorithm will converge to the minimizer, and
hence the proof is completed. �

4 Numerical results
This section reports the numerical performance of the proposed methods on a set of 90
test problems given in Table 1 [2, 3], with dimensions ranging from 100 to 10000. The
table below illustrates the problems selected from the respective articles.

The algorithms proposed are compared against some existing conjugate gradient meth-
ods, namely Polak–Riberie [17] and Dai–Yuan [8]. For simplicity, we shall denote the algo-
rithms under consideration as QNWS1, QNWS2, CGPR, and CGDY, respectively. These
standard CG methods would be good direct competitors to the proposed methods as they
require comparable computational cost, i.e., require O(n) storage units at each iteration.
Note that all methods incorporate the same line search strategy, Algorithm 2.1. All test
problems are tested with their standard starting points, with the following parameters:

• line search parameter, c = 0.3 (refer to (1.3));
• τ = 1

2 is used in Algorithm 2.1;
• lower bound for the step length α is 10–3;
• termination criterion:

∥∥gk
∥∥ ≤ ε, where ε = 10–4;

A run is declared as a failure when the number of iterations reaches 1000 without satis-
fying the termination criterion. A total of 1440 runs are conducted. The performances of
these methods in terms of iteration counts and function evaluations are assessed using the
cumulative distribution functions introduced by Dolan and Moré [10], known as perfor-
mance profiles. The source code is written in MATLAB R2017a and executed on a laptop
with an Intel Core i5 2.71 GHz CPU processor and 8 GB RAM memory. Figures 1 and 2
display algorithm performances in terms of number of iterations and function evaluations,
respectively, while Table 2 shows the total number function evaluations per iteration for
the tested methods.

According to Figs. 1 and 2, QNWS1 and QNWS2 clearly perform better in terms of
the number of iterations and function evaluations. For the iteration count, QNWS1 and
QNWS2 scored the best at more than 70% and 50% problems, respectively. Similarly, both
memoryless methods showed fewer function evaluations, with QNWS1 scoring the best
in over 80% instances. In general, the proposed methods often require fewer iterations
and function evaluations, and therefore less CPU time. Regarding efficiency, Table 2 sug-
gests that QNWS1 is significantly better among the tested methods as it requires less than
3 function calls per iteration. From the numerical results shown above, we observe that
QNWS1 shows promising potential, often requiring fewer iterations and function evalu-
ations to reach the optimal solution.
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Table 1 Test problems

Source: Andrei [2] Source: Andrei [3]

Generalized Rosenbrock Generalized White & Holst TR-SUMM of Quadratic
Extended White & Holst Extended Tridiagonal 2 Tridiagonal Double Borded Arrow Up
Extended Beale Perturbed Quadratic Diagonal Diagonal Double Borded Arrow Up
Extended Penalty Generalized Tridiagonal 1 Almost Perturbed Quartic
Perturbed Quadratic Extended Tridiagonal 1 DENSCHNA
Raydan 1 Generalized Tridiagonal 2 DENSCHNC
Raydan 2 Extended Quadratic Penalty QP1 GENROSNB
Diagonal 1 Extended Quadratic Penalty QP2 Tridiagonal TS1
Diagonal 2 Extended Quadratic Exponential EP1 Tridiagonal TS2
Diagonal 3 Partial Perturbed Quadratic Tridiagonal TS3
Hager Broyden Tridiagonal QP3
Extended TET Almost Perturbed Quadratic EG1
Diagonal 4 Perturbed Tridiagonal Quadratic PROsin
Diagonal 5 Staircase 1 PROD1
Extended Himmelblau Staircase 2 PRODcos
Generalized PSC1 LIARWHD PROD2
Extended PSC1 POWER DIAG-AUP1
Extended Powell ENGVAL1
Full Hessian FH1 EDENSCH
Full Hessian FH2 INDEF
Extended BD1 CUBE
Extended Maratos NONSCOMP
Extended Cliff VARDIM
Extended Wood QUARTC
Extended Hiebert Diagonal 6
Quadratic QF1 DIXON3DQ
Quadratic QF2 COSINE
FLETCBV3 SINE
FLETCHER BIGGSB1
BDQRTIC Generalized Quartic
TRIDIA Diagonal 7
ARGLINB Diagonal 8
ARWHEAD Full Hessian FH3
NONDIA Diagonal 9
NONDQUAR HIMMELBG
DQDRTIC HIMMELH
EG2

Figure 1 Performance of the methods in terms of the number of iterations
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Figure 2 Performance of the methods in terms of the number of function evaluations

Table 2 Total number of function evaluations per iteration of the methods

Methods QNWS1 QNWS2 CGDY CGPR

Average number of function evaluations per iteration 2.79 3.49 5.67 5.74

5 Conclusion
This article introduced two variants of quasi-Newton methods that are based on the least-
change updating strategy with weak secant equations. Initially, a pair of quasi-Newton
methods using the full matrix were derived; one with the weak secant equation suggested
by Dennis and Wolkowicz [9] and the other with a nonstandard weak secant Eq. (1.6).
Our interest was to derive updating formulas which had smaller computational cost and
required less storage, hence both updating formulas were modified by incorporating the
concept of a memoryless updating scheme. Numerical results obtained clearly proved that
these memoryless versions are encouraging compared to some existing methods. Over-
all, the proposed memoryless-type methods often require fewer iterations and function
evaluations to reach the solutions. Nevertheless, there is still some room for a possible de-
velopment to further enhance their performances, for instance, one could take a different
line search strategy and θ to fulfil (2.14) and (2.26).

Finally, for a future research, we recommend exploring the application of the proposed
memoryless quasi-Newton methods in solving constrained and derivative-free (see, e.g.,
[20]) optimization problems. Given the efficiency of memoryless quasi-Newton methods
in handling large-scale unconstrained optimization, extending these techniques to con-
strained scenarios (see [1, 13, 14]) may provide valuable insights and potential perfor-
mance improvements. Additionally, extending our memoryless quasi-Newton methods
under other frameworks (see, e.g., [7, 18, 19]) could broaden their applicability in various
fields such as engineering design, machine learning, and operations research.
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