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Abstract

Cervical cancer ranked fourth most common malignancy among women worldwide despite

the establishment of vaccination programmes. This systematic review evaluates the anti-

cancer properties of turmeric and ginger bioactive compounds, specifically curcumin, 6/10-

gingerol, and 6/10-shogaol, and their combination in cervical cancer through in-vitro and in-

vivo models. A comprehensive electronic search was performed using Science Direct,

PubMed, and Scopus from inception until the second week of June 2024 for studies pub-

lished in English. Only studies investigating the effects of curcumin, gingerol, shogaol, and/

or their combination in human cervical cancer cell lines and/or rodent animal models

implanted with cervical cancer xenografts were included. Altogether, 27 studies were

included in this review. The evidence gathered indicated that curcumin, 6/10-gingerol and 6-

shogaol exert their anticancer action through modulation of cell signalling pathways, includ-

ing AMPK, WNT, PI3K/AKT, and NF-κB pathway, and mediators including Bax/Bcl2, TNF-

α, EGFR, COX-2, caspases-3, -9, p53, and pRb. However, the synergistic effect of these

bioactive compounds is not known due to lack of evidence. In conclusion, curcumin, 6/10-

gingerols, and 6-shogaols hold promise as therapeutic agents for cervical cancer. Yet, fur-

ther research is essential to understand their combined efficacy, emphasising the need for

additional studies exploring the synergistic anticancer effects of these bioactive compounds.

Additional factors to explore include long-term effects and susceptibility of chemoresistant

cervical cancer cells towards curcumin, shogaols, and gingerols.
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Introduction

In spite of the vaccination programme establishment, cervical cancer remains a significant

global health issue, ranking as the fourth most common malignancy among women world-

wide, leading to a high fatality rate [1]. In 2020 alone, there were over 604 127 cases and

341,831 deaths attributed to cervical cancer [1]. The development of cervical cancer is associ-

ated with various risk factors, including high-risk human papillomavirus (HPV) infection

transmitted through sexual intercourse, age, smoking, high number of childbirths, long-term

oral contraceptive usage, and diet [2]. Among these risk factors, persistent HPV infection is

considered the primary factor for cervical carcinomas [2].

The prevalence of HPV subtypes varies geographically. In Europe, HPV subtypes 16, 18

and 45 are predominant [3]. In Bahamas and Brazil, subtypes 16 and 18 are more common [4,

5]. Moving to the Asian region, China shows the dominance of subtypes 16, 58 and 33 [6],

while India predominantly reports subtypes 16 and 18, which collectively account for 85% of

cases [7], and Malaysia exhibits a higher prevalence of subtypes 52 and 66 [8]. It is noteworthy

that HPV subtypes 16 and 18 account for more than 70% of cervical cancer worldwide [7, 9–

11]. HPV is a known cause of cancer as it interferes with the normal function of two important

tumour suppressor proteins, p53 and pRb [12]. The oncoproteins E6 and E7 produced by

high-risk types of HPV interact with these proteins, disrupting their regular activity and lead-

ing to uncontrolled cell growth and the development of cancer [12].

Given the global impact of cervical cancer, extensive research has been conducted to

develop effective treatments at different stages of the cancer. The most widely used treatment

modalities for cervical cancer involve surgery, radiotherapy, and chemotherapy [13]. Chemo-

therapy, in particular, uses low molecular weight drugs to target and destroy tumour cells or,

at the very least, inhibit their growth [13]. Different types of chemotherapy drugs are used,

including anti-metabolites (e.g., 5-fluorouracil, methotrexate), DNA-interactive agents (e.g.,

cisplatin, doxorubicin), and anti-tubulin agents (e.g., taxanes) [14]. However, chemotherapy

and radiation therapy often lead to various adverse effects and toxicity, resulting in damage to

non-targeted tissues, such as hair loss, neurotoxicity, nausea, anaemia, and neutropenia since

they act on both tumour cells and healthy cells. These undesirable effects may compromise

treatment efficacy and negatively impact the quality of life of cancer patients [14, 15]. Recent

advancements in CART-T cell therapy in cancer treatment have demonstrated efficacy in vari-

ous cancers where the immune cells are genetically designed to better recognise and enhance

the immune response to eliminate the cancer cells [16]. However, its effectiveness in solid

tumours remains limited due to the immunosuppressive tumour microenvironment, which

represents significant challenges [17].

To address the limitations of current treatment, there is a pressing need to develop new

anti-cancer drugs that are more effective and have fewer adverse effects. In recent years, there

has been growing interest in the use of plant-derived compounds as complementary or alter-

native therapies for cancer treatment. In fact, studies have shown that 50 to 60% of cancer

patients in the United States used plant-derived supplements alongside conventional chemo-

therapy and/or radiation therapy [14]. These natural compounds are preferred due to their

potential for minimal side effects, high efficacy, low cost and easier accessibility [15]. Bioactive

compounds derived from various plants, such as turmeric and ginger of the Zingiberaceae

family, have demonstrated anti-cancer properties in both in-vitro and in-vivo studies [18].

Turmeric (Curcuma longa), a spice commonly used in Southeast Asian cuisine, contains a

bioactive compound called curcumin, which has been extensively studied for its therapeutic

properties [19]. Curcumin is a polyphenol and has been found to be the most potent among

curcuminoids contained in turmeric. Curcumin is recognised for its therapeutic effects on

PLOS ONE Anticancer effects of curcumin, gingerols, and shogaols in cervical cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0314280 November 22, 2024 2 / 24

Information files. All raw data required to replicate

the results of this study are either reported in the

manuscript or compiled in the Supporting

Information documents. The data on screening and

selection process of the studies are available from

the Zenodo repository at https://zenodo.org/

records/14000521.

Funding: The publication of this work is supported

financially by 1. The Fundamental Research Grant

Scheme (FRGS) Ministry of Higher Education

(MoHE) Malaysia (FRGS/1/2021/SKK0/UPNM/02/

2) - Dr Nik Noorul Shakira Mohammed Shakrin 2.

National Defence University of Malaysia (NDUM) -

Dr Nur Aishah Che Roos 3. Universiti Putra

Malaysia (UPM) -Dr Armania Nurdin The funders

do not play any role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0314280
https://zenodo.org/records/14000521
https://zenodo.org/records/14000521


several diseases, such as cancer, autoimmune disease, and various inflammatory conditions [20].

This is primarily due to its ability to modulate immune responses, making it beneficial in inducing

inflammation and regulating immune functions. Recently, it has been shown to exhibit anti-age-

ing properties by influencing molecular pathways to ageing, such as AMPK, and the inhibition of

NF-κB and mTOR, which contributes to delaying age-associated disorders [21].

Numerous laboratory studies have demonstrated that curcumin has a great capacity to block

various biochemical processes involved in cancer survival and growth [22, 23]. It can regulate

cell proliferation, angiogenesis, metastasis, apoptosis, cancer-associated inflammation, and drug

resistance by directly or indirectly binding to molecular targets [24, 25]. Curcumin has also

been studied in combination with other natural or synthetic compounds to overcome the limi-

tations of chemotherapy while reducing adverse effects. In response to growing studies on cur-

cumin, several clinical trials have shown that oral administration of curcumin is safe, well-

tolerated, and has an acceptable blood chemistry profile with no significant toxicity [19, 26].

Ginger (Zingiber officinale) is another widely used spice which comes in numerous forms

and is considered part of the ‘holy trinity’ in Chinese cuisine. Also, it has been recognised for

its potential chemopreventive properties [27]. Gingerols and shogaols are natural compounds

found in ginger that contribute to its odour and flavour [28]. These compounds have a high

oral bioavailability, meaning they are easily absorbed and utilised by the body when consumed

as part of the diet. Gingerols exist in different forms, including 4-gingerol, 6-gingerol, 8-gin-

gerol, and 10-gingerol [29, 30]. Whereas shogaols exist in the form of 4-shogaol, 6-shogaol,

8-shogaol, 10-shogaol, and 12-shogaol. Ginger and its bioactive compounds have been shown

to possess various biological activities, such as anti-cancer, anti-inflammatory, antioxidant,

anti-microbial, and anti-allergic properties [31].

Many experimental studies have investigated the chemopreventive properties of curcumin,

gingerol, and shogaol in different types of malignancies including colon cancer [32], bone can-

cer [33, 34] and breast cancer [23, 35]. However, only a limited number of studies explored the

anti-cancer effects of the selected compounds on cervical cancer. Furthermore, no existing

review explored the anti-cancer effect of these bioactive compounds when used in combina-

tion. By recognising the current gap in experimental studies, this systematic review aims to

make a significant contribution to the field by focusing on collating and critically assessing in-
vitro and in-vivo studies evaluating the anti-cancer effects of curcumin, gingerol, shogaol, and/

or their combination for cervical cancer treatments. The primary objective is to systematically

appraise and synthesise preclinical data, providing a multifaceted understanding of curcumin,

gingerol, shogaol, and/or their combination in exerting their anti-cancer effect in cervical can-

cer, particularly in identifying the molecular mechanism and pathway being targeted. By inte-

grating findings from in-vitro and in-vivo studies, this review is able to capture comprehensive

insights into their chemotherapeutic potential with a more detailed understanding of the

underlying mechanisms and pathways that these compounds of interest affect, regardless of

the preparation of the compounds. The exclusion of clinical studies in evaluating the anti-can-

cer effects of curcumin, gingerol and shogaol is justified, as overall human studies primarily

focus on efficacy and adverse reactions rather than elucidating the specific molecular targets

involved.

Material and methods

The development of the systematic review protocol is in accordance with the Preferred Report-

ing Items for Systematic review and Meta-Analysis (PRISMA) [36, 37]. The protocol for this

review is registered on the International Prospective Register of Systematic Reviews (PROS-

PERO ID: CRD42022334940) and is published elsewhere [38]. The search period for this
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review is slightly extended to a more recent date compared to the information provided in the

registered and published protocol for comprehensive current evidence.

Search strategy and sources

A search strategy using a combination of Medical Subject headings (MeSH) and keywords

together with Boolean operators was developed as follows: (Curcumin OR turmeric OR Cur-

cuma OR ginger OR gingerol OR Zingiber OR Z.officinale OR shogaol) AND ((Cervical OR

cervix OR “human papillomavirus”) AND (cancer OR carcinoma OR malignancy OR

tumour)) AND (HeLa OR SiHa OR CaSki OR “cell line” OR “in-vitro” OR animal OR rodent

OR “in-vivo”).

Electronic databases, including PubMed, Scopus, and Science Direct, were searched for eli-

gible studies from inception until the second week of June 2024. The last search was conducted

on 14 June 2024. The references of eligible articles were also screened for relevant studies.

Only English publications were considered for this review. Grey literature or evidence not

published in academic publications were excluded.

Inclusion and exclusion criteria

The inclusion criteria based on the PICOS framework are as follows: (1) Population: human

cervical cancer cell lines (e.g., HeLa, SiHa, CaSki) and tumour-bearing animals implanted with

human cervical cancer xenografts. The animal model used was restricted to only the rodent

family. All cervical cell lines and animal models were included regardless of the presence or

absence of HPV infection; (2) Intervention and comparators: single and/or combined bioac-

tive compounds comprising gingerol, shogaol, and curcumin regardless of dose and duration

of the intervention were eligible for inclusion. The studied bioactive compounds may be pre-

pared in any form. The bioactive compounds, as stated earlier, may be compared with each

other, against standard cervical cancer chemotherapy as a positive control (e.g., cisplatin, pacli-

taxel, 5-fluorouracil) or with cells/animals that were not treated (negative control); (3) Out-

come measured: The primary outcome include anti-cancer activity and cytotoxic effects of the

bioactive compounds assessed through cell viability, cell cycle growth, cell apoptosis, protein

expression, gene expression activity, tumour size, or histological changes via standard proce-

dures. The secondary outcome includes the signalling pathway(s) and molecular target(s)

involved in the anti-cancer effect of the studied bioactive compounds; and (4) Study design:

controlled in-vitro studies involving human cervical cancer cell lines and/or controlled in-vivo
studies using tumour-bearing animals implanted with human cervical cancer xenografts.

Exclusion criteria include: (1) Population: preclinical studies using non-cervical cancer cell

lines and other types of animal models; (2) Intervention and comparator: combination therapy

with another bioactive compound not as listed in the inclusion criteria and/or drugs, bioactive

compounds delivery aided by external biological factors, e.g., nanocarriers; and biologically

enhanced or conjugated bioactive compounds. (3) Studied bioactive compounds compared to

anti-cancer drugs not conventionally used for cervical cancer were excluded. (4) Studies that

combined the effects of studied bioactive compounds with another standard treatment modal-

ity, such as radiation therapy, were also excluded, and (5) Studies enrolling human subjects

were excluded. Reviews, editorials, conference proceedings, and abstracts where the full texts

were unobtainable were excluded.

Study screening and selection

Citations obtained from the electronic database search were compiled into a web-based app

known as Rayyan [39], a semi-automated artificial intelligence tool for the identification of
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studies in conducting a systematic review. Two independent reviewers (UAR and NA)

screened the titles and abstracts retrieved for the identification of eligible studies. Any discrep-

ancy was solved by discussion between the two reviewers or by consulting a third reviewer

(YA) if necessary. The full text of the eligible studies was screened by two independent review-

ers (UAR and NA), and only studies that met the inclusion criteria were included.

Data management and extraction

Two independent reviewers (UAR and NA) created and piloted a standardised data extraction

form for the extraction of variables. The following information was extracted for included

study characteristics: Name of first author, year of publication, country, and study design.

Based on the PICOS framework, the following information was extracted: cervical cancer cell

line used, animal model including sex of rodent and type of tumour cell, sample size, type of

bioactive compound used and its comparator including dose and frequency/duration. The fol-

lowing information was extracted for the primary outcomes: half maximal inhibitory concen-

tration (IC50) of bioactive compound used, cell viability, cell cycle growth, cell apoptosis,

protein expression, gene expression activity, volume of tumour, and/or histological changes

via standard procedures. Additionally, information on the mechanism of signalling pathway(s)

and molecular target(s) studied was extracted where available. Any disagreement between the

reviewers was resolved by consensus or consultation with a third reviewer (YA). In case of

missing data or unobtainable articles, the respective author(s) were contacted by email to

request further information or the full text if necessary.

Quality assessment

The risk of bias (RoB) of the included studies was evaluated by three independent reviewers

(UAR, NA, and MM). In case of discrepancies or disagreements, a fourth reviewer (YA) was

consulted. Due to the lack of a standardised tool to assess the RoB in in-vitro studies, a custom-

ised tool was developed by adaptation from Raj, Kheur [40] to suit this review. The customised

RoB tool comprised seven items as follows: (i) cancer cell lines used; (ii) duration of interven-

tion/ exposure to the cancer cell culture; (iii) concentration used on the cancer cell culture; (iv)

culture media used for control; (v) tools used to assess the outcome; (vi) triplication of experi-

ments; and (vii) number of independent experiments performed. Each item was indicated

with a “yes” or “no.” A study with a score of more than 70% or less than 50% “yes” was judged

as low or high risk of bias correspondingly. Any score in between was judged as a moderate

risk of bias. Meanwhile, the Systematic Review Centre for Laboratory Animal Experimentation

(SYRCLE) tool was used to assess the methodological quality of included animal studies [41].

This RoB tool was adapted from the recommended Cochrane’s RoB and has been adjusted to

suit aspects of bias that play a specific role in animal intervention studies. The components of

the SYRCLE tool assess the following domains: (1) Selection bias: random sequence genera-

tion, baseline characteristics, allocation concealment; (2) Detection bias: random housing,

blinding, random outcome assessment; (3) Attrition bias: incomplete outcome data; (4)

Reporting bias: selective reporting; and (5) Other bias. A study was judged as having a ‘low’,

‘high’, or ‘unclear’ risk of bias accordingly.

Data synthesis

The baseline characteristics of the included studies were tabulated and described narratively

according to the synthesis without meta-analysis (SWiM) reporting guideline [42]. This

approach ensures transparency in the event where meta-analysis is not appropriate. Therefore,

the included studies were grouped according to the bioactive compound used and were
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tabulated according to the primary and secondary outcomes identified. A meta-analysis was

not performed due to the lack of suitable data and heterogeneity of the included studies.

Results

Study selections

The keyword search performed in three databases resulted in the identification of 1,631 stud-

ies, whilst four studies [43–46] were identified through manual screening of the references of

eligible studies. After excluding duplicates, 1,283 studies were screened, and 1,088 studies were

excluded due to irrelevant titles and/or abstracts. From the remaining 195 studies considered

for full-text screening, 160 studies were excluded for the following reasons: 116 studies were

dismissed due to wrong publication type (review articles), two studies were excluded due to

wrong study design (not in-vitro/ vivo), 40 studies were excluded due to wrong intervention

(did not report the specific bioactive compounds used, biologically enhanced compound, or

combined intervention used were as specified in the inclusion criteria), 1 study was excluded

due to wrong comparator (curcumin against its analogue), and 1 study was published in the

Chinese language. Twelve studies were excluded as the full text was unobtainable. Attempts

were made to obtain the articles, including reaching out to the authors by emailing them.

Aside from that, we also requested institutional library services and direct requests to the

authors at the Research Gate community. Finally, only 27 studies were included in this review

(Fig 1).

Risk of bias assessment

The risk of bias (RoB) assessment for the in-vitro studies included in this review is presented

in Fig 2 and S1 Table. The type of cancer cell lines used, duration of intervention/exposure,

culture media used for control, and the tools used to assess the outcome were low risk in all the

included studies. The domain pertaining to the concentration of cancer cell culture employed

was judged to have unclear RoB in 3 of the studies, while the risk in the remaining studies

(n = 23) was considered as low. The triplication of experiments was either unclear (n = 11) or

low (n = 15) risk of bias. Meanwhile, the number of independent experiments performed was

unclear in 3 studies and low risk for the remainder (n = 23). Altogether, only 1 of 26 included

in-vitro studies were judged as having a moderate risk of bias, while the remaining studies

were only low risk.

The SYRCLE risk of bias for reporting in-vivo studies is shown in Fig 3 and S2 Table. Selec-

tion bias was unclear for all in-vivo studies included. Performance and detection bias were

high in the included studies. However, attrition and reporting bias were all low in these studies.

On the other hand, the other bias was low in one of the studies and unclear for the remainder

(n = 2). Altogether, one of the included studies in-vivo had a moderate risk of bias, while the

remaining (n = 2) were high risk.

Study characteristics

S3 Table summarises the characteristics of all the included studies. Overall, 27 studies were

included in this review. The year of publication of the studies ranged from 2004 to 2023. The

majority of included studies were conducted in the Asian region, with eight studies from India

[43, 47–53], seven from China [35, 46, 54–58], four from Thailand [45, 59–61], and one from

Malaysia [62] and Iran [63] each respectively, whilst the remaining five studies originated

from the United States of America (n = 3) [19, 44, 64], Poland (n = 1) [65], Brazil (n = 1) [66],

and Mexico (n = 1) [67].
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The majority of the included studies were conducted in-vitro (n = 24) [1–15, 18, 19, 22–44,

46–50, 52–72], and only one study implemented the in-vivo model. The remaining two studies

consist of both in-vitro and in-vivo research models. Various human-derived cervical cancer

cell lines were used in the in-vitro studies, including HeLa, ME-180, SiHa, C33A, CaSki,

SW756, KB-V1, and KB-3-1. The different types of HPV infection in the cells used were

reported, such as HPV-18, which was identified in HeLa and SW756 cells, HPV-16 in CaSki

and SiHa cells, and HPV-39 in ME-180 cells. The C33A cell line is negative for HPV. Mean-

while, KB-V1 is a multidrug-resistant human cervical carcinoma cell line, whereas KB-3-1 is a

drug-sensitive cervical carcinoma cell line.

Fig 1. PRISMA flow diagram depicting article selection process.

https://doi.org/10.1371/journal.pone.0314280.g001
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Fig 2. Customised Risk of Bias (ROB) assessment of included in-vitro studies.

https://doi.org/10.1371/journal.pone.0314280.g002
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Concerning the type of bioactive compound used in the included studies, the majority of

studies investigated the effect of curcumin on cervical cancer (n = 19) [19, 44, 45, 47, 49, 50,

52, 53, 55, 58–60, 62–67, 71]. The remaining eight studies explored the anticancer effects of

ginger bioactive compounds, namely 6-gingerol (n = 5) [43, 48, 51, 56, 61], 10-gingerol (n = 1)

[56], and 6-shogaol (n = 2) [35, 54]. No studies reported the use of bioactive compounds, as

stated above, in combination as a treatment intervention.

For in-vivo studies, the type of rodents used in the experiments were BALB/c nude mice

(n = 2) and nu/nu nude mice (n = 1). All the mice in the studies were subcutaneously injected

with either HeLa or CaSki cell suspension. Treatments were administered through the intra-

peritoneal route [51], intragastric [35] or orally [45].

As summarised in Table 1, all studies have demonstrated the potential anti-cancer effects of

the bioactive compounds on a variety of cervical cancer cell lines. Different bioactive com-

pounds targeted multiple genes and molecular signalling pathways.

Discussion

This review comprehensively summarized the anti-cancer potential of curcumin, 6-shogaol,

and 6/10-gingerol in pre-clinical studies. The current systematic review has improved upon

Fig 3. SYRCLE Risk of Bias (ROB) assessment of included in-vivo studies.

https://doi.org/10.1371/journal.pone.0314280.g003
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Table 1. Summary of the mechanism of signalling pathways and molecular targets of included studies. Concentration, dose, and duration of interventions based on

the analysis of signalling pathways and molecular targets in cervical cancer cells.

In-vitro studies

Compound Cell type Intervention Mechanism of signalling & molecular targets References

Concentration Duration

Curcumin KB-V1 0–30 μM 72 hr #MDR-I gene expression

# Pgp

" Pgp substrate; calcein-AM, rhodamine123, and bodipy-FL-vinblastine

" ATPase activity

[59, 60]

HeLa 0.1–5 μM 24 hr " superoxide levels via global DNA hypermethylation

" ROS production by targeting the cytosolic/nuclear thioredoxin system leading to apoptosis

[65]

0–15 μM 24–48 hr # Ezrin (VIL2) protein

# Phosphoglycerate kinase (PGK1)

" stress-induced phosphoprotein (STIP)

" Rad50 protein

" enolase isoforms 7402 (ENO1 7420 and ENO1 7407)

" UROD and FSIP2 protein expression

DNA damage response

[64]

5–20 μM 24 hr # E6-associated protein (E6AP)-p53 interaction

# E6 and E7 oncogene expression

# COX-2

# TNF-α induced NF-κB activation

" NQ01

" p21 and p53

Activation of Keap1/Nrf2 pathway

Cytotoxicity via NQO1-p53 complex formation

Prevents AP-1 binding

Inactivation of NF-κB pathway

[47, 67]

10–15 μM 18–20 hr # ATPase activity of mitotic kinesin Eg5

Inhibits centrosomal separation

Induces mitotic arrest

[50]

13 μM 0–48 hr " p-ATM and p-ATR

" p53

"MDM2

" BRCA1

" DNA-PK

"MDC1

" p-H2A.X

" PARP

"MGMT protein expression

DNA damage response

[55]

20–50 μM 24 hr # p16

# oncogene E6 and E7

# PCNA

# cyclin D1

# caspase-3, -9

# Becn1

# PARP1

# Bcl-2

# N-cadherin, E-cadherin, vimentin

" p53, p21 and p73

" Bax

[53, 58, 66]

34.23 μM 48 hr # NF-κB

#Wnt/b-catenin

[63]

50 μM 8 hr # E6 oncogene

# EGFR

# Rb phosphorylation activation at serine-780 phosphorylation

" p53

[19]

50–100 μM 24 hr # ERK and Ras

# cell cycle genes cyclin (D1 and Hsp 70)

# inflammatory proteins (Cox-2 and iNOS)

# p53

# Bcl-2 and Bcl-XL

# C-Myc

" JNK

" Bax

" cytochrome c and caspase-3, -9

Targets MAPK/ERK pathway

[52]

100 μM 15 mins- 6 hr # p53-responsive gene

#WAF-1/p21 expression

Interfere with AP-1 binding activity via # c-fos and " fra-1 expression

[49]

(Continued)
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Table 1. (Continued)

SiHa 5–20 μM 24 hr # E6 and E7 oncogene expression

# TNF-α induced NF-κB activation

# E6-associated protein (E6AP)-p53 interaction

" NQ01

" p21 and p53

Activation of Keap1/Nrf2 pathway

Inactivation of NF-κB pathway

Cytotoxicity via NQO1-p53 complex formation

[47, 67]

20–50 μM 24–48 hr # oncogene E6 and E7 mRNA

# PCNA

# cyclin D1

# G2/M-related genes (cyclins B1 and cdc25)

" cleaved caspase-3 and PARP protein

" p62

" LC3I and LC3II leading to autophagy

" p53 and p21

[44, 46, 53]

50 μM 8 hr # oncogene E6

# EGFR

" p53

[19]

50–100 μM 24 hr # ERK

# cyclin D1 and Hsp 70

# p53 and p73

# Cox-2 and iNOS

# Bcl-2 and Bcl-XL

# C-Myc

" JNK

" Bax

" cytochrome c and caspase-3, -9

Targets MAPK/ERK pathway

[52]

ME-180 50 μM 8 hr # E6 oncogene

# EGFR

# Rb phosphorylation activation at serine-780 phosphorylation

" p53

[19]

SW756 50 μM 8 hr # E6 oncogene

# EGFR

" p53

[19]

C33A 5–50 μM 24 hr # E6 and E7 oncogene expression

# TNF-α induced NF-κB activation

# p16

# cyclin D1

" p53 and p73 gene expression

Inactivation of NF-κB pathway

[47, 53]

CaSki 10–50 μM 24 hr # E6-associated protein (E6AP)-p53 interaction

# PCNA

# cyclin D1

# oncogene E6 and E7

" NQ01

" p21 and p53

Cytotoxicity via NQO1-p53 complex formation

Activation of Keap1/Nrf2 pathway

[53, 67]

20–40 μM 24–48 hr # oncogene E6 and E7

# BaP-induced HPV E7

" caspase-3, -9 and cleaved PARP

" p53, pRb, and PTPN13 expression

[44]

50–100 μM 24 hr # ERK

# cyclin D1 and Hsp 70

# p53 and p73

# C-Myc

" JNK

" Bax, cytochrome c and caspase-3, -9

Targets MAPK/ERK pathway

[52]

(Continued)
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Table 1. (Continued)

6-gingerol HeLa 50 μM 24 hr # cyclin B1

# of PARP

" p53 and p21

" p-H2AX

" cleaved caspase-3

Genotoxic stress via MRC-1 inhibition

DNA damage response

[51]

60–140 μM 48 hr # cell cycle genes (cyclin A, cyclin D1, cyclin E1) and CDK-1

# p21 and p27

# PI3K/AKT pathway

" cytochrome c, Bax, caspase-3, -8, -9, and PARP

" of AMPK

[57]

75–125 μg/mL 48 hr # NF-κB

# AKT

" caspase 3, PARP, Bax and cytochrome c

" Bcl-2

" TNFα
Induce autophagy death via " acidic vacuoles (AVO) formation

[43]

CaSki 50 μM 24 hr # cyclin B1

# PARP expressions

" p53 and p21

" p-H2AX

" cleaved caspase-3

Genotoxic stress via MRC-1 inhibition

Oncogene E6 and E7 shows no changes

[51]

10-gingerol HeLa 15–50 μM 48 hr # cyclin A, cyclin D1, cyclin E1, CDK-1, CDK-2, CDK-4, CDK-6

# p15, p21, p16, and p27

# GSK-3B

# β-catenin

# Bcl-2

# PI3K/AKT pathway

#mTOR phosphorylation

# NF-κB pathway

" death receptors proteins DR3 and DR5

" cleaved caspase-3, -8, -9, cytochrome c, Bid, Bad, and Bax

" AMPK pathway

[56]

6-shogaol HeLa 20–40 μM 0–24 hr # CDC25A

# cyclin B1

# PCNA

# Bcl-2

# p62

# cell migration regulators genes (N-cadherin, MMP-2, and MMP9)

# Snail, Twist, Zeb-1, and Zeb-2 gene expression

# PI3K/AKT/mTOR pathway via # p-PI3K, p-AKT, and p-mTOR

# ER-stress-associated protein (PERK and ARF5)

" cytochrome c, PARP, Bax, and caspase 3

" autophagy-related proteins (LC3-II and Beclin 1)

" E-cadherin

"HSP60

" Annexin A1, cofilin, and calreticulin

No changes in CHOP expression

[35, 54]

SiHa 20–40 μM 24 hr # Bcl-2

# p62

# cell migration regulators genes (N-cadherin, MMP-2, and MMP9)

# Snail, Twist, Zeb-1, and Zeb-2 gene expression

# PI3K/AKT/mTOR pathway via # p-PI3K, p-AKT, and p-mTOR

" cytochrome c, PARP, and Bax

" autophagy-related proteins (LC3-II and Beclin 1)

" E-cadherin

[35]

In-vivo studies

Compound Cell type Intervention Mechanism of signalling & molecular targets References

Dosage Duration

Curcumin CaSki implanted nude mice 1,500 mg/Kg 0–28 days # angiogenesis biomarkers (VEGF, COX-2, EGFR) [45]

(Continued)
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previous reviews as it refined its focus by including only studies using bioactive compounds,

thus ensuring uniformity of intervention. Previous reviews concentrated on specific extracts

like ginger and turmeric or for addressing the bioactive compounds in different cancer types

or other health conditions(s), many of which lacked systematic methodologies. The collated

evidence has shown that curcumin, 6/10-gingerol, and 6-shogaol exerted their anti-cancer

activity via the disruption of several molecular pathways and by targeting certain genes and

protein expression.

The anti-cancer activities and cytotoxicity effects of bioactive compounds

Cancer cell proliferation and viability. The cytotoxic effect of curcumin, 6/10-gingerol

and 6-shogaol carried out in different cervical cancer cell lines is shown to reduce the cell via-

bility of cancer cells in a concentration- and time-dependent manner. The anti-proliferative

activities across the different bioactive compounds showed varied results on cervical cancer

cells. Many studies have reported that the highest concentration of these compounds is associ-

ated with the lowest cell proliferation in all tested cell lines [35, 43, 44, 47, 48, 50, 51, 54, 65,

66]. This observation indicates that cell proliferation inhibition is concentration-dependent.

Hence, the IC50 value (half maximal inhibitory concentration) is used to inform the research-

ers on the amount of drug or bioactive compounds required to inhibit cell proliferation by

half.

Evidence has shown that treatment with curcumin caused a significant inhibition in cervi-

cal cancer cell proliferation, including HPV-infected (i.e., HPV-16, HPV-18, and HPV-39)

and HPV-negative cervical carcinoma within 24 to 96 hr [19, 44, 47, 55, 58, 59, 62–67, 71]. The

IC50 values ranged between 7 to 34 μM in HeLa cells. Similarly, cell viability reduction in HeLa

cell lines was observed after treatment with 6-gingerol [43, 48, 51, 57, 61], 10-gingerol [56] and

6-shogaol [31, 50] at varying IC50 values ranging from 0.6 to 431 μM within 24 to 96 hr. Based

on the review findings, it is difficult to gauge the optimal IC50 to inhibit cervical cells prolifera-

tion due to several factors including the type of cell lines used, the duration of exposure to the

studied bioactive compound(s) and the culture media used. The cell viability assay used may

Table 1. (Continued)

6-gingerol HeLa implanted mice 2.5-5mg/Kg 0–30 days # Bax, GADD45, Noxa, Puma

# p21

" oxidative stress biomarker (MDA)

" p53

[51]

": upregulation, #: downregulation, MDR-1: multidrug resistance 1, Pgp: phosphoglycolate phosphatase, ATPase: adenosine triphosphatase, ROS: reactive oxygen

species, STIP: stress-induced phosphoprotein, PGK1: Phosphoglycerate kinase-1, ENO1: enolase 1, UROD: uroporphyrinogen decarboxylase, FSIP2: fibrous sheath

interacting protein, Keap1: Kelch-like ECH-associated protein 1, Nrf2: nuclear factor erythroid 2-related factor 2, NQ01: NAD(P)H quinone dehydrogenase 1, E6AP:

E6-associated protein, COX-2: cyclooxygenase-2, AP-1: activator protein-1, TNF-α: tumour necrosis factor alpha, NF-κB: nuclear factor kappa B, ATM: ataxia

telangiectasia mutated, ATR: ataxia telangiectasia and Rad3-related protein, MDM2: murine double minute 2, BRCA1: breast cancer gene 1, DNA-PK: DNA-dependent

protein kinase, MDC1: mediator of DNA damage checkpoint protein 1, p-H2A.X: phosphorylated histone H2A Variant X, PARP: poly(ADP-ribose) polymerase,

MGMT: O6-methylguanine-DNA methyltransferase, PCNA: proliferating cell nuclear antigen, Becn1: Beclin 1, Bcl-2: B-cell lymphoma 2, Bax, Bcl-2 associated X

protein, N-cadherin: Neural cadherin, E-cadherin; Epithelial cadherin, Wnt: wingless and Integrated-1, EGFR: epidermal growth factor receptor, Rb: retinoblastoma,

MAPK: Mitogen-activated protein Kinase, ERK: Extracellular signal-regulated kinase, Ras: Rat sarcoma viral oncogene, JNK: c-Jun N-terminal kinase, Hsp70: Heat

shock protein 70, iNOS: inducible nitric oxide synthase, Bcl-xl: B-cell lymphoma extra-large, C-myc: myelocytomatosis oncogene, c-fos: cellular proto-oncogene fos, fra-

1: Fos-related antigen 1, WAF-1: wild-type p53-activated fragment, MRC-1: macrophage mannose receptor-1, CDK-1: cyclin-dependent kinase-1, AMPK: adenosine

monophosphate-activated protein, AKT: protein kinase B, GSK-3B: glycogen synthase-3 beta, PI3K: phosphoinositide 3-kinase, mTOR: mechanistic target of

rapamycin, CDC25A: cell division cycle 25A, MMP: matrix metalloproteinase, Zeb: Zinc finger E-box-binding homeobox, HSP60: heat shock protein 60, CHOP: C/EBP

homologous protein, VEGF: Vascular endothelial growth factor, GADD45: growth arrest and DNA damage-inducible 45, MDA: malondialdehyde

https://doi.org/10.1371/journal.pone.0314280.t001
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also influence the measurements on cervical cancer cell lines based on the cell seeding number,

assay concentration and incubation time, serum starvation, released intracellular contents,

and extrusion of formazan to the extracellular space [73].

Inflammation and NF-κB have been found to be closely related to cancer cell proliferation

which promotes cell proliferation and survival, as well as tumour growth [69]. Curcumin was

reported to downregulate the expression of tumour necrosis factor-alpha (TNF-α) and

impaired the NF-κB signalling pathways, leading to the downregulation of cyclooxygenase-2

(COX-2) expression in HeLa, SiHa and C33A cell lines [47]. These findings were supported by

other studies that demonstrated the inhibition of inflammatory NF-κB signalling pathway in

HeLa, ME-180, SiHa, C33A and SW756 cell lines [19, 44] and HeLa 3-D culture models [63,

66]. In addition to its effects on the NF-kB pathway, curcumin has been reported by Ghasemi

et al. [63] to target and impair Wnt/β-catenin (WNT) signalling. Meanwhile, Singh and Singh

[52] reported that curcumin targets MAPK/ERK pathways, which are involved in cell growth

Fig 4. The anti-cancer signalling pathways modulated by curcumin, gingerol, and shogaol in cervical cancer cells. (1) Curcumin inhibits cell

proliferation via inhibition of the WNT/β-catenin pathway. β-catenin causes overexpression of CDK 4/6 that are involved in the cell cycle. (2) Curcumin,

gingerol, and shogaol induce the p53/p21 signalling pathway by promoting stability and restoration of p53 tumour suppressor activity, therefore decreasing

cell proliferation. The restoration of p53 inhibits oncogene E6 from ubiquitination of the p53 protein (3) Curcumin, gingerol, and shogaol target MAPK/

ERK pathways by upregulation of JNK and downregulation of ERK proteins leading to apoptosis. (4) Curcumin, gingerol, and shogaol promote intrinsic

apoptotic pathways by upregulation of pro-apoptotic protein expression, including BAX, caspase-3, caspase-9, and cleaved PARP, while downregulates

anti-apoptotic protein BCL2 and BCL-XL. 10-gingerol promotes extrinsic apoptotic pathway by modulating death receptor protein DR4/DR5. (5)

Curcumin, gingerol, and shogaol suppress the PI3K/AKT/mTOR pathway. (6) Curcumin, gingerol, and shogaol reduced cell inflammation by impairing

the NF-kB signalling pathway, leading to downregulation of COX-2.

https://doi.org/10.1371/journal.pone.0314280.g004
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and survival in HeLa, SiHa and CaSki cell lines. Furthermore, curcumin promotes stability

and restoration of p53 protein via interaction with NAD(P) H: quionone oxidoreductase 1

(NQO1) protein, increases the p53 half-life, and therefore decreases cell viability of cervical

cancer cells [67]. The binding of p53-NQ01 avoids the interaction between p53 and its negative

regulator ubiquitin ligase E6-associated protein, subsequently activate the p53 apoptotic path-

way in cervical cancer cell lines [67]. The possible anti-cancer signalling pathways by curcu-

min, gingerol and shogaol is illustrated in Fig 4.

A study by Chakraborty et al. [43] reported that 6-gingerol downregulated the expression of

NF-kB as well as AKT protein kinase. This finding was supported by Zhang et al. [57] that

demonstrated inhibition of the PI3K/AKT pathway involved in inducing mTOR-mediated cell

apoptosis and activation of AMPK phosphorylation. Additionally, a similar effect was observed

from treatment with 10-gingerol on HeLa cell lines in a study reported by Zhang et al. [56].

Meanwhile, Pei et al. [35] demonstrated that 6-shogaol targets and downregulates protein

expression of p-PI3K, p-AKT, and p-mTOR overall, consequently suppressing the PI3K/AKT/

mTOR pathway leading to a reduction in cell proliferation and viability in HeLa and SiHa

cells.

Fig 5. Cell cycle arrest induced by curcumin, gingerol, and shogaol in cervical cancer cells. (1) Curcumin, gingerols, and shogaol induced cell cycle

arrest at the G2/M phase. (2) Curcumin, 6-shogaol and gingerol downregulate the expression of CDC25 and CDC2 proteins, while upregulate p21. The

downstream effect of p21 inhibits CDK2 and CDK4, preventing the phosphorylation of pRb, which will bind to E2F transcription factors and prohibit cells

from entering the S phase. (3) Gingerol-induced cell cycle arrest at the G0/G1 phase by downregulating cyclin A, D, and E and CDK gene expression.

https://doi.org/10.1371/journal.pone.0314280.g005
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Cancer cell apoptosis. Apoptosis is a programmed cell death, and findings from this

review elucidate the role of curcumin, 6/10-gingerol and 6-shogaol in triggering apoptosis

through various mechanisms. One of the common mechanisms involves the upregulation of

the caspase family, including caspase-3, caspase-8, and caspase-9, which play a role in the apo-

ptotic process [44, 46, 47, 52, 55, 63, 65]. These proteins are crucial in the activation of the

downstream apoptosis process and cleaving of poly ADP-ribose polymerase (PARP), an apo-

ptotic substrate, therefore suggesting the role of mitochondria in apoptosis [44]. Reduction of

mitochondrial membrane potential (MMP) caused by curcumin and 6-gingerol, as demon-

strated by Zhao et al. [58] and Chakraborty et al. [43], suggests the critical role of mitochon-

drial pathways in their apoptosis-inducing effects. In addition to caspase upregulation,

curcumin, 6/10-gingerol, and 6-shogaol also has been found to downregulate the expression of

anti-apoptotic protein including Bcl-2 and Bcl-XL while upregulating the pro-apoptotic Bax

protein [43, 48, 51, 56–58]. The apoptotic signalling pathways induced by curcumin, gingerol

and shogaol are illustrated in Fig 4.

Furthermore, Rastogi et al. [51] has reported that 6-gingerol upregulated tumour suppres-

sor protein, p53 and p21, via inhibition of the proteasome activity and induced oxidative stress

in the cervical cells. On the other hand, 10-gingerol has been shown to modulate death recep-

tor proteins, DR3 and DR5, which are involved in the extrinsic apoptotic pathway [56].

It is also known that an increase in JNK and ERK protein expression plays an important

part in apoptosis [68]. Interestingly, curcumin is reported to downregulate ERK expression

but upregulate JNK expression [52]. The upregulation of JNK by curcumin may lead to the

activation of downstream apoptotic signalling pathways, including Bax and AIF (apoptosis-

inducing factor), and the release of cytochrome c from the mitochondria. Whereas the down-

regulation of ERK by curcumin may inhibit cell survival and consequently promote apoptosis

[52]. Based on the reported findings presented, there is evidence that curcumin, 6/10-gingerol,

and 6-shogaol are capable of inducing apoptosis via extrinsic or intrinsic apoptotic pathways,

particularly the caspase-dependent mechanism. Nevertheless, there is a lack of evidence as to

whether these bioactive compounds induce caspase-independent apoptosis. The caspase-inde-

pendent apoptosis pathway may be regulated by a family of serine proteases known as gran-

zymes. Granzyme A elicits apoptosis independent of the caspases, whereas granzyme B may

trigger apoptosis via caspase-dependent and -independent mechanisms. Another caspase-

independent pathway involves a family of cysteine proteases, namely the calpains (calcium-

activated neutral proteases) [74].

Cancer cell cycle arrest. Curcumin, 6/10-gingerol and 6-shogaol have been shown to

modulate the cancer cell cycle, resulting in the inhibition of cell proliferation. Curcumin [63,

65, 71], 6-, 10- gingerols [48, 51], and 6-shogaol [35, 54] induced cell cycle arrest at the G2/M

phase in SiHa and HeLa cell lines. This cell cycle arrest is associated with the downregulation

of cell cycle genes, cyclin D1 and cyclin B1, leading to inhibition of the cell proliferation [46,

52, 53]. Cyclin D1 is a proto-oncogene involved in cell cycle progression from the G1 to the S

phase whereas cyclin B1 forms a complex with cyclin-dependent kinase 1 (CDK1) which is

required for the progression of cells into mitosis [70]. The possible cell cycle arrest is illustrated

in Fig 5.

Additionally, curcumin and 6-shogaol also downregulate phosphoglycerate kinase (PGK1),

a phosphate-transferring enzyme involved in cell growth and decrease the expression of

CDC25 and CDC2 proteins while increasing the expression of p21 [46, 64]. The downstream

effect of p21 inhibits CDK2 and CDK4, preventing them from phosphorylating the retinoblas-

toma protein (pRb). As a result, pRb binds to E2F transcription factors and prohibits cells

from entering the S phase of the cell cycle, which leads to irreversible cell cycle arrest [46]. In
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addition to that, 6-shogaol downregulates proliferating cell nuclear antigen (PCNA) protein

expression levels, which are involved in DNA replication and cell proliferation [35].

Furthermore, studies by Zhang et al. [56] and Zhang et al. [57] demonstrated that 6-gin-

gerol and 10-gingerol induced cell cycle arrest at the G0/G1 phase in the HeLa cell line. It was

shown that both compounds caused cell cycle arrest by downregulating cell cycle gene expres-

sion namely cyclin A, cyclin D1, and cyclin E1 [56].

Multidrug resistance and drug sensitivity. Multidrug resistance (MDR) is where the can-

cer cells become resistant to multiple drugs, making treatments more challenging. Curcumin

has been reported to be an effective MDR regulator in two studies by Chearwae et al. [59] and

Limtrakul et al. [60]. The mechanisms responsible for multidrug resistance (MDR) have been

linked to the expression of the MDR1 gene product, P-glycoprotein (Pgp). Curcumin has been

reported to block the function of Pgp that transports anti-cancer drug substrate in drug-resis-

tant cell lines, KB-V1 [60].

This review also showed that curcumin and 6-gingerol have the potential to enhance the

effectiveness of chemotherapy drugs in cervical cancer treatment. A study by Chearwae et al.

[59] reported that curcumin increase the sensitivity of KB-V1 cells towards vinblastine, hence

suggesting a potential synergistic effect between the two compounds in the treatment of cervi-

cal cancer. Meanwhile, Kapoor et al. [48] and Rastogi et al. [51] have observed that 6-gingerol

potentiates the cytotoxicity effect of cisplatin in HeLa cells [48, 51] where it induced a maxi-

mum apoptosis rate of 72.3%.

Cancer angiogenesis and metastasis. A study by Maher et al. [44] reported that curcumin

decreases the cancer cell motility as it rescues protein tyrosine phosphatase non-receptor type

13 (PTPN13), in which the expression of PTPN13 is associated with decrease in anchorage-

independent growth. Loss of PTPN13 expression also has been associated with increased inva-

siveness in cancers [72]. Meanwhile, Pei et al. [35] has reported that 6-shogaol affects the

expression of cell migration key regulators, N-cadherin, MMP-2, and MMP-9, thus suppress-

ing the cancer cell migration in HeLa and SiHa cell lines.

Tumour growth. Several studies have demonstrated the effects of curcumin and ginger

bioactive compounds on tumour growth involving different mechanisms and pathways. An

in-vivo study using CaSki-implanted BALB/c-nude mice reported a reduction in tumour vol-

ume after receiving curcumin as a treatment [45]. The postulated mechanism involves the

anti-angiogenesis effects of curcumin via the downregulation of vascular endothelial growth

factor (VEGF), an angiogenesis biomarker, and cyclooxygenase-2 (COX-2) in the EGFR sig-

nalling pathways. In a different animal model using 6-gingerol, reduction in tumour volume

and tumour height in HeLa-implanted (nu/nu) nude mice was observed via reactivation of

p53 and oxidative stress biomarker malondialdehyde (MDA) through proteasomal inhibition

[51]. Pei et al. [35] has subjected HeLa xenograft BALB/c nude mice to 6-shogaol. The study

reported that 6-shogaol inhibited tumour growth and induced apoptosis without causing body

weight loss and/or damage to important organs.

Study limitations

Nevertheless, this systematic review is not without limitations. Most of the included studies

employed an in-vitro model. In-vitro cell culture may not account for the interactions between

physiological processes, metabolic processes, and other cellular mechanisms that occur in an

organ system when subjected to the studied bioactive compounds. Consequently, the limita-

tions of in-vitro studies may impact the generalizability of findings to clinical settings. The lim-

ited robustness of preclinical research has been identified as one of the drivers of clinical trial

failure [75]. Without validation through in-vivo studies, findings from in-vitro may lead to
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overestimations or misinterpretations of the efficacy and safety of the treatments when applied

to human subjects. Although the overall risk of bias for most in-vitro studies assessed was

judged as low, indicating reliable study outcomes, additional in-vivo studies are necessary to

ascertain the effectiveness and safety profile of the bioactive compounds. Furthermore, the

exclusion of 12 studies due to unavailability may have hindered a comprehensive evaluation of

the included studies and skewed the overall assessment of their chemotherapeutic potentials

on the anti-cancer effects of the compound of interest. Another limitation is a lack of research

on the combination of curcumin, gingerol and/or shogaol in the treatment of cervical cancer.

Combination treatment has been shown to enhance cytotoxicity towards cervical cancer cells

and reduce the required concentrations of compounds/drugs, leading to fewer side effects.

Future research directions

In this review, the reporting of IC50 values reveal significant variability, indicating inconsisten-

cies of IC50, which could result in irreproducible experimental outcomes. The systematic IC50

errors caused by uneven cell proliferation were found to be the most significant in terms of

their misleading effects [76]. It was reported that the IC50 values for cisplatin could vary signifi-

cantly based on cell density and proliferation potential, highlighting the importance of control-

ling this variable. It was proposed by He and his team that inconsistencies in IC50 values are

natural properties of cancer cells rather than remedial artifacts [76]. Nevertheless, there should

be a concerted effort to improve the reporting of IC50, especially in pharmacotherapeutic stud-

ies, to ensure consistency and reliability in research findings. Previously, Haibe-Kains et al.

[77] suggested the establishment of an international standard for definite IC50 in each cancer

cell line, whereas, Punyamurtala et al. [78] described density-dependent IC50 variations as a

hallmark of cancer cells and proposed that IC50-seeding density slope (ISDS) serve as a stan-

dardized method for assessing therapeutic treatment.

Challenges may exist related to the isolation and purification of these bioactive compounds

due to the complexity of the extraction process involved. Among the 27 studies reviewed, 17

reported using commercially available bioactive compounds (purity�95%). Meanwhile, the

remaining studies reported self-isolation and purification, with 4 out of 10 studies reporting a

purity of�90%, indicating a high level of consistency in the quality of compounds used. The

focus on the bioactive compounds allows for a more consistent evaluation of efficacy across

studies if the purity levels are maintained. Therefore, while challenges related to the isolation

and purification of these compounds may exist, the focus on the bioactive compounds rather

than varying compositions of the extraction yield could minimise the challenges related to the

reproducibility and scalability of research findings.

Despite the evidence presented in this review, there are still potential areas to be explored in

term of understanding the anticancer effects of the studied bioactive compounds. For example,

future studies should consider exploring the long-term anticancer effect(s) of curcumin, gin-

gerol(s), and/or shogaol(s). Do they cause withdrawal effects on the cervical cancer cells’ viabil-

ity, and will this affect the cancer cells’ sensitivity towards conventional chemotherapy? Most

of the time, cancer therapy involves long-term treatment. Thus, a safe yet effective treatment is

warranted. Moreover, the lack of studies investigating the synergistic effects of curcumin, gin-

gerols, and shogaols when used in combination justifies further research. Given their diverse

mechanisms of action, it would be imperative to investigate any potential of synergy in the

combination treatments and explore their potential for use in other cancer types. Additionally,

mutations in certain mechanisms, such as apoptosis, may lead the cervical cancer cells to

develop chemoresistance. Identifying and understanding the molecular mechanism and the

targeted protein involved in chemoresistant is crucial for developing effective therapeutic
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cervical cancer. By targeting specific pathways has shown potential to enhance chemosensitiv-

ity in cervical cancer. Therefore, it is essential to explore other proteins and pathways that may

contribute to overcome the resistance mechanisms. This could help with the development of

targeted therapies aimed at improving the efficacy of bioactive compounds against chemore-

sistant cervical cancer cells. Furthermore, future research should be directed to investigate the

potential of gingerol and shogaol in modulating MDR cancer cell lines. Future research should

focus on investigating the potential of ginger and turmeric bioactive compounds as modula-

tors of multidrug resistance while simultaneously exploring other genes that may contribute to

overcoming these resistance mechanisms. The susceptibility of chemoresistant cervical cancer

cells towards these natural bioactive compounds may be explored to identify their potential as

an adjunct or alternative cancer chemotherapy. Ultimately, the shift from preclinical studies to

clinical studies is necessary to translate the anticancer effects of curcumin, gingerols, and sho-

gaols in humans with cervical cancer.

Conclusions

This review suggests that curcumin, 6-, 10-gingerols and 6-shogaols have promising prospect

to be further explored and developed into therapeutic agents for cervical cancer. Evidence

have shown that these bioactive compounds possess antiproliferative effects, induce apoptosis

and cell cycle arrest, inhibit angiogenesis and metastasis as well as increase the sensitivity of

cancer cells to drugs. Nevertheless, further studies are warranted to explore the synergistic

effects of these bioactive compounds, especially in in-vivo applications, to determine their ther-

apeutic potential on cervical cancer.
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