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ABSTRACT This study proposes a two-stage strategy to ensure the successful execution of critical
tasks. In the first stage, an Enhanced Task Offloading (ETO) algorithm is introduced to determine the
appropriate computing layer—edge, fog, or cloud—for offloading incomplete tasks. The algorithm makes
this decision by assessing the availability of idle computing resources relative to the task’s computational
requirements. Additionally, it verifies the status of the server (on/off) before offloading; if the server is
unavailable, the algorithm proceeds to check the next layer. In the second stage, the strategy employs a
Multi-objective Firefly (MFA) algorithm to assign the optimal computational device within the selected
layer. Experimental simulations compare the proposed strategy with a benchmark task offloading algorithm.
The results demonstrate the superiority of the proposed strategy, achieving reductions in energy consumption
and delay and maximizing resource utilization compared to the baseline algorithms.

INDEX TERMS Task offloading, optimization, firefly algorithm, metaheuristic, edge-fog-cloud computing,
Internet of Things, energy consumption, transmission delay, Pareto.

I. INTRODUCTION
The Information Technology (IT) sector has experienced sig-
nificant advancements, and it is projected that over 50 million
Internet of Things (IoT) devices will be connected to the
internet in the coming years [1]. Moreover, the widespread
availability of steady, high-speed internet has facilitated the
production of a wide variety of Internet of Things (IoT)
devices, which have dramatically increased over the past
decade. These devices include wearable technology, wire-
less sensors, and innovative IoT applications. On one hand,
applications such as facial recognition, natural language pro-
cessing, and augmented reality generate vast amounts of
data [2].
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This shift has led to the development of edge computing,
a distributed computing paradigm that brings data processing
and computation closer to the source where data is generated
or utilized. By minimizing the need to transmit all data to
centralized cloud servers, edge computing reduces latency,
enables real-time data analysis, and conserves bandwidth.
Notable applications of edge computing include smart homes,
autonomous vehicles, retail environments, telecommunica-
tions, environmental monitoring, and industrial IoT. This
technology enhances efficiency, responsiveness, and reliabil-
ity across various industries and use cases [3].

However, despite the advanced capabilities of smart
devices, they are still unable to efficiently handle the com-
putational demands of emerging IoT applications, such as
smart healthcare, virtual reality, and smart transportation.
These applications require substantial processing power,
which exceeds the capabilities of many devices. For example,
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running IoT applications on computers or mobile phones
often encounters limitations due to restricted battery life,
processing power, and storage capacity [4]. These limitations
make it challenging to process IoT applications on mobile
devices, necessitating the use of alternative resources to com-
plete the operations. To overcome these restrictions and meet
the requirements of computation-intensive, delay-sensitive
tasks, offloading tasks to cloud computing is essential. Cloud
computing, as a centralized platform with abundant compu-
tational resources, enables the remote processing and storage
of complex tasks [5].

Despite the significant benefits of cloud computing, several
limitations persist. Cloud data centres may struggle to handle
the continuous requests from IoT devices due to the consider-
able distance between the cloud and end-user devices. Trans-
mitting large volumes of data over the internet to remote cloud
data centres consumes significant bandwidth and results in
network delays [6]. Fog computing addresses the shortcom-
ings of cloud computing but does not replace it. Instead,
it serves as a bridge between IoT devices and cloud com-
puting. Fog computing consists of multiple heterogeneous
devices, such as base stations, routers, switches, and surveil-
lance cameras, which are ubiquitously connected and can
be deployed in locations like power poles, vehicles, and
commercial centers. The primary role of fog computing is
to process simple, delay-sensitive tasks that require imme-
diate responses, leveraging the shorter distance between
IoT devices and fog nodes. These decentralized devices,
positioned at the edge of the network, provide real-time pro-
cessing of raw data from sensors. Therefore, task offloading
plays a crucial role in ensuring efficient task processing [7].

ask offloading is a decision-making process that deter-
mines where the tasks of IoT applications should be
offloaded—either to a specific fog node or cloud server—
based on the application’s requirements and the availability of
resources on the nodes. It involves transferring certain tasks
remotely to fog nodes or cloud servers to address the chal-
lenge of running resource-intensive applications on devices
with limited resources. Once the tasks are executed remotely,
the results are sent back to the terminal devices to enable the
IoT applications to function [8].

However, the dynamic nature of the IoT environment
presents various challenges that must be addressed. One sig-
nificant issue is the offloading of tasks when a resource node
leaves the system due to technical failure or power outage. For
instance, in an intensive care unit, patients’ vital signs must
be monitored in real-time, with notifications sent to doctors
to provide immediate medical attention in emergencies. If a
sensor device shuts down, it could jeopardize patients’ lives.
Additionally, offloading tasks to the cloud can reduce energy
consumption on users’ devices but may introduce transmis-
sion delays due to the long distance between IoT devices
and cloud data centers. Conversely, offloading tasks to fog
nodes minimizes transmission delays due to their proxim-
ity but increases the energy consumption of users’ devices.

Therefore, optimizing both delay and energy consumption is
essential to improving task offloading efficiency.

As a result, researchers and developers have focused on
enhancing various strategies for task offloading in cloud-fog
environments to enable the remote execution of IoT appli-
cations across distributed resources, such as fog nodes and
cloud servers, rather than relying on terminal devices. Task
offloading has thus emerged as an optimization problem,
typically addressed using two common approaches: optimal
and heuristic. Optimal approaches provide the best possible
solutions but often require longer execution times due to
their high complexity, making them suitable primarily for
small-scale problems. In contrast, heuristic approaches are
less complex, ensure minimal execution time, reduce energy
consumption, and are better suited for distributed computing
environments. Additionally, heuristic approaches offer near-
optimal solutions [9].

Various techniques have been proposed for offloading
tasks to appropriate computational devices based on con-
flicting Quality of Service (QoS) parameters, such as
energy consumption, delay, cost, and makespan. Optimiz-
ing multiple conflicting objectives falls under the category
of Multi-objective Optimization Problems (MOPs), which
are addressed by identifying a set of trade-off solutions,
known as the Pareto front. There are two common strate-
gies for solving MOPs: the first involves finding a set of
Pareto-optimal solutions in a single run, while the second
utilizes a non-Pareto approach based on decomposition meth-
ods [10] Both approaches aim to find optimal solutions for
MOPs. Recently, many studies have focused on employing
meta-heuristic algorithms to solve MOPs due to their lower
complexity, which results in reduced execution time [11]. The
Firefly algorithm, while a well-known optimization method,
has yet to be fully explored for task offloading in solving
MOPs within cloud-fog computing environments.

The Firefly algorithm is a meta-heuristic optimization
technique within the field of swarm intelligence, developed
by Yang. It mimics the swarming and flashing behaviours of
tropical fireflies [9]. The Firefly Algorithm (FA) is a high-
level, problem-independent method that incorporates a set
of strategies and rules for finding solutions. Additionally,
FA excels at handling multimodal functions more efficiently
and intuitively [12]. The strategy of the Firefly Algorithm
(FA) is based on fireflies being attracted to others with higher
flash intensity values. Fireflies can divide and regroup into
subgroups due to the stronger attraction between nearby fire-
flies compared to those at longer distances. This allows each
subgroup to converge around a local optimum. Since light
intensity decreases with distance, the attraction between fire-
flies can be either local or global, depending on the absorption
coefficient.

The main advantage of the FA algorithm is its speed
compared to other meta-heuristic algorithms, ensuring min-
imal execution time and energy consumption. For instance,
FA outperforms the PSO algorithm in terms of nearby
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attraction and automated regrouping, making FA popular due
to its accuracy and fast convergence in finding solutions [13].
The Firefly Algorithm (FA) enhances convergence speed
due to its global search capabilities. Moreover, as iterations
progress, FA reduces problem randomness, leading to more
precise results. The goal of convergence in optimization algo-
rithms is to achieve global or near-global solutions, often
providing better outcomes than traditional techniques [14].
optimum, rather than making large jumps as seen in genetic
algorithm techniques. This approach ensures a higher likeli-
hood of obtaining optimal solutions [12].
The Firefly Algorithm (FA) is traditionally designed for

solving single-objective problems, but its inherent features
make it well-suited for addressing Multi-objective Optimiza-
tion Problems (MOPs) as well [15].

This study extends the existing research by addressing the
challenge of checking resource availability before task trans-
fer and selecting the optimal computing device to maximize
resource utilization. It proposes a Multi-objective Firefly
Algorithm (MFA) as a solution for task offloading in cloud-
fog computing. The MFA algorithm ensures that unfinished
tasks are transferred to a suitable layer, allowing them to be
completed on another node when the resource node leaves
the system. The primary objectives are to reduce delay and
energy consumption.

The main contributions of this study are as follows:

• A mathematical framework with queue theory which is
a renowned and extensively utilized method to manage
the flow of data within a network and in this study was
developed to reduce power consumption and transmis-
sion delay via efficient task offloading.

• Enhanced Task offloading to select the suitable among
computing layer among edge-fog-cloud for offloading
unfinished tasks based on task computing unit.

• AMulti-objectives Firefly (MFA) algorithm is proposed
for offloading unfinished tasks to another suitable com-
putational resource in the selected layer by finding the
optimal computation device instead of randomly select-
ing. The main objectives of the MFA algorithm are to
reduce the transmission delay and energy consumption
during tasks offloading in cloud-fog computing.

• The simulation results demonstrate that the proposed
algorithm outperforms the Task offloading and PSO
algorithms in reducing delay and energy consumption by
25% and 23%, respectively andmaximizing the resource
utilization by 86%.

The remainder of this paper is organized as follows: The
‘‘Cloud-Fog Cooperation System’’ section presents a math-
ematical framework of a fog-cloud cooperation system using
queueing theory. The ‘‘Description of Delay and Energy Con-
sumption’’ section outlines the functions of delay and energy
consumption across the three layers (Edge-Fog-Cloud). The
‘‘Task Offloading Algorithm’’ section explains the strategy
for selecting the appropriate layer for task offloading. The
‘‘Multi-objective Firefly (MFA) Algorithm’’ section details

how to select suitable computational devices to maintain QoS
by reducing delay and energy consumption. The ‘‘Simulation
Settings and Results’’ section provides a brief description
of the simulation process and outcomes. Finally, the ‘‘Con-
clusion’’ section summarizes the study’s main findings,
limitations, and suggestions for future work.

II. RELATED WORK
Several studies have been conducted to address the task
offloading problem in cloud-fog computing systems. This
section reviews the strengths and weaknesses of existing
offloading strategies in a fog-cloud environment, focusing
on various QoS parameters [16]. This study addresses the
problem of task offloading when a node leaves the system
by transferring unfinished tasks to another node based on
the idle rate. The main goal is to reduce delay and energy
consumption in edge-fog-cloud computing by proposing a
task offloading algorithm. However, the study only focuses
on offloading tasks according to the computation unit.

Where in [17] A joint energy-efficient task assign-
ment (JEETA) has been proposed, utilizing the dynamic
application-partitioning algorithm (DAPTS) to determine
whether tasks should be offloaded in heterogeneous
cloud-fog computing environments while aiming to reduce
energy consumption. However, the proposed algorithm
resulted in increased response time due to the distribution of
computation across different locations. Regard to [18] a new
Microservice Container Fog System (MSCFS) framework
has been proposed to address the challenges of running
mobility and delay-sensitive applications with minimal cost.
Additionally, the Cost-Aware Computational Offloading and
Task Scheduling (CACOTS) framework was introduced to
solve the task scheduling problem through multiple phases,
including task sequencing, resource matching, and schedul-
ing. However, the proposed algorithm could be further
improved by considering transient failures.

In contrast, [3] The problem of computation offloading
and task scheduling for DNN-based applications in cloud-
fog environments has been formulated using greedy and
genetic algorithm-based approaches, with the aim of reducing
delay. However, this strategy suffers from high complexity,
which increases execution time and, consequently, energy
consumption.

Correspondingly, [19] The problem of computation
offloading in cloud-fog computing has been addressed by
proposing a method that jointly optimizes offloading deci-
sions using Successive Convex Approximation (SDR) and
random extraction for decision-making, alongside the allo-
cation of computational resources. This approach aims to
minimize the maximum weighted cost of delay and energy
consumption (EC) across all user equipment (UEs), a mixed-
integer non-linear programming problem. However, this
strategy, classified as an exact approach, consumes high
energy and does not fully meet the requirements on the fog
node side.
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Additionally, [20] The resource scheduling and task
offloading problem in hybrid cloud-fog computing has been
addressed by proposing two efficient algorithms based on
a deep reinforcement learning framework. These algorithms
aim to reduce the weighted sum of energy, time, and rent
cost (ETRC). However, the adoption of artificial intelligence
increases the complexity and execution time compared to
meta-heuristic approaches.

In line with, [5] proposes a three-tier Cloud of Things
(CoT) architecture and a task offloading mathematical model
to manage incoming tasks from IoT devices. The model
determines whether to offload tasks to the fog, cloud, or col-
laboratively to both based on execution time, delay, and
energy consumption. However, the presence of a gateway
increases energy consumption and system overload.

Similarly, [21] The computation offloading process in
cloud-fog computing has been investigated by proposing
an optimization strategy that models the interactions of the
offloading process based on microeconomic theory, aiming
to minimize energy consumption. However, this approach
results in long execution times for offloading decisions.

Indeed, [22] a new intelligent computation offloading
strategy has been proposed using the MEC (Mobile Edge
Computing) architecture and adopting artificial intelligence
(AI) technology in cloud-fog computing. The prediction strat-
egy is based on the LSTM (Long Short-Term Memory)
algorithm to offload tasks and reduce task delay. How-
ever, it does not implement fine-grained caching, offloading,
and scheduling of computation tasks, which could further
improve the efficiency of computation offloading.

Regard to [2] a new task offloading approach has been
proposed to optimally decide when and where to offload
tasks—either to a fog node or a cloud server—to reduce delay,
maximize task execution, and balance the load, using a Q-
learning-based algorithm. However, the approach becomes
less efficient as the number of fog nodes exceeds 15, leading
to increased system complexity.

As mentioned in [14] a sustainable infrastructure
for fog-cloud computing has been proposed to process
resource-intensive and delay-sensitive applications. The
strategy involves offloading tasks using the Firefly Algorithm
to identify the optimal computational device based on compu-
tational time and energy consumption, while also managing
delay. However, the approach does not account for task
prioritization during offloading.

As others have highlighted [23] A game-theoretic
approach has been proposed for the computation offloading
decision-making problem across multiple mobile terminal
devices in mobile-edge cloud computing, based on Nash
equilibrium. However, this study does not account for QoS
parameters or address the issue ofmobile users leaving during
the computation process.

As reported in [24] the problem of reducing makespan
while maintaining the heterogeneity of cloud-fog computing
has been addressed by formulating it as a Mixed Integer
Linear Programming (MILP) model and proposing an opti-

mal approach using the Logic-Based Benders Decomposition
(LBBD) principle in cooperation with MILP. However,
LBBD may not be the most efficient option for finding the
optimal solution, as increasing communication overhead can
reduce overall efficiency.

Referring to [25] an Optimal Joint Data Center (DC),
Offloading, and Resource Allocation (JCORA) strategy has
been proposed for joint DC and computation offloading
in hierarchical fog-cloud computing to minimize the max-
imum weighted energy and service delay cost (WEDC).
However, this strategy has high complexity, leading to
increased energy consumption. Even more, computational
load incurred. According to a study in [26] the problem
of hybrid computation offloading has been investigated,
focusing on maintaining the various computational and com-
munication capabilities of two offloading destinations to
reduce both communication and computation energy con-
sumption while ensuring the completion of tasks within delay
constraints. However, more QoS parameters should be con-
sidered to effectively evaluate the overall performance.

As mention in [27] Computation offloading in mobile-
cloud-edge environments, involving multiple Wireless
Devices (WDs) equipped with energy harvesting capabilities
to collect renewable energy from the environment, has been
addressed. However, the strategy incurs longer execution
times during task scheduling, and the overall system utility
converges once the energy arrival rate reaches a certain
threshold.

In [28] a relative value algorithm was designed to deter-
mine the optimal task offloading scheme and improve the
total long-term reward of the Vehicular Fog-Cloud Comput-
ing (VFCC) system. The study formulated the task offloading
problem in the VFCC system as a semi-Markov decision pro-
cess (SMDP) to enhance the system’s long-term performance.
However, the study could be improved by addressing the peri-
odic arrival of vehicles. Even more, [29] the study explored
computation offloading in cloud-fog computing with non-
orthogonal multiple access (NOMA) and addressed resource
allocation by proposing an integrated fog-cloud approach.
This approach offloads tasks to nearby fog nodes or cloud
centers cooperatively to reduce energy costs and delay. How-
ever, the study did not optimize resource utilization, leading
to increased energy consumption as usage increased.

As mention in [30] the problem of task offloading in
cloud-fog computing has been discussed, with a proposed
strategy based on fuzzy logic algorithms. This approach
considers task requirements (e.g., CPU demand, network
demand, and delay sensitivity), resource utilization, and
resource heterogeneity. The strategy also addresses task
scheduling in cloud-fog computing, focusing on factors such
as average processing delay, network delay, service time,
VM utilization, and task failure. However, assigning priority
to large computational resources leads to increased energy
consumption.

In [31] the study focused on computation offloading in
cloud-fog computing, taking into account the diverse com-
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putational, communication, and security capabilities. The
proposed algorithms, MO and GO, aim to increase the cloud-
fog provider’s revenue without compromising performance
or security requirements, while also reducing costs. However,
there is resource wastage when extra CPU is allocated to
offload tasks to servers with higher security levels.

In contrast, [32] the study discussed computation offload-
ing in marine vehicular cloud-fog computing for Unmanned
Surface Vehicle (USV) clusters. The proposed mechanism
is an optimized learning-based computation task offloading
approach, namely the Adaptive Upper Confidence Bound
(AUCB) algorithm, based on Multi-Armed Bandit (MAB)
theory, aimed at reducing the average computation task
offloading delay. However, it requires further optimization
to decrease the cost of exploration and achieve balanced
computing performance.

In line with [33] the study formulated resource allocation
and computation offloading as time cost and energy min-
imization problems, addressed by the proposed ETCORA
algorithm. However, it did not fully leverage resource
utilization.

Regard to [34] the study investigated the placement
of Virtual Machines (VMs) in cloud-fog computing to
reduce energy consumption. However, it should also consider
resource utilization to further improve system performance.

Where in [35] the study formulated the energy-efficient
computation offloading and dynamic resource scheduling
(eoDS) problem, addressing it through the proposed eoDS
algorithm to reduce completion time and energy consump-
tion. However, the approach did not take resource utilization
into account.

Referring to [36] the study discussed the problem of
dynamic task offloading, focusing on deciding where tasks
should be offloaded based on application requirements, com-
putation needs, and data to select the appropriate resources.
A machine learning-regression algorithm was proposed to
address this. However, the algorithm has high complex-
ity, leading to longer execution times compared to other
algorithms.

Reference [37] an optimal joint offloading scheme based
on resource occupancy prediction has been proposed to
address the problem of computation offloading with limited
edge resources. The scheme aims to minimize the average
task delay and reduce the task offloading failure rate. How-
ever, when processing tasks in real-time, the CPU frequently
performs a series of data fetch operations (reading and pro-
cessing packets) initiated by parallel threads. This can result
in the CPU becoming a bottleneck in overall computing
performance.

Most recent studies on task offloading have primarily
focused on either fog-cloud or edge-cloud computing. How-
ever, the few studies that address edge-fog-cloud computing
often overlook the varying nature of each platform when
considering optimization objectives. Hence, offloading tasks
to fog computing will reduce the delay due to the short
distance to the IoT devices while increasing the consumption

of users’ energy. In contrast, offloading tasks to the cloud
will reduce the consumption of users’ energy but increase
the transmission delay due to the extended distance from the
cloud data center to the IoT devices. As a result, offloading
tasks across different platforms simultaneously presents sig-
nificant challenges in optimizing conflicting objectives.

Even more, most studies solved the problem of task
offloading through an optimal approach. Whereas the opti-
mal approach is highly complex, increasing the execution
and energy consumption. Therefore, the heuristic approach
is consistent approach with the aim of this study, which is
concerned with reducing delay and energy consumption in
cloud-fog computing.

Based on the points discussed, this study has selected the
Firefly Algorithm (FA) over other heuristic algorithms due
to its ability to quickly obtain optimal solutions during task
offloading. Additionally, FA is capable of efficiently address-
ing complex optimization problems that involve multiple
conflicting objectives [12]. Therefore, this research proposes
an improved Multi-Objective Firefly Algorithm (MFA) to
optimize the conflicting objectives in offloading tasks across
edge-fog-cloud computing using a multi-objective optimiza-
tion approach, see Table 1.

III. SYSTEM MODEL DESCRIPTION
The cloud-fog system architecture in Figure 1 was
adopted [16] because of its simplicity and feasibility of
implementation. The system comprises M end devices that
communicate with each other via wireless links, F fog nodes,
and C cloud servers. Terminal devices communicate with
each other via a wireless channel. Fog nodes communicate
directly with the terminal devices. The role of fog nodes is
to provide services to end-user devices. Cloud servers are
responsible for fog nodes.Whereas, the trafficmodel captures
a variant of the power and capacity.

The modeling of the entire cloud-fog computing system
using Poisson processes that are utilized in scenarios where
when the continuous occurrences of specific events which
appear to occur at the specific rate, but randomly. Also, the
wireless channels between terminal devices and fog required
an exponentially distributed [38].

The traffic model follows an M/M/1 queue at the end
devices, M/M/C queue at the fog node, and M/M/∞ queue
at the cloud server. The task is characterized by the number
of tasks, length of the task input It , task deadline dt , flag of
task execution ut , and required computing unit by task ψt .
See Table 2 for the primer notations.

IV. DELAY DESCRIPTION AND ENERGY DESCRIPTION
This section to describe the main equations of energy con-
sumption and delay on (Edge-Fog-Cloud) that implemented
in the study [14].

A. EDGE COMPUTING
It refers to End user devices and the study assume the service
rate asµ of the end-user device i follows an exponential distri-
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TABLE 1. Summary of notations.

bution, with anM/M/1 task queue. In addition, the generation
of tasks from the end device is based on at Poisson process
with an average arrival rate λ. Ped is the power of end-device i
and Ted is its processing time. The power consumption of X ied
for the task’s execution at the end device calculated by [16].

Pied ≜ Ted×Ped =
X ied
µ− λ

×Ped (1)

We consider computing latency because tasks performed on
mobile terminal devices have little communication delay.
As deduced from queue theory, the delay is described as

Died ≜
λ

µ (µ− λ)
. (2)

B. FOG COMPUTING
The task queue in fog node j is modelled as M/M/C. The
power consumption reflects the amount of computation,
which is a monotonically increasing and strictly convex
function. Quadratic and piecewise linear functions are two
alternatives to this function [39] Fog nodes can flexibly adapt
to any function of energy consumption as long as they meet
these two attributes:1) there is a direct relationship; that is,
increasing energy consumption increases the computation
amount. 2) The power consumptionmargin increases for each
fog device. The power energy expression Pjfog of the fog node

is related to the workload Y jfog as follows:

Pjfog ≜ aY j
2

fog + bY
j
fog + c (3)

where a> 0 and b and, c ≥ 0 are pre-determined parameters.
The fog node j consists of both communication and com-

puting delays. The computing delayDcomfog is related to waiting
time. Using queue theory, we can express the computing

delay as follows:

Dcomfog ≜
QL
λ
×Y jfog (4)

where Y jfog is the workload allocated to fog node j and. QL
is the average queue length. As a result of task execution at
the fog node, communication is related to the input length of
the tasks. The communication delay Dcommj is expressed as
follow

Fcomm (It) ≜

{
yIt utϵcloud
εIt ut ∈ fog

(5)

where Ig is the input length of the task t ( γ≫ε ). Therefore,
the communication delay of the fog node is Dcommfog = εIg.
The fog node delay is composed of computing and commu-
nication delays, which can be expressed as follows:

Djfog ≜= Dcomfog + D
comm
fog (6)

C. CLOUD COMPUTING
For cloud server k, the task queue is modelled as an M/M/
∞ queue. Assuming that every cloud server has several
homogeneous computing machines and that the CPU fre-
quency of all machines is equal, this implies that the energy
consumption for all servers is the same. The approximate
power consumed by every machine on cloud server k can
be obtained by utilizing the frequency of the CPU machine
function. fk :AkZ kcloud + Bk , where Ak and Bk are positive
constants [40] Assigning more workload to the cloud server
implies more power-on. Whenever the assigned workload
decreases, some cloud servers are turned off to save energy.
The power consumption of the cloud server Pkcloud is related
to the on/off state of the machine.

Pkcloud ≜ σknk (akZ kcloud + bk ), (7)

where ak and bk are the positive constants. σk indicates the
on/off state of cloud server k, where 1 denotes the cloud server
on and 0 indicates its off state. nk denotes the number of
on-state machines on the cloud server. Owing to the heavy
computational resources of cloud servers, the computing
delay can be assumed to be negligible; thus, the delay is the
communication delay that defines as:

Dkcloud ≜ γ Ii (8)

V. ENHANCES TASK OFFLOADING ALGORITHM
According to the dynamic nature of the IoT network, one
computing may leave the system due to the power-off. Thus,
offloading tasks to another computational device is manda-
tory to guarantee the execution of the unfinished tasks.

The main challenge is completing the uncompleted tasks
in the queue. This research has solved this problem in to
two stages. First, selecting suitable computing layer using
Enhanced TaskOffloading algorithmwhich extend from [16].
Second, after selecting the layer, the MFA algorithm will
choose the optimal computational device, as shown in
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Figure 2 The Enhance Task Offloading algorithm is sum-
marized in Algorithm 1 that offload unfinished tasks to the
suitable layer.

C j
idle = (1− δi)Ci (9)

where δi is the current CPU utilization rate, Ci is the total
computing cell of the devices, ut indicates the task execution
flag where 1,2, and 3 refer to Md, FN, CS respectively.

Assuming there are n1 Edge computing and n2 Fog com-
puting. In case the tasks will offload to the computing in the
belonging layer. First, it must satisfy the conditions; 1) check
the status of computing where σk = (1, 0) to indicates the
on/off power. 2) The idle computing resource of the Edge
computing is more than computing unit of task ψt . Then, if
the Edge computing have enough idle computing resources
to complete task t . Then, the task flag will change to ut =
1, which means tasks will offload to the layer of the Edge
computing using the MFFA Algorithm to find the optimal
computational device. Otherwise, the task flag will change
to ut = 2, which means the tasks will offload to the Fog layer
to complete unfinished tasks in the queue using the MFFA
Algorithm to find the optimal computational device in case
the tasks satisfy the layer condition. Otherwise, offload to the
Cloud Computing.

Where σk indicates the status of server [1 = on,0 = off],
Cidle is the idle computing resource in the layer. which is as
follows ut = 2, which means the tasks will offload to the
Fog layer to complete unfinished tasks in the queue using the
MFA Algorithm to find the optimal computational device in
case the tasks satisfy the layer condition. Otherwise, offload
to the Cloud Computing.

Algorithm 1 Enhance Task offloading Algorithm
BEGIN

1. IF (utϵ {mt}) {
2. n1 = mtnode_set()
3. FOR (i = 1; i ≤ n1; i++)
4. {IF C i

idle > ψt&σk = 1
5. (ut = 1) // edge computing
6. MFA Algorithm to find the optimal

edge computing}
7. Else
a ut = 2 // fog computing}

F (utϵ {Fog}) {
8. n2 = Fognode_set()
9. FOR(j = 1; j ≤ n2; j++)

10. {IF C j
idle > ψt&σk = 1

11. (ut = 2) // Fog Layer
12. Use MFA to find the optimal fog node}
13. Else
14. ut = 3 // cloud layer}
15. Return ut
16. End

VI. MULTI-OBJECTIVES OPTIMIZATION PROBLEM (MOP)
The main issue in this study is that offloading tasks to fog
computing will reduce the delay but increase the energy con-
sumption of the users’ devices. Concurrently, offloading tasks
to cloud computing will decrease the energy consumption of
users’ devices but increase the delay due to the long distance
between the cloud and the end users, which means vice versa.

This study is concerned with optimizing two objectives,
delay and energy consumption, and it is challenging to reduce
both of them simultaneously, which is called conflicting
objectives.

Thus, main purpose of MOP is to optimize conflicting
multi-objectives simultaneously. With m decision variables
and n objectives, it can be defined as:
Min(y = f (x) = [f1 (x) , . . . . . . . . . ,fn (x)]), where x =

(x1, . . . . . . ,xm) ϵX is an m -dimensional decision vector, X is
the search space, y = (y1, . . . . . . ,ym) ϵY is the objective
vector; and Y is the objective space.

Generally, there is no single optimal solution with respect
to other objectives. In this type of problem, the desired solu-
tion is regarded as at set of possible solutions that are optimal
for a single objective or more. These solutions are considered
Pareto optimal sets. The main Pareto concepts used in the
MOP are as follows:

(i) Pareto dominance. For two decision vectors x1 and x2,
dominance (indicated by ≺): is known as

x1 ≺ x2⇐⇒∀i fi (xi)≤fi (xi)∧∃i (xi) < fi(xi).

The decision vector x1 dominates x2, in this case, x1
outperforms x2 for at least single objective.

(ii) Pareto optimal set. Pareto optimal set Ps is the set of all
Pareto optimal decision vectors.

Ps = {x1ϵX , |∃x2 ∈X , x2≺x1,

where decision vector x1 is said to be Pareto optimal when
it is not dominated by any other decision vector, x2, in the
set.

(iii) Pareto optimal front. The Pareto optimal front PF is
an image of the Pareto optimal set in the objective space.

PF= {f (x) = (f1 (x) , . . . . . . .,fn (x)) |x∈Ps}

VII. MULTI-OBJECTIVE FIREFLY (MFA) ALGORITHM
It is one of the optimization Algorithms that are appro-
priate to solve the MOP effectively, [43]. The study has
chosen the FA algorithm to improve instead of other meta-
heuristic algorithms due to its features. First, addressing
edge-fog-cloud environments involves balancing conflicting
objectives like reducing energy consumption, delay, and opti-
mizing resource utilization, and thus the FA algorithm can
be adept at multi-objective optimization, making it suitable
for simultaneously optimizing these conflicting objectives,
as the movement of fireflies is affected by both attraction
and randomness, allowing exploration of a various solution
space [12].
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TABLE 2. Summary of related studies in task offloading.
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TABLE 2. (Continued.) Summary of related studies in task offloading.
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FIGURE 1. The cloud-fog computing architecture.

FIGURE 2. Enhance task offloading and MFA algorithms for offloading tasks in the
edge-fog-cloud computing.

Even more, the Firefly algorithm utilizes both global and
local search mechanisms. In task offloading, there’s a require
to search for global optimal solutions while refining those
solutions locally to suit the dynamic nature of the edge, fog,
and cloud platforms. Firefly’s technique of brighter fireflies
attracting others guarantee both exploration (global search)
and exploitation (local refinement). Furthermore, according
to the highly dynamic nature of Edge-fog-cloud computing,
with fluctuating network conditions, workload variations, and
resource availability [44].

The Firefly Algorithm’s adaptability to various intensities
(brightness) allows it to dynamically adjust its search based
on current conditions, making it responsive to changes in
the environment and resources. Also, it is relatively simple
to implement compared to other optimization algorithms.
Its flexible design allows it to be customized for differ-
ent optimization problems, which is crucial for a hybrid
computing environment like edge-fog-cloud, where multiple
parameters need to be optimized based on real-time data.
In addition, task offloading in edge-fog-cloud systems often
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needs fast decision-making to ensure that performance is not
compromised.

The FA algorithm converges relatively quickly to good
solutions, which is essential for real-time offloading tasks
where delays could degrade the system’s overall perfor-
mance. Moreover, task offloading in edge-fog-cloud systems
often requires quick decision-making to ensure that perfor-
mance is not compromised [44].

The FA Algorithm converges relatively quickly to good
solutions, which is essential for real-time offloading tasks
where delays could degrade the system’s overall perfor-
mance. Besides, Edge-fog-cloud architectures can be scaled
to support a large number of devices and services. The FA
algorithm is highly scalable and can handle the complexity
of large networks with many interconnected devices and plat-
forms, ensuring that the solution remains efficient even as the
number of tasks and nodes grows. All these characteristics of
the FA algorithm make it an ideal option for offloading tasks
in edge-fog-cloud computing [12].

However, this research aims to solve the problem of unfin-
ished tasks when the computing device leaves the system by
offloading tasks to another computing device in the belonged
or upper layer by implementing Algorithm 1 and then propos-
ing the MFA, which starts after selecting the suitable layer
then finding the optimal computational device horizontally
in the same layer and deploy the unfinished tasks on that
computation device. The main objectives are reducing the
energy consumption and delay the resource utilization in
edge-fog-cloud computing. The detail of the algorithm is
discussed below in algorithm 2, which illustrates how to find
the optimal computational device in the selected layer. The
MFA algorithm process initiates sorting tasks in ascending
order according to the deadline to guarantee fast processing
of sensitive tasks and reduce transmission delay.

Then, generating a MOP function in each iteration that
indicates a fitness function based on the two QoS parameters,
energy consumption and transmission delay.

The fitness function based on combining the objectives into
one objective using a weighted-sum approach:

Then, generating a MOP function in each iteration that
indicates a Fitness Function based on the two QoS param-
eters, energy consumption and delay that are calculated
according to selected platform that are clarified in IV
Section [16]. The Fitness Function based on combining the
objectives into one objective using a weighted-sum approach:

Fn = Min(α1.Total Energy)+ ((1− α2).Total Delay) (10)

where Fn is the fitness function value for measuring the opti-
mal degree of executing devices to assign tasks to the suitable
computing devices. Where (α1&(α2) are refer to the priority
of the objectives. Hence, α is the Energy-delay balance factor
where α (α ϵ [0, 1]) is the balance coefficient between total
Energy and total delay. α = 0.5 means that total Energy and
total Delay have same priority in optimizing. When α > 0.5,
our mechanism focuses onminimizing the energy with higher
priority than total delay, which is the case task will be late to

obtain minimum energy consumption. Inversely, when α <
0.5, the Delay is more prioritized than Energy, i.e., the user
has an instant better task delay.

In the MFA Algorithm finding the optimal computational
devices depending on the light intensity variation of the
Fireflies and attractiveness function. Thus, for minimum opti-
mization problem [13], the computing server light intensity
represented by (Firefly) at specific location x can be selected
as IS (x) ∝ F (x) . The light intensity of the computing
server position varies with the distance r and is expressed as
follows [14].

IS i (r) = IS0i.e−γ r
2

(11)

where IS0 indicates the source computing device light inten-
sity, Si referred to the index of computing resource, γ
represents a fixed light absorption coefficient. Generally, the
light intensity is associated with the minimization problem
unlike the Fitness Function.

The attractiveness AS depends on the distance r and is
expressed as follows [14].

AS i = AS0i.e−γ r
2

(12)

The above equations attractiveness function is appropriate
for single objective. So, the attractiveness function requires
improving it to MOP, which will enhance the problem’s ran-
domness and convergence speed by the normalization which
can be expressed as:

FN r (di) =
fr (di)− f minr

f maxr − f minr
(13)

The normalization of each objective of the particle while find-
ing the optimal executing devices is based on the maximum
and minimum value of the associated objective function.
The essential role of normalizing the objective function is
eliminating the effect of different amplitudes on multiple
objectives. Where r indicates the total number of objectives
of computational device di, f maxr , f minr are the maximum
and minimum fitness function value of rth objective that
are gotten from non-dominated solution among the available
devices. In line 16, in each iteration the condition conducting
to compare the new FN j and previous FN i result. In case
the new result of FN j is better, then calculating the distance
between two computational devices. In case the FN j < FN l
not satisfy the IF condition, it means the new result of FN j
is not better than previous one FN i, then find the optimal
device according to [14]. Otherwise, calculate the modified
attractiveness function in equation (6.5). The MFA algorithm
pointed to the ideal computing device in line with the mini-
mum ED value, defined as:

gbest (di) = min

√∑2

x=1
ED(fr (di) , fr

(
dj

)
)

=

√∑2

x=1
ED(fr (di)− fr

(
dj

)
)2 (14)
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where ED value ED ( di, dj) between two particles di and di
in 2-D space is defined as:

ED
(
fr (di) , fr

(
dj

))
=

{
(fr (di)− fr

(
dj

)
IF (

(
fr (di) > fr

(
dj

))
0 Otherwise

(15)

After that, comparing Pareto dominance relation between the
computing and put the non-dominance one. Then select the
one device with minimum utilization rate from the set as
the attractiveness one to reduce the delay that expressed as
follow [45].

utilization rate URn =
VMs requested MIPS
VMs available MIPS

∗ 100 (16)

Consequently, update the position of the computational
device as:

di+1 = di + β0e
−γ v2ij

(
dj + di

)
+ αεi (17)

where β0 is the initial attractiveness at r = 0, α being the
randomization parameter in the interval [0, 1], ε is a vector
of random numbers drawn from the uniform distribution.
Finally, the parameter γ represents the variation of the attrac-
tiveness, and its value helps to determine the speed of the
convergence of the algorithm. In most cases, the values of,
γ vary [0.01, 100]. However, in line 31 if the condition of
(FNj ≤ 1) does not satisfied, then the algorithm randomly
generated new FFmin solutions are considered as fireflies to
find optimal as in [14]:

FFmin = FFmin + α.Rand(1/2) (18)

Thus, it supposed to improve the speed of convergence
during selecting the execution component of MFA algorithm
and finding the appropriate devices for every unfinished task
with maintaining the QoS objectives.

VIII. SIMULATION SETTINGS
This section to verify the effectiveness of the proposed MFA
algorithm for Task offloading to complete unfinished tasks
during the processing. we investigate the performance of
the proposed MFA algorithm for task offloading by evalu-
ating various QoS parameters such as energy consumption
and delay recording to the calculation on the section IV.
In addition, The evaluation conducting between the proposed
algorithm (MFA) with the existing algorithm that proposed
in [14] and PSO algorithm in reducing the two objectives
energy consumption and delay. Even more, the study con-
ducting the comparison based on maximizing the resource
utilization as performance metric. It determines the suitable
utilizing of resources that are giving to the user to schedule
the workload by exploiting the idle time gaps. Resource
utilization can be calculating as [46]

AVG resource utilization =

∑N
i=1 TVM i

Makespan× N
(19)

where TVM i is the time taken by the VM i to finish all tasks,
and N is the number of resources.

Algorithm 2Multi-objectives Firefly (MFA) Algorithm
Input: Set the objectives of computational devices;
Define the constant values of n, I0, a, γ
Output:Finding the optimal device
BEGIN
Initialize
Temp=0;
Q[] = ∅
Min=arr [0]

1. Q← t; // receiving tasks then insert to the Queue
2. For (i = 1; i ≤ t; i++){ // sorting tasks in ascending

according to the deadline
3. For (int j = i+ 1; j < length; j++){
4. IF(arr [i] > arr [j]) {
5. temp = arr [i] ;
6. arr [i] = arr [j] ;
7. arr[j] = temp;}}
8. Retrun Q} // in ascendingorder
9. For each j : 1 to N do //r= Maximum number of

iterations
10. FN j = E + (1− RU )
11. END For
12. While

(
FN j ≤ 1

)
do //1

= Threshold value
13. min = arg min FN j
14. For each i : 1 to n do
15. FN r (di) =

fr (di−f minr )
f maxr −f minr

// calculate the modified
attractiveness function

16. IF
(
FN j < FN i

)
// new FN j and previous FN i result

17. gbest (di) ∥ di − dj ∥=
√∑D

x=1 (fr (di)+ fr (dj))
2 //

Calculate the Euclidean between the computational devices
18. Compare the Pareto dominance relationship

between each pair of the computation device and put the non-
dominance ones.

19. Calculate URn =
(device requested MIPS/ device available MIPS) ∗ 100 //
calculate the resource utilization for computation devices

20. For (m = 1;m ≤ length;m++)
21. IF (arr [m] < Min)
22. Min = arr [m] ; //sorting server ascending accord-

ing to the resource utilization
23. End IF
24. END For
25. Select the computation device with minimum

resource utilization URn from the non-dominant sets as attrac-
tive ones}

26. Update the position of the computational server as in Eq. (17)
27. End if
28. End for
29. End for
30. FNmin

= FNmin
+ α.Rand(1/2) //FNmin indicates to the

minimum value of fitness function obtained from algorithm
31. Find the optimal computational device // by new value

of FNmin that obtained from Eq. (18)
32. End for
33. End

The experiments were conducted on a scenario with seven
mobile terminal devices, three fog nodes, and one cloud
server in the fog-cloud computing system. It can extend
to more mobile terminal devices, fog nodes, and cloud
servers with similar results. Examining the performance
of our method was conducting under different workloads,
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TABLE 3. Simulation key parameters.

we selected five groups of tasks. Their total workloads are 30,
50, 90, 150, and 200. The lengths of the tasks are generated
randomly because we cannot predict the task length in reality.
More or fewer tasks can achieve similarly. The experimental
study was conducted through simulations using MATLAB
R2018b on a computer equipped with a Core i7 and 8 GB
RAM machine running the Windows operating system 11 to
validate the performance of our proposed method. Validating
the proposed algorithm by performing 30 independent runs
referring to [47] that the best Pareto front achieved by 30 runs
is for providing a qualitative comparison. The simulation
parameters of the MFA algorithm are summarized in Table 3,
referring to [8], [11], and [46].

IX. RESULTS AND DISCUSSIONS
The purpose of the simulation experiments was to reduce
energy consumption and delay for IoT applications. Figure 3
demonstrates the Energy consumption for the MFA,Task
offloading algorithm [16], and PSO algorithms versus the
number of workloads [30,50,90,100,150].

The task offloading algorithm consistently shows higher
energy consumption across all workload groups compared
to the other two algorithms. While the PSO algorithm and
the MFA algorithm have much closer results in terms of
energy consumption, the MFA algorithm outperforms the
PSO slightly in most cases. MFA appears to be the best
algorithm across all workload groups due to its consistently
lower energy consumption compared to both task offload-
ing and PSO. Thus, the MFA algorithm likely incorporates
more efficient resource management and task scheduling,
which helps it adapt better to the varying number of work-
loads. It seems to balance energy consumption effectively,
even when the workload increases (as shown in the 150 and
200 workload groups). The MFA algorithm outperforms the
Task Offloading algorithm by 66.67%, depending on the
workload size. This shows that the MFA algorithm is signifi-

cantly more energy-efficient, particularly in larger workloads
like 90, 150, and 200.

Hence, compared to PSO, MFA also shows a consistent
advantage and outperforms by 11.11%. However, the gap
betweenMFA and PSO is smaller than with the Task Offload-
ing algorithm, indicating that PSO is somewhat competitive
but still less efficient overall.

MFA is the best algorithm because it consistently demon-
strates superior energy efficiency, particularly in larger
workloads. The percentage reductions in energy consumption
show that it scales well with increasing workloads, making it
a strong solution for edge-fog-cloud computing environments
where energy optimization is critical.

While in TABLE 4, it is obvious that across all workload
sizes, MFA outperforms Task Offloading by a significant
margin, with percentage differences ranging from 50.4% to
89.15%.

The difference becomes more pronounced as the workload
size increases, showing that MFA scales much better and is
more energy-efficient at larger workloads.

For example, at Workload 90, the difference is 89.15%,
meaning Task Offloading consumes almost twice as much
energy as MFA. Similarly, at Workload 200, MFA is 79.4%
more efficient. Whereas, the differences between PSO and
MFA are much smaller, ranging from 6.31% to 7.12%. This
shows that PSO is more competitive with MFA but still
consumes slightly more energy across all workloads.

The difference remains consistent across all workload
sizes, meaning that while PSO performs close to MFA, MFA
still consistently leads in energy efficiency.

In Figure 4, it shows that across all workload groups, the
MFA algorithm consistently demonstrates the lowest delay
compared to both Task Offloading and PSO algorithms.
As the workload increases (from 30 to 200), the difference
in delay becomes more pronounced, with the MFA algorithm
providing significant delay reduction, especially for larger
workloads.

This suggests that the MFA algorithm is more efficient in
minimizing delay, particularly in high-workload scenarios.

In TABLE 5 that presents the delay results for three algo-
rithms (Task Offloading,MFA, and PSO) across five different
workload sizes. In workload size 30 The MFA algorithm
shows the smallest delay, with the Task Offloading algorithm
having the highest delay.

MFA reduces delay by approximately 21.7% compared to
Task Offloading, and PSO reduces delay by around 16.6%
compared to Task Offloading. While in workload 50, MFA
has the lowest delay, followed by PSO, both of which out-
perform Task Offloading. MFA reduces delay by 38.2%
compared to Task Offloading, while PSO reduces delay by
about 34.1%.

Whereas in 90 workloads, MFA still demonstrates the low-
est delay, with PSO slightly higher than MFA but still better
than Task Offloading.

MFA reduces delay by 37.5%, and PSO reduces delay by
33.6% compared to Task Offloading.
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FIGURE 3. Energy consumption comparison among the MFA with comparison
algorithms via various workload size.

FIGURE 4. Delay comparison among the MFA with comparison algorithms via various
workload size.

TABLE 4. Result of energy consumption based on various workload.
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FIGURE 5. Resource utilization among the MFA with comparison algorithms via various workload size.

TABLE 5. Result of delay based on various workload between MFA algorithm and the comparison algorithms.

TABLE 6. Result of resource utilization based on various workload between MFA algorithm and the comparison algorithms.

Besides, workload size is 150 presents that MFA continues
to show the smallest delay, followed by PSO. MFA reduces
delay by 40.4%, while PSO reduces delay by 36.5% com-
pared to Task Offloading.

While in 200 workload size, MFA remains the most effec-
tive in reducing delay.

MFA reduces delay by 48.3%, and PSO reduces delay by
44.6% compared to Task Offloading.

Figure 5 which shows the average resource utilization
comparison between the Task Offloading Algorithm, PSO
Algorithm, and MFA Algorithm across different workload
groups. MFA Algorithm consistently achieved the highest
resource utilization across all workload sizes, from small (30)
to large (200). This indicates that MFA is the most efficient
algorithm for managing and maximizing the use of available
computational resources.
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While PSO Algorithm performed well but consistently
fell slightly behind MFA in resource utilization. It still
showed significantly better results than the Task Offloading
algorithm, making it a viable option but not as optimal as
MFA.

Whereas Task Offloading Algorithm had the lowest
resource utilization across all workload groups. Its ineffi-
ciency in utilizing resources becomes more pronounced as
the workload increases, suggesting it is not as effective in
managing resources compared to MFA and PSO.

In TABLE 6, MFA Algorithm consistently achieved the
highest resource utilization across all workload sizes, from
small (30) to large (200). This indicates that MFA is the most
efficient algorithm for managing and maximizing the use of
available computational resources.

PSO Algorithm performed well but consistently fell
slightly behind MFA in resource utilization. It still
showed significantly better results than the Task Offloading
algorithm, making it a viable option but not as optimal as
MFA.

Task Offloading Algorithm had the lowest resource uti-
lization across all workload groups. Its inefficiency in
utilizing resources becomes more pronounced as the work-
load increases, suggesting it is not as effective in managing
resources compared to MFA and PSO.

Overall, MFA is the most efficient algorithm for managing
energy, delay, and resource utilization, while Task Offloading
algorithm shows the weakest performance, particularly under
larger workload conditions. PSO serves as a middle ground,
performing better than Task Offloading but not as efficiently
as MFA.

X. CONCLUSION
This study proposed a strategy to complete unfinished tasks
when the computation node leaves the system by offload-
ing tasks to another node considering reducing the energy
consumption and delay. Solve the overhead load by select-
ing the optimal computation device with minimum resource
utilization.

The strategy is based on two stages: First proposed an
Enhance Task offloading Algorithm to select the appropri-
ate layer (Edge-Fog-Cloud) according to resource capacity
availability compared to the task’s computation. Then, imple-
menting the proposed Multi-objectives Firefly called the
MFA algorithm for task offloading to complete unfinished
tasks by selecting the optimal computational device with
assigning tasks to the minimum resources utilization rate to
reduce the delay and solve the load overhead. The proposed
algorithm aims to minimize power consumption and delay
objectives.

The simulation results reveal that MFA outperforms Task
Offloading algorithm the comparison approach in reducing
energy consumption and delay by about 23% and 25%,
respectively. The proposed algorithm maintains its stability
and increases linearly with increasing workloads. It proves it
can handle the enormous increase in generating requests from

IoT devices. In addition, the MFA algorithm outperforms the
benchmark by maximizing the resource utilization by 86%.

When comparing the results between the MFA and PSO
algorithms, there is a slight difference in both energy con-
sumption and delay, with MFA outperforming PSO by 6%.
This advantage is attributed to the nature of metaheuristic
algorithms, which have lower complexity, resulting in faster
processing and reduced energy consumption. However, the
difference in resource utilization is more pronounced, with
MFA achieving 96% utilization compared to PSO. This sig-
nificant improvement is due to MFA’s strategy of offloading
tasks to the most suitable platforms and selecting optimal
devices, effectively preventing idle resources.

The main limitations of this study include the considera-
tion of resource heterogeneity and the lack of discussion on
the success rate. For future work, a comparison with other
baseline algorithms will be necessary to further validate the
effectiveness of the proposed algorithm.

Additionally, this study was conducted using simulations
and holds potential for extension to real-world scenarios.
Future research could focus on optimizing additional objec-
tives such as transmission costs, computing resources, and
load balancing. Moreover, applying more advanced algo-
rithms to solve offloading problems and adopting AI-based
approaches for predicting and analyzing incoming tasks
could enhance the overall system performance.
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