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Abstract
This study aims to employ artificial neural networks (ANNs) as a novelmethod for solving time
fractional telegraph equations (TFTEs), which are typically addressed using theCaputo fractional
derivative in scientific investigations. By integratingChebyshev polynomials as a substitute for the
traditional hidden layer, computational performance is enhanced, and the range of input patterns is
broadened. A feed-forward neural network (NN)model, optimized using the adaptivemoment
estimation (Adam) technique, is utilized to refine network parameters andminimize errors.
Additionally, the Taylor series is applied to the activation function, which removes any limitation on
taking fractional derivatives during theminimization process. Several benchmark problems are
selected to evaluate the proposedmethod, and their numerical solutions are obtained. The results
demonstrate themethod’s effectiveness and accuracy, as evidenced by the close agreement between
the numerical solutions and analytical solutions.

1. Introduction

The applications of fractional calculus (FC) offer a valuable framework for addressing awide array of problems
in various scientific and technical disciplines. Recently, there has been a growing interest in FC among scientists
and academics. Research indicates that fractionalmodels often provide higher accuracy and efficiency compared
to traditionalmodels.Moreover, fractional derivative operators are essential for explaining physical processes.
Various integral and derivative operators have been introduced [1]. In recent years, fractional equations have
been utilized infields such asmechanics, physics, chemistry, biology,medicine, economics, and signal
processing tomodel a range of real-world phenomena. These phenomena include, but are not limited to, image
processing, control systems, viscoelasticity and damping, and diffusion andwave propagation. Researchers from
diverse scientific fields, includingmathematics, physics, biology, chemistry, and engineering, have extensively
explored the use of FC tomodel significant events within these domains [2–8].

OliverHeaviside introduced the telegraph equation (TE). This linear second-order hyperbolic partial
differential equation (PDE)models the current and voltage dynamics in an electrical transmission line,
considering both distance and time. As noted by [9], thismodel explains the reflection of electromagnetic waves
by thewire and the formation of wave patterns along it. The theory covers all frequency ranges addressed by
transmission lines, including high-frequency communications and direct current.While initially developed for
telegraphwires, the concept extends to conductors functioning across various frequency ranges, such as radio
waves, low frequencies, audio frequencies, and direct current pulses.Wire radio antennas, which are electrical
analogs of single-conductor transmission lines, also fall under this theory [10, 11]. The TE is applicable tomany
phenomena in electrical engineering, chemistry, biology, and the physical sciences.
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TheTEhas been solved numerically using variousmethods over time. These include the spline radial basis
functionmethod [12], the Chebyshev Taumethod [13], the Legendremultiwavelet Galerkinmethod [14], and
the homotopy perturbationmethod [15]. Othermethods employed are theChebyshev spectral collocation
method [16], the differential quadraturemethod [17], theHaarwaveletmethod [18], the Bessel functions
method [19], and the dual reciprocity boundary integral equationmethod [20].

The numerical solution of time fractional telegraph (TFT) equations has been extensively studied by various
researchers. [21] employed hybrid Legendre functions to approximate solutions to TFT equations [22].
suggested a spectralmeshless radial point interpolation approach for solving two-dimensional fractional
telegraph equations [23]. demonstrated the use of theChebyshev Taumethod for numerically solving the two-
sided fractional-order telegraph equation [24]. developed a computational Tau technique based on Legendre
polynomials for solving TFT equations . For space and time fractional telegraph equations, [25]used a novel
projected differential transform technique . The separation of variablesmethodwas employed byChen tofind
analytical solutions of TFT equations with different boundary conditions [26]. [27] investigated the Sinc-
Legendre collocation approach for solving TFT equations . Fourier and Laplace transforms have been used in
multiple studies tofind analytical solutions of TFT equations [28–30]. [31] presented an effective Legendre
wavelets approach for numerically solving TFT equations . Additionally, several researchers utilized semi-
analytical approaches to solve TFTEs [32–35].

Recently, researchers have been investigating the use ofNNmethods to solve a variety of differential
equations (DEs), including both partial and ordinaryDEs [36, 37]. This success has led to further exploration
into usingNNs for solving differential equations of fractional orders [38–40]. Here, we provide a summary of the
recent research in this area. In their pioneering work, [41] introduced a novelNN approach for addressing
differential equations, representing a significant advancement in the field. Subsequent studies have identified
several innovative features of theNNmethod [42].

• TheNN-derived solution is analytical, enabling calculations at any point within the domain.

• Coordinate transformations are unnecessary in the solution process.

• Themethod demands relatively few parameters, and its complexity does not escalate rapidlywith an increase
in sample points.

ANNs have been advanced to address awide array ofmathematical challenges, including PDEs [43], inverse
problems [44, 45], DEs [46–49], and fractional PDEs [50–52]. The recent progress underscores the effectiveness
ofNN techniques. Consequently, we leverage these innovative attributes to pioneer newmethodologies tailored
for TFTEs.

This studymakes the following specific contributions:

• This work proposes anANN, called theChebyshev neural network (CHNN), that utilizes Chebyshev
polynomials to solve TFTEs. In theCHNNmodel, Chebyshev polynomials augment input patterns by
substituting for the hidden layer, thereby eliminating the need for it. This approach leads to a reduction in
network parameters and an enhancement in computational efficiency.

• Thismethod stands apart by solving TFTEswith an unlimited selection of activation functions, achieved by
applying the Taylor series to theGaussian function. Because of its adaptability, it ismore valuable and effective
in handling TFTEs.

• This research utilized a forward-propagatingNN that was trained using theAdamoptimizer, amethod known
for its efficiency in converging during training.

The structure of the paper is as follows: section 2 provides key definitions, including some fractional
derivatives and theChebyshev polynomial. Section 3 details the approach to addressing TFTEs and delves into
the comprehensive design of theCHNN. Section 4 analyzes several examples of TFTEs by evaluating their
absolute errors. Lastly, section 5 summarizes thefindings fromour analysis.

2. Preliminary concepts andnotations

This section presents definitions of fractional derivatives andChebyshev polynomials.
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Definition 2.1. [53] defines the following Riemann-Liouville derivative ofα order:

⎧

⎨
⎪

⎩
⎪

( )
( )

( )
( )

( )
D v

k

d

d

v s

s
ds for k k

d

d
v for k

1
, 1 ,

, ,

R

k

k a k

k

k

1ò
z

a z z
a

z
z a

=
G - -

- < <

=

a

z

a+ -

Given a natural number k.

Definition 2.2.The following is the definition of theα-order Caputo derivative given by [53]:
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2.1. Chebyshev polynomial
TheChebyshev polynomial of the first kind, denoted asCHn(τ), is a polynomial of degree n in the variable τ,
defined by the equation [54]:

( ) ( ) ( ) ( )CH ncos where cos . 2.1n t j t j= =

When τ varies within the interval [−1, 1], the corresponding variablej varies within [0,π]. These intervals
are traversed in opposite directions, with τ=− 1 corresponding toj= π and τ= 1 corresponding toj= 0.

It is well known that ( )ncos j is a polynomial of degree n in ( )cos j . The basic formulas for these polynomials
are familiar:
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From equation (2.1), the first fewChebyshev polynomials can be derived directly:
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The fundamental recurrence relation for Chebyshev polynomials is given by:

( ) ( ) ( )CH CH CH n2 , 2, 3,n n n1 2t t t t= - = ¼- -

with the initial conditions:

( ) ( )CH CH1, .0 1t t t= =

3. Chebyshev neural techniques

Wegive a thorough explanation of our technique in this section. This study’s neural network design is shown in
figure 1.

A non-homogeneous TFTE can be expressed in general terms as follows :
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with the following initial and boundary conditions:
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The trial solution, parameterized byflexible parametersΘ, is represented by the expression ˆ ( ),j h Q . Thus, the
following formulation of equation (3.1) can be used:
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The trial solution, denoted as ˆ ( ),j h Q , can be represented in the followingmanner [41]:

ˆ ( ) ( ) ( ) ( ) ( ) ( )x t x x t t N, , 1 1 , . 3.4j h z hQ = + - - Q

The function ζ(x, t) solution satisfies the boundary conditions and is given by:
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Thefirst expression, ζ(x, t), is unaffected by adjustable parameters and fulfils boundary requirements. The second
formula includes the variableN(η,Θ), which represents the outcomeof theCHNN.Theparameters of theCHNN
are denoted byΘ and canbe adjustedflexibly. TheTaylor series is used to expand the activation function e z2- . The

initial four termsof the resulting series are being considered: ( )N e z
z z

, 1
2 6
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4 6
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z represents a summation inwhich each term in the expansion of the input data ismultiplied by its
correspondingweight, expressed as:
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The input vector is fed into theCHNNand is labeled as ( )x t,i
Th = . Here, the expanded input data is

represented byCHj−1(η) and the vector of weights associatedwith the neural network isΘji, where j ranges from
1 toM. Chebyshev polynomials are used to generate the improved pattern as follows:
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N(η,Θ) has aα-th derivative that takes η into account. It is as follows:
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Figure 1.Chebyshev neural network architecture.
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Thefirst and second derivatives ofN(η,Θ)with consideration for η is given by:
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The fractional partial derivative of ˆ ( ),j h Q with regard to x and t in (3.4) is represented as follows:
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The error function relating to the problems of TFTEs represented by equation (3.3) is expressed as:
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Then, weights are adjusted by using the following formula:
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Where ξ is the learning rate. The parametersβ1 andβ2, bothwithin the range (0, 1), represent the decay rates for
moment estimates. The variablesm and v serve as biased estimates for the gradient’s first and secondmoments,
respectively, and are initially set to zero. Additionally, ò is a small value, typically set to 1× 10−8, to prevent
division by zero.
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The derivative ofE(η,Θ)with respect to parameters is as follows:
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The algorithmprovided illustrates the implementation of theCHNN technique for solving TFTEs.

Algorithm1.CHNNalgorithm for solving TFTEs

Require: Solution domain [ ] [ ]0, 1 0, 1´ , l,M,k

1: for j = 1 to rdo

2: Generatemesh points ( )x t,r r within [ ] [ ]0, 1 0, 1´
3: end for

4: for l = 1 toMdo

5: Initialize randomlyweighted vectors lQ
6: end for

7: Construct CHNN functional block using input data

8: for epoch 1= to kdo

9: Compute zusing equation (3.6), ( )N ,h Q using z

10: Compute ˆ ( ),j h Q using Eq.(3.4)
11: Calculate error function ( )E ,h Q
12: Adjust weight vectorsΘ using equation (3.8)
13: end for

14: Calculate ˆ ( ),j h Q .

4. Computational results

The following section presents several instances to illustrate the efficacy of theCHNN in solving TFTEs.

Example 4.1. consider the following TFTEs [55]:
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Table 1.Comparison of analytic andCHNN results for differentα
values for Example 4.1.

Analytic
CHNN

(x,t) α = 1.95 α = 1.45 α = 1.7 α = 1.95

(0.1, 0.1) 0.1105 0.1113 0.1116 0.1119

(0.2, 0.2) 0.2447 0.2423 0.2443 0.2454

(0.3, 0.3) 0.4084 0.3972 0.4011 0.4020

(0.4, 0.4) 0.6127 0.5926 0.5955 0.5930

(0.5, 0.5) 0.8777 0.8575 0.8520 0.8416

(0.6, 0.6) 1.2386 1.2323 1.2095 1.1866

(0.7, 0.7) 1.7542 1.7713 1.7287 1.6914

(0.8, 0.8) 2.5179 2.5596 2.5081 2.4613

(0.9, 0.9) 3.6737 3.7300 3.6877 3.6462

(1, 1) 5.4366 5.4365 5.4366 5.4366
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While ( ) ( )x t t t e, x3j = + a+ and ( ) ( ( )
( )
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)f x t t t t e,
4

4
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x3 4 2a a

a
=

G +
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G +

G
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G
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a- .The sug-

gestedmethod involves utilizing a neural networkwith eight neurons to analyze input data. The input data is
processed usingmesh points placed in a 10× 10 grid that spans the region [0, 1]× [0, 1]. The neural network is
then trained for a total of 1000 epochs. The values ofβ1 andβ2 are fixed at 0.95 and 0.99, respectively. The
learning rate, denoted by ξ, is assigned a value of 0.0001, while ò is set to 1× 10−8. The outcomes of this training
for CHNNwhenα= 1.45, 1.7, and 1.95 are contrastedwith the analytical solution forα= 1.95, as presented in
table 1. Figure 2 shows visual representations of the closeness between the solutions given by theCHNNwith
α= 1.3, 1.8, and 1.95 and the analytic solution forα= 1.95. These statistics validate the exceptional precision of
theCHNNmodel in providing a very effective and close-to-perfect solution. Finally, figure 3 shows a visual
comparison between theCHNN solution and the solution obtained through themethod in [55] forα= 1.1, 1.3,
1.5, 1.7, and 1.9.

Figure 2.TheCHNN solution is illustrated in (a), (b) and (c)withα = 1.3, 1.8, 1.95, respectively and analytic solution is illustrated in
(d)withα = 1.95 for Example 4.1.
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Example 4.2.Consider the following TFTEs [55]:
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For ( )x t x t2, , 2a j= = + .A comparative investigationwas carried out to determine the efficacy of the
CHNN’s solutions against the analytic solutions. Table 2 shows thefindings forα values of 1.1, 1.7, and 1.9 ,
respectively. Figure 4 provides a visual comparison of the analytic andCHNN solutions for different vale ofα,
whilefigure 5 illustrates the comparison between theCHNN solution and the solution obtained through the
method in [55] .

Example 4.3. Let consider the following TFTEs [56]:
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Figure 3.Comparison of CHNNsolution in (a) and themethod in [55] in (b)when x = 0.1,α = 1.1, 1.3, 1.5, 1.7, 1.9 for Example 4.1.

Table 2.Comparison of analytic andCHNN results for differentα
values for Example 4.2.

Analytic
CHNN

(x,t) solution α = 1.1 α = 1.7 α = 1.9

(0.1, 0.1) 0.1100 0.1178 0.1148 0.1137

(0.2, 0.2) 0.2400 0.2646 0.2537 0.2503

(0.3, 0.3) 0.3900 0.4317 0.4135 0.4077

(0.4, 0.4) 0.5600 0.6125 0.5946 0.5869

(0.5, 0.5) 0.7500 0.8027 0.7966 0.7877

(0.6, 0.6) 0.9600 1.0013 1.0138 1.0066

(0.7, 0.7) 1.1900 1.2131 1.2333 1.2336

(0.8, 0.8) 1.4400 1.4463 1.4561 1.4624

(0.9, 0.9) 1.7100 1.7066 1.7082 1.7130

(1, 1) 2 2 2 2
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Where ( ) (
( )

( ) )f x t erf t x e,
1 2

4 x t2 2p
=

G
- + , and the error function, erf, is described as

( )erf x e dt
2 x t

0

2

òp
= - , and ( )x t e, x t2j = + .To evaluate the performance of the analytic solutions and the

CHNN, a comparative analysis was conducted. The results are presented in table 3. The analytic andCHNN
solutions are visually compared infigure 6. These comparisons validate theCHNNmodel’s ability to capture the
complexities of the given scenario.

5. Conclusion

This paper presents a novel technique for solving TFTEs by utilizing theCHNN,where the traditional hidden
layer is substitutedwithChebyshev polynomials. TheCHNN is trained using the Adamoptimizer to determine
the optimal parameters. This technique incorporates the Taylor series in activation, granting theCHNN full

Figure 4.TheCHNN solution is illustrated in (a), (b) and (c)withα = 1.3, 1.5, 1.99 respectively and analytic solution is illustrated in
(d) for Example 4.2.
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Table 3.Comparison of analytic andCHNN
solutions for Example 4.3.

(x, t) Analytic solution CHNN

(0.1, 0.1) 1.1163 1.1135

(0.2, 0.2) 1.2712 1.2591

(0.3, 0.3) 1.4769 1.4494

(0.4, 0.4) 1.7506 1.7060

(0.5, 0.5) 2.1170 2.0582

(0.6, 0.6) 2.6116 2.5432

(0.7, 0.7) 3.2870 3.2143

(0.8, 0.8) 4.2206 4.1596

(0.9, 0.9) 5.5289 5.4968

(1, 1) 7.3891 7.3891

Figure 6.The analytic solution is illustrated in (a), and theCHNN solution is illustrated in (b) for Example 4.3.

Figure 5.Comparison of CHNNsolution in (a) and themethod in [55] in (b)when x = 0.1,α = 1.1, 1.3, 1.5, 1.7, 1.9 in Example 4.2.
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authority to select the activation function, thus facilitating effectivemanagement of TFTEs. This enhancement
improves the versatility and efficacy of the procedure. The results demonstrate the efficacy and dependability of
the technique in resolving TFTEs. The proposed approach exhibits outstanding performance in solving intricate
problems, as indicated by the precision of the outcomes and the effectiveness of the approach. Future research
could focus on improving the proposedmethod by extending it to amulti-layer architecture and applying this
method to solve FPDEswith different boundary conditions or systems of FPDEs.
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