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Abstract: Accurate electricity demand forecasting is crucial for ensuring the sustainability and reli‑
ability of power systems. Least square support vector machines (LSSVM) are well suited to handle
complex non‑linear power load series. However, the less optimal regularization parameter and the
Gaussian kernel function in the LSSVM model have contributed to flawed forecasting accuracy and
random generalization ability. Thus, these parameters of LSSVM need to be chosen appropriately
using intelligent optimization algorithms. This study proposes a new hybrid model based on the
LSSVM optimized by the improved bacterial foraging optimization algorithm (IBFOA) for forecast‑
ing the short‑term daily electricity load in Peninsular Malaysia. The IBFOA based on the sine cosine
equation addresses the limitations of fixed chemotaxis constants in the original bacterial foraging
optimization algorithm (BFOA), enhancing its exploration and exploitation capabilities. Finally, the
load forecasting model based on LSSVM‑IBFOA is constructed using mean absolute percentage er‑
ror (MAPE) as the objective function. The comparative analysis demonstrates the model, achieving
the highest determination coefficient (R2) of 0.9880 and significantly reducing the average MAPE
value by 28.36%, 27.72%, and 5.47% compared to the deep neural network (DNN), LSSVM, and
LSSVM‑BFOA, respectively. Additionally, IBFOA exhibits faster convergence times compared to
BFOA, highlighting the practicality of LSSVM‑IBFOA for short‑term load forecasting.

Keywords: short‑term load forecasting; least square support vector machine (LSSVM); improved
bacterial foraging optimization algorithm (IBFOA); hybrid model; machine learning (ML)

1. Introduction
Energy is a cornerstone of sustainable development for nations worldwide. Over the

past decade, there has been an increase in global energy demand. Malaysia, among the
most highly developed states of the Southeast Asia region, has projected its total final en‑
ergy consumption to almost double by 2050, driven by an increasing urban population
and economic growth. The energy demand in Malaysia has correlated with gross domes‑
tic product (GDP) growth as the economy depends on energy‑intensive industries such as
manufacturing. However, the previous COVID‑19 pandemic’s impact disrupted the en‑
ergy demand, which has lowered the GDP growth. In 2020, Malaysia’s GDP experienced
a significant decline of 5.54%, leading to a corresponding decrease in electricity genera‑
tion (2.4%) and total final energy consumption (−0.5%), particularly within the industrial
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sector compared to 2019. Therefore, the government has planned an economic recovery
program to stimulate the economy, with an expected GDP growth of 3.44% per year from
2020 until 2030 [1]. The growth illustrates the increasing energy demand needed to achieve
the goal.

Malaysia’s energy landscape is projected to undergo a significant transformation, bal‑
ancing anticipated demand growth with a resolute transition towards renewable energy
(RE) and energy efficiency. The electricity utility in Peninsular Malaysia has set an ambi‑
tious target of achieving 20% RE capacity and attaining net‑zero emissions by 2050. This
goal will be pursued through a sustainable pathway that aims to reduce the emission inten‑
sity and halve coal generation capacity by 2035 [2]. The exponential growth and innovation
in RE are actively shaping a more interconnected and environmentally sustainable global
energy future. Accurate electricity forecasting serves a pivotal role in accelerating this
transition, offering precise insights into future energy demand and facilitating optimized
generation strategies that minimize environmental impact and maximize sustainability [3].

Based on the literature, electricity load forecasting has a different classification of fore‑
casting depending on the time spans, such as very short‑term load forecasting (VSTLF),
short‑term load forecasting (STLF), medium‑term load forecasting (MTLF), and long‑term
load forecasting (LTLF) [4]. VSTL forecasts electricity demand in minutes to hours [5]. It
helps manage building energy systems with features like energy storage and peak load
response [6]. The STLF covers a time frame of hours to days. This helps power companies
make daily decisions like spinning reserve control, optimal unit commitment, and schedul‑
ing preventive maintenance [7]. The MTLF forecasts load for periods of days to months.
It is valuable for anticipating seasonal demand variations and informing critical decisions
related to fuel purchases, maintenance planning, and utility assessments [8]. The LTLF
extends beyond one year and reaches out to two decades. It plays a critical role in strategic
planning for the power sector, guiding decisions on constructing new generation capacity
and shaping the overall landscape of power supply and delivery systems [9].

Figure 1 summarizes the different forecasting horizons (VSTLF, STLF, MTLF, and
LTLF) used in power system applications. Each horizon is characterized by its domain (ap‑
plication area), specific input data requirements, and the corresponding output metrics em‑
ployed for model evaluation. The figure further categorizes load forecasting methods into
three main types: traditional methods, machine learning methods, and hybrid methods.
Autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA), are
traditional time series methods. In contrast, support vector machines (SVM) and artificial
neural networks (ANN) are types of machine learning (ML). A hybrid method, combining
a few individual models, can potentially enhance forecasting accuracy.

Least square support vector machines (LSSVM) have been widely used in the realm of
load forecasting and have achieved good forecasting results. The optimization of LSSVM
is necessary to improve the forecasting accuracy. The bacterial foraging optimization algo‑
rithm (BFOA) has achieved better results in many fields and using BFOA to find the opti‑
mal parameters of LSSVM helps to enhance the accuracy of the model. The hybridization
of BFOA with back propagation neural network [10], multi‑layer bidirectional LSTM [11],
and ANN [12] for STLF have been found in the literature, which shows excellent perfor‑
mance in improving forecasting accuracy. However, this paper presents a novel approach
by introducing the first application of improved BFOA hybridized with LSSVM for short‑
term electricity load forecasting.

Therefore, in this study, BFOA is selected to examine its suitability and performance
when combined with LSSVM to forecast the load. Additionally, the bacteria’s constant
step size and its movement during chemotaxis are modified using a sine cosine equation to
improve BFOA, and the improved BFOA (IBFOA) is proposed. Further, the IBFOA is used
for LSSVM’s parameters optimization. Therefore, the hybrid model for load forecasting
based on LSSVM‑IBFOA is established. The hybrid of LSSVM‑IBFOA is applied for STLF
of the electricity load in Peninsular Malaysia during the pandemic period. Consequently,
the forecasting simulation illustrates the superiority of this hybrid optimization model in
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comparison to three models: deep neural network (DNN), LSSVM, and LSSVM‑BFOA.
The main contribution of the paper is as followings:
1. Regarding Malaysia’s geography and environment, the correlation between weather

variables and the load consumption that influences the forecasting process is ana‑
lyzed using Pearson’s correlation coefficient method where the findings will influence
the direction of the next generation research.

2. A novel improved bacterial foraging optimization algorithm (IBFOA) is proposed to
optimize the important parameters of the LSSVM model and enhance the forecast‑
ing accuracy of the actual electricity load demand in reflecting the sustainable power
market in Malaysia.

3. A full support validation accuracy measures are incorporated into the proposed model
to evaluate performance of the LSSVM‑IBFOA while giving such accurate load profile
demand for the power network in Malaysia.

 

Figure 1. Summary of different types of LF with respective time horizons, domains, inputs,
and outputs.

The remainder of this paper is organized as follows. Section 2 presents the previ‑
ous related work. Section 3 describes the methodology used in this study. Section 4
discussed the analysis result. Finally, Section 5 gives the conclusions of the study and
future recommendations.

2. Review of Related Work
STLF is inherently challenging due to the non‑linear, non‑stationary, and noisy nature

of electricity load time series, further complicated by multiple seasonal patterns. These
complexities arise from diverse electrical loads influenced by weather, calendar factors,
diversity of user behavior, and penetration of renewable energy solutions [13]. Due to
their direct influence on the daily electricity dispatching that powers both residents’ lives
and social production activities, STLF and VSTLF have emerged as the central research
domains within the field of power load forecasting [14]. Additionally, STLF plays a critical
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role in guaranteeing the reliability of power systems, particularly during periods of scarcity
or outage. Consequently, the development of accurate STLF methodologies is essential for
effective energy system planning, which in turn contributes to the improvement of the
country’s economic growth [15]. Hence, STLF becomes the topic of this study.

Moreover, accurately predicting electricity load necessitates careful consideration of
diverse influencing factors, as demonstrated by the strong correlations observed between
load demand and factors such as historical load data, calendar days, and weather patterns.
In this context, STLF can be characterized as a dynamic, non‑linear input and output map‑
ping function that incorporates not only historical values but also a multitude of exoge‑
nous factors, such as weather conditions [16]. For this purpose, correlation analysis plays
a pivotal role in analyzing the relationship between different factors and estimating their
interdependencies. Pearson’s correlation coefficient (PCC) analysis is a widely used and
well‑established method for this purpose [17,18]. Substantial research has employed PCC
analysis to investigate the interdependency between electrical load and weather variables
in load forecasting, as evidenced by studies such as [19–21]. The selection of appropriate
input variables can significantly expedite model development and enhance its forecasting
accuracy [22].

Different forecasting methods possess inherent strengths and weaknesses, limiting
any individual method’s ability to achieve consistently exceptional performance across di‑
verse scenarios. Motivated by the need to surpass the limitations of established forecasting
methodologies, the research in electricity load forecasting models has witnessed a rising
trend toward hybrid models. These models integrate popular techniques with modern
evolutionary algorithms and expert systems, striving to achieve high prediction accuracy
and retain interpretability simultaneously [23]. The popular ML methods used in load
forecasting are tree‑based, neural network‑based, and SVM‑based methods [24].

The SVM excels in generalization; however, its computational complexity remains
high due to the quadratic programming involving inequality constraints. In response,
LSSVM offers an improved solution by transforming these constraints into equalities, sim‑
plifying the optimization problem [25]. This significantly reduces the computational bur‑
den, making LSSVM a more attractive choice for applications in electricity load forecast‑
ing [22,26,27]. Furthermore, the inherent influence of randomly selected internal parame‑
ters on LSSVM performance necessitates the exploration of alternative optimization algo‑
rithms to enhance its learning and generalization ability.

Evolutionary algorithms, inspired by natural selection, hold promise in identifying
optimal parameter configurations for SVM, potentially leading to enhanced forecasting ac‑
curacy [28]. Among evolutionary algorithms, the BFOA garners significant recognition for
its unique strengths. It excels in simultaneously exploring a vast search space (encompass‑
ing both global and local optima) and leveraging a multi‑center approach [29]. The recent
evolution of BFOA has improved its configuration to overcome the shortcomings of stan‑
dard BFOA in terms of complexity, execution time, and convergence curve. The capability
of BFOA has yielded promising results when applied to complex optimization challenges
within the power system domain, such as load shedding [30,31], electric vehicle charging
stations [32], frequency stabilization in hydropower systems [33], control of multi‑machine
power systems [34,35], economic dispatch [36], and power distribution restoration [37].

Table 1 provides a summary of the recent works of load forecasting related to hybrid
SVM‑based models and other recent hybrid models found in the literature. Through the
summary of the literature, the hybrid forecasting model consistently exhibits superior fore‑
casting accuracy compared to individual models. Various error metrics can be employed
to evaluate the model’s accuracy, including mean absolute percentage error (MAPE), mean
square error (MSE), root mean square error (RMSE), cross‑validation RMSE (CV‑RMSE),
mean absolute error (MAE) and coefficient of determination (R2).



Algorithms 2024, 17, 510 5 of 28

Table 1. Summary of related literature review for development of hybrid model in load forecasting.

Year Hybrid Model Main
Contributions Findings Error Value Application

2024
Fuzzy support vector
machine‑grey model

(FSVM‑GM) [38]

Utilized hybrid
FSVM‑GM for

LTLF of the power
system

The FSVM enhances the
model’s ability to fit the
data and generalize to
unseen data, leading to
improved accuracy and

reliability for LTLF

MSE = 0.6
Average

error = 0.6%

Power
system bus

2024

Improved
variational mode

decomposition—whale
optimization algorithm

(IVMD‑WOA‑
LSSVM) [39]

The hybrid of
IVMD‑WOA‑

LSSVM is
proposed

The WOA algorithm
exhibits faster

convergence and has
great local optima

avoidance, leading to
improved optimization

performance

MAPE = 3.21%
CVRMSE = 0.0344

R2 = 0.9901
Cooling load

2024

Gene expression
programming—adaptive

neuro fuzzy inference
system (GEP‑ANFIS) [40]

A hybrid of
GEP‑ANFIS model

for LTLF is
proposed and

compared with
single GEP and

ANFIS

The proposed hybrid
model consistently

achieves lower error
values and higher R²
values compared to

ANFIS and GEP models
across all years

RMSE = 0.0007
MSE = 5.2296 ×

10−7

R2 = 0.9841
MAPE = 0.1934%

Food
industry

2024

Convolutional neural
network—long

short‑term memory
(CNN‑LSTM) [41]

The hybrid of
CNN‑LSTM is
proposed and
integrates with

feature selection
(FE) and data

decomposition
technique (EMD)

The EMD and FE
techniques substantially

enhance forecasting
accuracy, leading to

significant
improvements in both

model performance and
computational

complexity

MAE = 33.60
MSE = 10,599.60
RMSE = 102.95

Residential

2023

Sequential pattern
mining—long short‑term

memory
(SPM‑LSTM) [42]

Hybrid of
SPM‑LSTM is

proposed for STLF
that uses load and

meteorological
data

SPM‑LSTM
outperforms LSTM,
LSTM‑ANN, and

CNN‑GA in terms of
accuracy, while also

requiring less training
and response time

RMSE = 387.06
MAE = 207.63

CV‑RMSE = 8.45%
R2 = 0.951

Cities in Spain

2022
Fuzzy cluster—fireworks

algorithm—LSSVM
(FC‑FWA‑LSSVM) [43]

Introduced a
feature extraction

method that
combines
frequency

component
analysis (FCA)

with firefly
algorithm (FA)

optimization for
data compression

It provides high
accuracy forecasting

which minimizes RMSE
to 2.32%, MAPE to
2.21% compared to
traditional methods

RMSE = 2.19%
MAPE = 2.32%
MAE = 2.40%

Residential

2022

Improved sparrow search
algorithm—support

vector machine
(ISSA‑SVM) [44]

An ISSA is
proposed to

address the issues
with hyper
parameter

selection of the
SVM model for
mid‑long term

load forecasting

The ISSA‑SVM can
effectively improve the

forecasting accuracy
compared with the

original SVM, BPNN,
MLR, ELM, and Elman

MAPE = 2.18%
Relative error =

3.94%

China’s
electricity

consumption
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3. Methodology
The model configuration follows a process illustrated in Figure 2. The data

pre‑processing encompassed data interpolation, Pearson correlation analysis, data divi‑
sion, and data normalization. The historical load data and weather data, obtained from
the local website, were analyzed to assess their correlation. The load data were divided
into groups based on the five‑day types in the week to ensure the forecasting accuracy.
The LSSVM, optimized using IBFOA, was employed for load forecasting. Finally, the pro‑
posed hybrid model is evaluated with different accuracy measures to demonstrate its per‑
formance in STLF. Further details on these processes are explained in the next subsection.

Figure 2. Framework for electricity load forecasting.

3.1. Data Pre‑Processing
This section explores the data pre‑processing steps and methods used to assess the

correlation between electricity load and weather variables. The data division for each year
is then presented in a table, illustrating the proportions allocated to training, validation,
and testing before normalization is applied.

3.1.1. Data Collection
For model construction and testing, we used one confidential dataset and one pub‑

licly available dataset. The former represents electricity consumption data collected from
the electricity utility of Peninsular Malaysia from year 2019 to 2021. The dataset consists
of the timestamp information and electrical energy consumption in MW with frequency of
10 min every day with total sample of 1728 points. The latter represents the local weather
information dataset obtained online in “Time and Date” websites consisting of hourly tem‑
perature (◦C), dew point (◦C), and relative humidity (%) in the same period.
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3.1.2. Data Interpolation
To accurately reflect real‑time behavior within the load time series, missing values

were addressed through interpolation. Specifically, the “Means by Nearby Points” method
was employed, guided by the following equation:

x′ = (x1 + x2 + x3 + x4)/4 (1)

where x1 and x2 denote the two preceding values, and x3 and x4 signify the two subsequent
values (x′). This approach effectively eliminates irregularities and yields a smoother load
time series.

3.1.3. Pearson Correlation Analysis
This study investigates the influence of weather variables on electricity load. The

linear regression model assesses the interdependence between variables using Equation
(2). In this equation, Y represents the dependent variable (electricity load), X denotes the
independent variable (weather variable), “a” is the y‑intercept, and “b” is the slope of the
regression line.

y = ax + b (2)

To further quantify the strength and direction of the linear relationship between weather
variables and electricity demand, Pearson’s correlation coefficient is utilized. Higher abso‑
lute values of the correlation coefficient (closer to 1) indicate a stronger, linear relationship,
while values closer to 0 suggest a weaker, linear relationship. Mathematically, Pearson’s
correlation coefficient (r) is defined as Equation (3).

r =
m ∑ pw − ∑ p ∑ w

√

{

n ∑ x2 − (∑ x)2
}{

n ∑ y2 − (∑ y)2
}

(3)

where m represents the number of data pairs, ∑ pw is the sum of the products of paired
scores (p multiplied by w for each data point), ∑ p2 is the sum of squared p, and ∑ w2 is
the sum of squared w.

The strength of the correlation between variables is interpreted based on the absolute
value of the Pearson’s correlation coefficient (r) as detailed in Table 2. Positive r values
(0 to 1) indicate a positive correlation, while negative r values (−1 to 0) indicate a nega‑
tive correlation [45,46]. This study only considers variables with strong correlations to
electricity load in the model development. This approach aims to avoid the “complex‑
ity dilemma”, where introducing weakly correlated variables can unnecessarily increase
model complexity without improving forecasting accuracy.

Table 2. Descriptive condition based on the person correlation coefficient.

Condition Description

r = +1 linear and perfect positive correlation

0.8 < r < 1.0 very strong linear correlation

0.6 < r < 0.8 strong linear correlation

0.4 < r < 0.6 moderate linear correlation

0.2 < r < 0.4 weak linear correlation

r = 0 no correlation exists between the two variables

r =−1 linear and perfect negative correlation

3.1.4. Data Division
The historical load data in 2021 were collected according to the ratio of 70% as the

training set, 20% as the validation set, and 10% as the testing set. For forecasting in each day
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type, only the same day type were used as historical load data for training, validation, and
testing. The details of the total dataset consisting of all day types in a week are provided
in Table 3.

Table 3. Forecasting dataset information.

Dataset Period (Year 2021) Total Days

Training set week 1 of January–week 2 of September 252 days

Validation set week 3 of September–week 3 of November 72 days

Testing set week 4 of November–week 3 of December 30 days

3.1.5. Data Normalization
Data standardization is essential to ensure comparability between indicators with po‑

tentially diverse numerical ranges. This process normalizes the data by scaling them to
a specific, narrower interval. In this study, a uniform mapping to the range [−1, 1] was
employed. Standardization offers several benefits: it accelerates model convergence and
improves accuracy while also mitigating the risk of gradient explosions. Equation (4) rep‑
resents the normalization method, where x represents the value to be converted, x′ is the
converted result, xmax is the maximum boundaries, and xmin is the minimum boundaries
of the attribute values.

x′ = 2 ∗
x − xmin

xmax − xmin
− 1 (4)

3.2. Architecture of DNN
Table 4 outlines the architecture of the DNN model used as a comparison of ML for

forecasting in this study. The model utilizes a hidden layer architecture with 100 nodes per
layer, which can be adjusted based on data complexity. To stabilize the learning process,
the SELU activation function was employed in the hidden layers. The Adam optimizer
was selected for its efficient handling of sparse gradients and adaptive learning rate, accel‑
erating convergence, and improving model performance [47].

Table 4. Architecture of DNN.

Parameter Value

Number of nodes in hidden layer 100

Output shape None, 100

Layer 1 (Dense_1)

Training algorithm Trainim

Data division function 70/20/10

Transfer function—hidden layer logsig

Transfer function—output layer purelin

Activation function Scaled exponential linear unit (Selu)

Optimizer Adam

Epoch 100

3.3. Least Square Support Vector Machine (LSSVM)
Unlike traditional SVM, LSSVM achieves dimensionality reduction by converting the

original optimization problem with inequality constraints into one with equality constraints
as introduced by [48]. This transformation allows LSSVM to utilize non‑linear kernel func‑
tions, effectively projecting the input data into a higher‑dimensional feature space. In this
study, LSSVM is leveraging to construct an error compensation model that minimizes the
difference between actual and forecasted energy consumption. Let us denote the training
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data as D = {(x₁, y₁), (x₂, y₂), …, (xn, yn)}, where xi represents the i‑th input vector and yi
represents the corresponding output (actual energy consumption). The LSSVM function
for this model, mapped to the high‑dimensional space, can be expressed as:

y(x) = ωT ϕ(x) + b (5)

where ϕ(x) is the non‑linear mapping function that projects the input vector (xi) into a
higher‑dimensional space, b is the bias term that influences the overall prediction, and ω
is the weight vector that determines the influence of each feature in the high‑dimensional
space. This transformation through the non‑linear mapping function allows the LSSVM
to capture complex relationships between the input variables and the output, ultimately
leading to a function optimization problem that can be expressed as:

minJ(ω, e) =
1

2
∥w∥2+

1

2
γ

N

∑
k=1

e2
k (6)

This transformation is achieved through the following equality constraint:

yk = ωT ϕ(xk) + b + ek (7)

where ϕ(xk) is non‑linear mapping of the k‑th input vector (projected to high‑dimensional
space) while ek is a slack variable. To solve the LSSVM function optimization problem,
a technique called Lagrangian transformation is employed. This method introduces La‑
grange multipliers (ak) to convert the equality constraints (Equation (7)) into an uncon‑
strained Lagrangian function (L), defined as in Equation (8):

L(ω, b, e, a) = J(ω, e)−
N

∑
k=1

ak[ω
T ϕ(xk) + b + ek − yk] (8)

By applying the Karush–Kuhn–Tucker (KKT) conditions as in Equation (9), the La‑
grangian function is minimized to obtain the optimal values of the ω, b, ek, and ak. This
optimization process ultimately leads to the LSSVM model for error compensation in fore‑
casting.

KKT















































∂L

∂ω
= 0 → ω =

N

∑
k=1

ak ϕ(xk)

∂L

∂b
= 0 →

N

∑
k=1

ak = 0

∂L

∂ek
= 0 → ak = γek, k = 1, 2, . . . , N

∂L

∂ak
= 0 → ωT ϕ(xk) + b + ek − yk, k = 1, 2, . . . , N

(9)

Equation (10) is obtained after a thorough calculation as follows:
[

0 IT

I Ω + γ−1 I

][

b
a

]

=

[

0

y

]

(10)

where a = [a1, a2, . . . , aN ], y = [y1, y2, . . . , yN ], Ωki = ϕ(xk)
T ϕ(xi), k, i = 1, 2, . . . , No

Due to the high dimensionality of the feature space after the non‑linear mapping
ϕ(xk), directly working with it can be computationally expensive. To address this, LSSVM
utilizes the kernel trick. This technique leverages a kernel function k(x, xk) that operates
on the original input space (x) to compute the inner product in the high‑dimensional space.
The Mercer condition ensures that such a kernel function exists. Mathematically, this re‑
lationship is expressed as in Equation (11) and the final regression function of LSSVM is
obtained in Equation (12).

k(xk, xi) = ϕ(xk)
T ϕ(xi) (11)
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y(x) =
N

∑
k=1

akk(x, xk) + b (12)

Within the LSSVM framework for this study, the radial basis function (RBF) kernel
is chosen due to its well‑established generalization ability and wide convergence domain.
The RBF kernel function is defined as Equation (13):

K(xk, xi) = exp(−
∥xk − xi∥

2

2σ2
) (13)

where σ (sigma) represents the width of the kernel function. Optimizing the parameters of
the RBF kernel, particularly sigma (σ) and gamma (γ), is crucial for achieving optimal per‑
formance in the LSSVM model. These parameters significantly influence the model’s abil‑
ity to learn from the training data and generalize well to unseen data [49]. Therefore, after
obtaining the ideal of these two values, the next stage is to optimize them using IBFOA. The
structure of the LSSVM model can be visualized as depicted in Figure 3. In this structure,
the final output is a linear combination of the values from intermediate nodes. Notably,
each intermediate node corresponds to a support vector within the LSSVM model [50].

Figure 3. Structures of LSSVM.

3.4. Bacterial Foraging Optimization Algorithm
The bacterial foraging optimization algorithm (BFOA) is a population‑based stochas‑

tic optimization technique inspired by the foraging behavior of Escherichia coli (E. coli) bac‑
teria introduced by Kevin M. Passino in 2002 [51].

Assume that the population of bacteria has S numbers, and that the present chemo‑
tactic, reproductive, and elimination‑dispersal steps are represented by t, r, and e, respec‑
tively. At the t‑th chemotactic step, r‑th reproduction, and e‑th elimination dispersal, the
n‑th bacterium’s location in theD‑dimensional search space can be represented as follows:

θn(t, r, e) =
{

θ1
n(t, r, e) + θ2

n(t, r, e), . . . . . . ., θD
n (t, r, e)

}

(14)

The prominent processes take place in BFOA consisting of chemotaxis, swarming, re‑
production, and elimination‑dispersal are described briefly below:
• Chemotaxis: It is a process by which bacteria navigate their environment in response

to chemical gradients. This behavior allows them to locate favorable conditions, such
as nutrient sources. Bacteria achieve chemotaxis through a series of short runs (swims)
and tumbles. Flagellar rotation determines their movement: swimming in a defined
direction or tumbling to explore new areas. A unit‑length random direction vector
as described in Equation (15) representing a tumble for the n‑th bacterium at the t‑th
chemotactic step, r‑th reproductive step, and e‑th elimination dispersal step. This vec‑
tor describes the direction change after a tumble.
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ϕ(j) =
∆i(t, r, e)

√

∆T
i (t, r, e)∆i(t, r, l)

(15)

θn(t + 1, r, e) = θn(t, r, e) + C(i)ϕ(j) (16)

where θn(t + 1, r, e) represents the n‑th bacterium at the t‑th chemotactic step, r‑th repro‑
ductive and e‑th elimination dispersal step. C(i) is the size of the step taken in the random
direction specified by the tumble (the run length unit) and ∆n(t, r, e) denotes a random
direction vector that describes the movement direction of the n‑th bacterium.

Swarming: Swarming is a collective behavior in bacteria that promotes their move‑
ment towards areas with higher nutrient concentrations. This phenomenon is modeled by
introducing an additional cost function term (Jcc) that influences the overall cost function (J)
experienced by each bacterium. The swarming cost (Jcc) considers both the local bacterial
density and the distance between individual bacteria.

The mathematical representation of the swarming process is expressed by
Equation (17):

Jcc(θ, P(t, r, e)) =
s

∑
n=1

jn
cc(θ, θn(t, r, e))

=
s

∑
n=1

[

−dattract exp

(

−ωattract

m

∑
n=1

(θn − θn)2
)]

+
s

∑
n=1

[

hrepellant exp

(

−ωrepellant

m

∑
n=1

(θn − θn)2
)] (17)

The coefficients associated (dattract, ωattract, hrepellant, and ωrepellant) influence the rela‑
tive importance of swarming compared to the original cost function (J). These coefficients
need to be carefully chosen or tuned to achieve optimal performance in the BFOA.

• Reproduction: The reproduction step happens following a predefined number of chem
otactic steps (Nc). This step promotes the propagation of “fitter” bacteria within the
population. Bacteria with higher health values, typically determined by a fitness func‑
tion have a greater chance of reproducing. Conversely, bacteria with lower health
values will be eliminated. This mechanism ensures a constant population size while
favoring individuals with better foraging abilities. The health value of the bacterium
obtained as below:

Ji
health =

Nc

∑
t=1

J(n, t, r, e) (18)

• Elimination‑dispersal: Elimination‑dispersal simulates the dynamic nature of the bac‑
terial environment, where local events can drastically affect bacterial populations.
This process can either eliminate all bacteria in a local region or disperse them to new
locations, potentially disrupting chemotaxis progress but also aiding in exploration
by placing bacteria near potential food sources.

3.5. Proposed Improved Bacterial Foraging Optimization Algorithm
Like many other metaheuristic algorithms, the BFOA exhibits certain limitations, in‑

cluding high computational cost, inherent complexity, and susceptibility to becoming
trapped in local optima [29]. These shortcomings necessitate further research efforts to
enhance the performance of BFOA and address these deficiencies. The improvement of
BFOA in the existing literature mainly focuses on the chemotaxis of bacteria, as shown
in [52–54]. Chemotaxis, the core operation of the BFOA, relies heavily on the “chemotaxis
step length” parameter C(i) for effective exploration. However, the classical BFOA em‑
ploys a fixed value for C(i), leading to potential drawbacks. A large constant step size
might hinder bacteria from reaching distant nutrient sources, while a small value could
significantly slow their movement towards nearby nutrients [55].
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This study introduces an improved bacterial foraging optimization algorithm (IBFOA)
that modifies the chemotaxis operation using the sine cosine algorithm (SCA) for inspira‑
tion. The key improvement lies in adapting the constant step size (C(i)) of bacteria during
chemotaxis. The standard BFOA employs a fixed step size for bacterial movement during
chemotaxis. The IBFOA proposes an adaptive step size defined by Equation (19):

C(i) = a − t
a

S
(19)

where a is a defined constant, and t is a count of the chemotaxis. This adaptation introduces
a gradual increase in the step size as the chemotaxis process progresses. Additionally,
the IBFOA incorporates a mechanism inspired by the SCA to generate random movement
directions for the bacteria during chemotaxis. Equation (20) adopted from SCA generates
a random direction vector for each bacterium’s movement:

∆d
n(t, r, e) =







sin(r2)×
∣

∣

∣r3Pd(t, r, e)− Xd
n(t, r, e)

∣

∣

∣ r4 < 0.5

cos(r2)×
∣

∣

∣r3Pd(t, r, e)− Xd
n(t, r, e)

∣

∣

∣ r4 ≥ 0.5
(20)

where Xd
n(t, r, e) and Pd(t,r,e) are the current position of the n‑th bacterium and the best

solution so far at the t‑th chemotactic step, r‑th reproduction, and e‑th elimination dispersal
in the d‑th dimension, respectively. Variables of r2, r3, and r4 are a random number in
between 0 and 2π, and | | indicates the absolute value similar to SCA. The position of the
n‑th bacterium after a tumble is given by Equation (21):

θn(t + 1, r, e) = θn(t, r, e) +
(

a − t
a

S

)

(

∆n(t, r, e)
√

∆T
n (t, r, e)∆n(t, r, e)

)

(21)

If the bacterium encounters a higher nutrient concentration after a tumble
(Equation (22)), it continues swimming in the same direction for a predefined number
of swim lengths as long as the concentration increases. Conversely, if the concentration
decreases, the bacterium performs another tumble to explore a new direction (Equations
(19) and (20)). The remainder of the IBFOA follows the standard BFOA process, including
reproduction and elimination‑dispersal. This improved algorithm aims to achieve better
exploration and exploitation capabilities compared to the original BFOA.

θn(t + 1, r, e) = θn(t + 1, r, e) +
(

a − t
a

S

)





∆i(t, r, e)
√

∆T
i (t, r, e)∆i(t, r, e)



 (22)

3.6. Forecasting Process by Hybrid LSSVM‑IBFOA
Figure 4 illustrates the formation of a hybrid model of LSSVM‑IBFOA where IBFOA

will optimize the parameters of LSSVM to achieve accurate forecasting. The data pre‑
processing is performed through data separation and normalization of the load profile in
Peninsular Malaysia. The LSSVM and IBFOA are merged to perform as a hybrid model and
will be built separately according to day type for better forecasting performance. The op‑
timization process is initiated with random positions for each bacterium in the predefined
dimensions, which represent the LSSVM parameters. The optimized LSSVM parameters
are used to train the LSSVM. The trained model is tested on unseen data. The objective
function, MAPE, is observed. The modification of IBFOA parameters is performed to opti‑
mize the LSSVM parameters, which in turn produces an accurate forecast or lowest MAPE.
Table 5 provides the formation step of hybrid LSSVM‑IBFOA accordingly.
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Figure 4. The flowchart of LSSVM‑IBFOA.

Table 5. Formation step of hybrid LSSVM‑IBFOA.

Number of Steps Description

Step 1
Collecting the historical power load data for the analysis and stored in a

MATLAB file format (.mat). The load function in MATLAB is then
employed to import these data into the workspace

Step 2
The power load forecasting dataset is divided into training data,

validation data and testing data according to the ratio 70:20:10, and the
data are normalized

Step 3

Parameters setting: p, n, S, Nc, Ns, Nre, Ned, Ped
where p is the number of parameters to be optimized, S is the number of

bacteria, Ns is the swimming length, Nc is the maximum number of
iterations in chemotaxis, Nre is the maximum number of reproduction,

Ned is the maximum number of elimination dispersal, Ped is the
probability of elimination‑dispersal
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Table 5. Cont.

Number of Steps Description

Step 4 Generate the initial population of bacteria with random positions

Step 5 Create an initial population of bacteria with random positions where each
bacterium’s positions encode the LSSVM parameters

Step 6 Set the fitness function

Step 7

For each bacterium, train an LSSVM model with the corresponding
parameters on historical load data. Evaluate the fitness of each bacterium

based on the mean absolute percentage error (MAPE) value:
Fitness = MAPE = 1

p ∑
p
i=1

∣

∣

∣

wi−ŵ
wi

∣

∣

∣
        (23)

where p is the total number of forecasting data, wi is the actual value and
ŵi is the forecasted value

Step 8 Elimination‑dispersal: e = e + 1

Step 9 Reproduction loop: r = r + 1

Step 10 Chemotaxis loop: t = t + 1

Step 11 Update the positions of bacteria based on BFOA’s chemotaxis mechanism
(Equation (20))

Step 12 Go to step 8 if t < Nc

Step 13 Perform reproduction

Step 14 Select bacteria for reproduction based on their fitness value

Step 15 Go to step 7 if r < Nre

Step 16 Perform elimination‑dispersal

Step 17 Eliminate and disperse each bacterium with probability of Ped. Go to step
6 if e < Ned

Step 18 Evaluate fitness and selection

Step 19 Train LSSVM models using the updated positions of bacteria. Evaluate
the fitness of the updated bacteria by using Equation (23)

Step 20
Use the LSSVM‑IBFOA to forecast the test data and select MAPE as the

objective function for forecasting
Fobj = MAPE = 1

p ∑
p
i=1

∣

∣

∣

wi−ŵ
wi

∣

∣

∣         (24)

Step 21 Inverse normalize the forecasting results

Step 22 Output the accuracy measures for evaluation

3.7. Evaluation Metrics
Evaluating the accuracy of the forecasting model is crucial for assessing the effective‑

ness of the proposed methods. This section discusses the key performance criteria used in
this study. The mean absolute error (MAE) and mean absolute percentage error (MAPE)
are the most important static metrics used by researchers [56]. In the simulation, MAPE is
utilized as an objective function of LSSVM‑IBFOA (fitness function value). It is a widely
adopted performance measure in the electric power industry due to its simplicity and ease
of interpretation [57]. The MAPE value was classified into four forecasting capabilities, as
provided in Table 6 for business and industrial data as reviewed in [58]. This table was
also referred in [59,60] for annual power load forecasting at regional and national levels
considering LTLF.
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Table 6. Forecasting capability based on the MAPE value.

MAPE (%) Forecasting Capability

<10 Highly accurate forecasting
10–20 Good forecasting
20–50 Reasonable forecasting
>50 Inaccurate forecasting

A thorough assessment of the model’s performance requires employing a diverse set
of accuracy measures. This section details the metrics used in this study along with their
interpretations. These accuracy measures include MAE, MSE, RMSE, R2, NRMSE, and
NMSE, which are obtained by equations in Table 7, where p is the total number of fore‑
casting data, wi is the actual value, ŵi is the forecasted value and x is the average value of
forecasted value [61]. The best state to evaluate the accuracy of forecasting results using
such measures is the maximum value for R2 and the minimum value for forecasting error
measures [62]. The simulation of LSSVM models is done using MATLAB language version
R2022b and the DNN model using Python language. All development and experimental
works were carried out on a personal computer with processor Intel(R) Core(TM) i7‑4790
@ 3.60 Ghz with 16 GB of RAM.

Table 7. Descriptive of accuracy measures for performance evaluation.

Measures Criteria Description Equation No. of
Equation

MAPE Mean absolute percentage
error

Reflects the degree of data
dispersion and accurately
captures the actual forecasted
data [63]

1

p

p

∑
i=1

∣

∣

∣

∣

wi − ŵ

wi

∣

∣

∣

∣

(25)

MAE Mean absolute error
Shows the mean distance
between the actual and
forecasted values

∑
p
i=1|wi−ŵi |

p
(26)

MSE Mean square
error

Reflects the degree of dispersion
of the dataset [63]

∑
p
i=1(wi−ŵi)²

p
(27)

RMSE Root mean square error
Captures the average error
between the forecasted value
and the actual value [63]

√

∑
p
i=1(w−ŵi)²

p
(28)

R2 Determination coefficient

Determines the proportion of
the variance in the dependent
variable that is predictable from
the independent variables [64]

1 − ∑
p
i=1(wi−ŵi)²

∑
p
i=1(wi−x)²

(29)

NRMSE Normalized root mean
square error

Normalizes the RMSE by
dividing it by the average of the
actual values. Prone to the
influence of large outliers [65]

√

∑
p
i=1(wi−ŵi)²

p

1
p ∑

p
i=1 wi

(30)

4. Results and Discussion
4.1. Correlation Analysis

In this analysis, some of the weather variables considered include relative humidity,
dew point, and temperature. Relative humidity signifies the ratio of water vapor present in
the air compared to the maximum amount it can hold at that temperature, expressed as a
percentage. Higher humidity during warmer months amplifies the sensation of heat com‑
pared to the actual temperature [17]. These weather variables are often included together
due to their inherent interdependencies.

Table 8 presents the correlation coefficient between the load consumption and the
model inputs. The correlation coefficients were computed for load and weather variables
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over a 48‑day period. Notably, the previous day’s load exhibits a strong positive cor‑
relation with the current day’s load, indicating a significant influence on the forecasted
load. The relative humidity and temperature show a moderate correlation, while the dew
point shows weak and no correlation with load because the correlation coefficients are less
than ±0.6, as mentioned in Table 2. Thus, the simulation model only considered the input
from the previous load with a strong correlation whereas weather variables are neglected.

Table 8. Correlation coefficients between the load and the model inputs (variables).

No Variables Pearson Correlation Coefficient (r),
(load and Model Inputs)

1 Last day relative humidity (%) −0.4351

2 Last two days’ relative humidity (%) −0.4965

3 Last week relative humidity (%) −0.5302

4 Last day temperature (◦C) 0.4874

5 Last two days’ temperature (◦C) 0.5653

6 Last week temperature (◦C) 0.5676

7 Last day dew point (◦C) −0.0945

8 Last two days’ dew point (◦C) −0.2429

9 Last week’s dew point (◦C) −0.0421

10 Last day load (MW) 0.7762

11 Last two days’ load (MW) 0.7256

12 Last week load (MW) 0.6457

4.2. Case Study
In this study, the electricity load of Peninsular Malaysia during the COVID‑19 pan‑

demic was used as a case study for evaluating the efficiency of the proposed model in
disrupted situations. The hourly electricity load demand in megawatts (MW) in 2021 was
used as raw input data. Figure 5 depicts the monthly average electricity load demand in
24 h, illustrating the characteristics of the electricity load pattern. During the year of pan‑
demic (2020 and 2021), the electricity load fluctuated and did not follow the trend of the
pre‑pandemic (2019). For instance, in March 2020, the electricity load dropped by 23.54%
compared to the same month in 2019. This is due to the enforcement of the initial move‑
ment control order (MCO) 1.0 on 18 March which closed non‑essential business opera‑
tions and restricted human daily activities to control the spread of the virus. The MCO 2.0
was enforced in the early months of 2021 but failed to achieve a significant reduction in
COVID‑19 cases as it was only enforced in certain states. Therefore, the full nationwide
lockdown (MCO 3.0) was implemented in June 2021 due to the rise in COVID‑19 cases.
Consequently, the average electricity consumption in June 2021 was 1109 MW lower than
the average consumption for the same month in 2019, which represents a reduction of
7.69%. From October 2021, a recovery in the load demand can be seen with the further
easing of some restrictions and allowing some activities to continue.

The COVID‑19 pandemic is considered a crisis event due to the unprecedented mea‑
sures implemented and the demand pattern during the pandemic is expected to be differ‑
ent than the previous periods. Thus, electricity demand needs to be forecasted considering
the fluctuating demand pattern. Although the impact of the pandemic is obvious, accu‑
rate forecasting remains essential for effective market operations and system planning [66].
Therefore, in this paper, the load demand from January until December 2021 is taken as
the case study to observe the ability of the LSSVM‑based model to forecast the future load
patterns based on past load behavior during the pandemic.
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Figure 5. Monthly average electricity load profile in 24 h (2019–2021).

Seasonality in Load
To capture daily and weekly seasonal patterns, a common approach involves decom‑

posing load data into different day types, each exhibiting a unique load profile. Previous
research has established the existence of multiple day types, which are typically identi‑
fied through a combination of forecaster expertise and clustering methodologies. Typi‑
cal similar day‑based STLF methods predict the load of a target day by leveraging the
load profile of a historically similar day, complemented by relevant external factors [67].
Classifying the historical load data by the day of the week will aid in improving the ac‑
curacy of STLF since the loads on weekdays are probably higher than on weekends [68].
Some scholars used to label the days to be forecasted differently based on the day‑type
characteristics [69–71]. The model described in the next section is of this kind. The typical
weekly load profile in December 2021 for Peninsular Malaysia is depicted in Figure 6. The
first day of the week (Monday) and weekend (Saturday and Sunday) exhibit different load
profile curves compared to other days.

Mon. 

Figure 6. Typical weekly average load profile in December 2021.

For yearly seasonality, some researchers [72,73] selected the same day type in the same
season (summer, winter, autumn, and spring) of different months throughout the year.
The load consumption in summer and winter is usually higher than in other season due
to the increasing use of cooling and heating appliances in these seasons [74]. The author
of [75,76] introduced different forecasting model for periods of the year, especially during
holidays such as public holidays, Easter Day, Christmas, and New Year’s Day.
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4.3. Load Forecasting Results
The following section presents an analysis of the performance of LSSVM in conjunc‑

tion with BFOA and IBFOA based on different evaluation criteria, as listed in Table 5. In
this paper, four models, namely DNN, LSSVM, LSSVM‑BFOA, and LSSVM‑IBFOA, were
utilized to forecast the daily electricity load in Peninsular Malaysia for short‑term analysis.
The LSSVM model was trained using the RBF as the kernel function, while IBFOA was
employed to optimize the parameters of LSSVM. The input from historical load data was
separated into 5‑day types in a week as follows:
• Day type: Monday
• Day type: Tuesday, Wednesday, Thursday (Tuesday–Thursday)
• Day type: Friday
• Day type: Saturday
• Day type: Sunday

Forecasts for Tuesday, Wednesday, and Thursday of each month were aligned due to
their similar load curve patterns.

Figure 7a–e compared the forecast load demand from DNN, LSSVM, LSSVM‑BFOA,
and LSSVM‑IBFOA models with the actual load demand for each day type in the testing
dataset for four weeks. Considering 5‑day types, each model generated one‑day‑ahead
load profile forecasts for four consecutive weeks, from the third week of December 2021 to
the second week of January 2022 (15 December 2021–14 January 2022) for short‑term analy‑
sis. From the observation of actual load, the load demand fluctuates depending on the time
of day, starting from modest levels in the early morning, rising as the day progresses, and
slowing down as night approaches. Also, the load demand curve on weekends, especially
Sundays, appears different compared to the weekday (Monday to Friday) load demand
curve. The Sunday load profile exhibits a distinct pattern with a higher starting demand
from 12:00 a.m., a gradual decrease until 8:00 a.m., and a subsequent rise until 7:00 p.m.
The data separation highlights the importance of incorporating predefined day types in
the forecasting model.

(a) Monday 

Figure 7. Cont.
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(b) Tuesday–Thursday 

(c) Friday 

(d) Saturday 

Figure 7. Cont.
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(e) Sunday 

Figure 7. Visualization of forecasting result for the DNN, LSSVM, LSSVM‑BFOA, and LSSVM‑
IBFOA for (a) Monday; (b) Tuesday–Thursday; (c) Friday; (d) Saturday, and (e) Sunday.

The simulations show that the forecasted load curve by the four models on Monday
has the most similar pattern to the actual load curve as depicted in Figure 7a. An analysis
of the average absolute differences reveals a clear advantage for the LSSVM‑IBFOA model
in consistently following the actual load profile across all four weeks. Particularly, LSSVM‑
IBFOA, LSSVM‑BFOA, LSSVM, and DNN achieved the average absolute differences across
the four weeks with values of 1.42%, 1.95%, 3.99%, and 6.04%, respectively. However, there
is a gap between the forecasted load curve and the actual load curve at peak times of the
day, especially on Friday and Tuesday–Thursday, which has the largest forecasting error
value. The significant discrepancy between the forecasted and actual load, with all forecast‑
ing models underestimating demand is observed on the Friday load profile as shown in Fig‑
ure 7c. Examining the average absolute differences across the four weeks’ reveals that all
models exhibited underestimation with the highest on the first week, with DNN (12.45%)
showing the greatest deviation, LSSVM (10.27%), followed by LSSVM‑BFOA (9.43%) and
LSSVM‑IBFOA (lowest—8.95%). For the weekend load profiles, while all forecasting mod‑
els exhibited some level of underestimation, particularly during peak hours, the deviations
were generally lower compared to other weekdays (Friday and Tuesday–Thursday).

Table 9 provides a detailed comparison of error metrics for the forecasting models
evaluated on the 2021 testing dataset, categorized by day type (Monday through Sunday)
for total of 96 sampling points. DNN outperforms LSSVM on Tuesday, Thursday, Friday,
and Sunday, as indicated by lower error metrics. However, LSSVM exhibits superior per‑
formance on Monday and Saturday. These findings suggest that hybridizing LSSVM with
IBFOA could potentially enhance its overall performance.

Through the analysis, LSSVM‑IBFOA shows the consistently highest reductions in
error metrics across all day types compared to DNN, LSSVM, and LSSVM‑BFOA. No‑
tably, across the five‑day type, MAPE reductions obtained are 64.21%, 40.86%, 13.54%,
16.00%, and 7.24%, respectively, signifying significant improvements. Similarly, reduc‑
tions were observed for MAE (62.45%, 42.70%, 14.35%, 17.35%, and 8.51%), RMSE and
NRMSE (60.52%, 43.91%, 14.03%, 14.98%, and 17.30%), and MSE (84.41%, 68.54%, 26.10%,
27.72%, 31.62%). These reductions highlight the improved ability of LSSVM‑IBFOA to
minimize forecasting errors compared to the baseline LSSVM model.

Similarly, LSSVM‑IBFOA outperformed LSSVM‑BFOA with minimal reductions of
MAPE (26.89%, 4.85%, 4.37%, 2.80%, and 0.19%), MAE (27.33%, 9.05%, 4.36%, 3.27%, and
2.00%), RMSE and NRMSE (25.10%, 3.99%, 3.42%, 0.17%, and 10.02%), and MSE (43.91%,
7.83%, 6.72%, 0.35%, 19.03%). In terms of R², the LSSVM‑IBFOA achieves the highest value
(0.9880) on Monday and the lowest (0.8901) on Friday. Conversely, LSSVM‑BFOA and
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LSSVM exhibit a wider range of R2, with Mondays reaching 0.9824 and 0.9593, and Sun‑
days dropping to 0.7405 and 0.4719, respectively. This observation suggests that LSSVM‑
IBFOA maintains a consistently high R² across weekdays, indicating a strong correlation
between predicted and actual values.

Table 9. Forecasting accuracy of hybrid LSSVM‑IBFOA and compared models.

Model MAPE (%) MAE (MW) RMSE (MW) MSE (MW) NRMSE R2

Monday

DNN 6.0479 906.6782 1020.2530 1,040,916.2167 0.0666 0.7344
LSSVM 4.0025 586.6865 710.5824 504,927.3971 0.0464 0.9593

LSSVM‑BFOA 1.9592 303.1394 374.5812 140,311.0720 0.0244 0.9824
LSSVM‑IBFOA 1.4324 220.2668 280.5340 78,699.33177 0.0183 0.9880

Tuesday–Thursday

DNN 6.5912 964.7379 1231.8604 1,517,480.1165 0.0816 0.3582
LSSVM 8.2086 1270.5557 1536.8228 2,361,824.3854 0.1013 0.5614

LSSVM‑BFOA 5.1020 809.2579 897.7997 806,044.3621 0.0591 0.8357
LSSVM‑IBFOA 4.8542 735.9945 861.9280 742,919.9222 0.0568 0.9451

Friday

DNN 7.8070 1144.208 1482.2793 2,197,151.8130 0.0996 0.1839
LSSVM 8.3786 1303.5522 1503.8283 2,261,499.7912 0.1010 0.8292

LSSVM‑BFOA 7.5746 1167.3021 1338.5298 1,791,662.0492 0.0899 0.8834
LSSVM‑IBFOA 7.2436 1116.3861 1292.7109 1671,101.5480 0.0868 0.8901

Saturday

DNN 4.3742 611.1440 772.4642 596,700.8900 0.0540 0.5979
LSSVM 3.7320 543.9430 661.4871 437,565.1258 0.0462 0.8876

LSSVM‑BFOA 3.2253 464.7921 563.3847 317,402.3313 0.0393 0.9295
LSSVM‑IBFOA 3.1348 449.5594 562.3752 316,265.9746 0.0393 0.9606

Sunday

DNN 4.2268 573.4755 659.2291 434,583.0080 0.0482 0.6144
LSSVM 4.4664 618.7235 789.2292 622,882.7987 0.0577 0.4719

LSSVM‑BFOA 4.1507 577.6956 725.2978 526,056.9152 0.0530 0.7405
LSSVM‑IBFOA 4.1427 566.0997 652.6199 425,912.8607 0.0477 0.9479

Average

DNN 5.8094 840.0488 3669.8426 43,732,764.2466 0.2472 0.4978
LSSVM 5.7576 864.6922 1040.3900 1,237,739.8996 0.0705 0.7419

LSSVM‑BFOA 4.4024 664.4374 779.9860 716,295.3460 0.0532 0.8743
LSSVM‑IBFOA 4.1615 617.6613 730.0336 646,979.9275 0.0498 0.9464

While both LSSVM‑IBFOA and LSSVM‑BFOA demonstrate effectiveness compared
to LSSVM and DNN, LSSVM‑IBFOA outperforms LSSVM‑BFOA on average. These ob‑
servations on the testing dataset highlight the effectiveness of LSSVM‑IBFOA in achiev‑
ing superior overall forecasting accuracy. The optimization process introduced by the IB‑
FOA algorithm empowers LSSVM to deliver forecasts with consistently lower errors and
a strong positive correlation with actual values across different weekdays and weekends.
These reductions highlight the effectiveness of LSSVM‑IBFOA’s optimization process in
generalizing well to unseen data compared to LSSVM‑BFOA.

Figure 8 summarizes the visualization results of accuracy measures from three mod‑
els focusing on the important results. The error values of the models obtained demonstrate
that Monday had the best performance with high accuracy compared to other day types.
This result may be attributed to the relatively fewer public holidays in the historical load
data occurring on Mondays compared to other day types throughout 2021. Consequently,
a similar pattern of Monday was observed across all weeks and months of the year, pro‑
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ducing higher accuracy of load profile forecasting. The performance accuracy of models
for other day types could be enhanced by incorporating specific public holiday data as
additional features in the analysis.

Figure 8. Illustrations of plots for MAPE and MAE.

From the above analysis, the electricity load forecasting result of using IBFOA to op‑
timize the LSSVM model demonstrated better results than standard BFOA, stand‑alone
LSSVM, and DNN. Thus, the effectiveness of the proposed hybrid model is proved.

4.4. Algorithm Performance
Figure 9a–e depicts the convergence curve for IBFOA and BFOA, which is represented

by the fitness value (MAPE) over the iteration. Table 10 represents the convergence time
obtained for each day type, which shows that the IBFOA has a shorter convergence time
than the BFOA. The IBFOA improves the convergence speed and accuracy of BFOA. SCA
has a high speed due to its simple structure. At the same time, the reproduction and elimi‑
nation dispersal processes give BFOA an advantage in accelerating the exploitation phase
and preventing the algorithm from falling into local optima.

Table 10. Summary of the best convergence time for BFOA and IBFOA.

Day Type Algorithm Convergence
Time (Minutes)

Monday BFOA
IBFOA

44.6826
38.1281

Tuesday–Thursday BFOA
IBFOA

31.2697
26.9290

Friday BFOA
IBFOA

25.8514
16.5285

Saturday BFOA
IBFOA

35.5887
21.7109

Sunday BFOA
IBFOA

33.8185
31.6932
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Figure 9. Convergence curve of BFOA and IBFOA for (a) Monday; (b) Tuesday–Thursday; (c) Friday;
(d) Saturday; and (e) Sunday.

Therefore, the IBFOA has better performance in terms of convergence speed, accuracy,
and local optima avoidance by synergizing the strengths of both algorithms. From the
analysis, considering five‑day types in a week, the IBFOA converges at 398th, 31st, 92nd,
231th, and 532th iterations, respectively. In contrast, the BFOA converges at the 477th,
111th, 143rd, 301st, and 682nd iterations, respectively.

5. Conclusions
Understanding future electricity demand patterns constitutes a critical factor in en‑

suring the stability and security of energy systems especially in Malaysia’s power market.
This information proves invaluable for government authorities as they make strategic de‑
cisions and plan a power system for the sustainable growth of a country. To forecast the
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electric load accurately, in this paper, a hybrid method based on LSSVM optimized by
IBFOA (LSSVM‑IBFOA) for daily electricity load forecasting is proposed.

The Pearson correlation is utilized to analyze the correlation of present load with past
load and weather. The past weather data incorporating temperature, humidity, and dew
point are negligible since they show no until moderate correlation with the load. Thus, the
historical load with a strong correlation is taken as the input to the LSSVM. While Pear‑
son correlation analysis is useful for identifying linear relationships, it can be limited by
its sensitivity to outliers and its inability to detect non‑linear relationships. To address
these shortcomings, advanced feature engineering techniques like Spearman rank correla‑
tion, random forest, and gradient boosting can be incorporated into the models to enhance
feature selection accuracy in load forecasting.

For parameter optimization of LSSVM, an IBFOA is proposed to overcome the short‑
comings of fixed constant value in chemotaxis from the original BFOA. Comparative anal‑
yses of algorithm performance demonstrated that IBFOA significantly enhances conver‑
gence accuracy and optimization performance, as evidenced by superior convergence
curves and reduced convergence times. The proposed approach, LSSVM‑IBFOA, is used
to forecast the daily electricity load in peninsular Malaysia during the pandemic based on
the historical load data in the year 2021, considering the five‑day types in a week. The
simulation result demonstrates that the hybrid of LSSVM‑IBFOA outperforms the DNN,
LSSVM, and LSSM‑BFOA with the lowest value of MAPE, MAE, RMSE, MSE, and NRMSE
as well as the biggest R2 for all day types. On average, the values obtained from the day
type were 4.1615%, 617.6613, 730.0336, 646,979.9275, 0.0498, and 0.9464, respectively. Ad‑
ditionally, detailed analyses across five‑day types revealed that all models exhibited the
highest accuracy on Mondays and the lowest on Fridays. Consequently, future research
should focus on improving the performance of these models for other days of the week.

While this study focused on Malaysia, a country with a tropical climate influenced
by monsoons, the proposed methodology offers potential for application in regions with
four seasons. To enhance forecasting accuracy in such areas, seasonal variations should be
considered, and meteorological parameters affecting load demand in each season should
be identified through correlation analysis. For countries in Southeast Asia with similar
climatic conditions, researchers can consider using the same meteorological parameters
to identify the potential inputs to the model in the correlation analysis. Additionally, the
IBFOA parameters can be adjusted accordingly to accommodate the specific characteristics
of different datasets and regional variations, demonstrating the model’s adaptability.

The recommendations for future directions are included but not limited to:
(a) Application for LSSVM‑IBFOA for forecasting on a smaller load aggregation for resi‑

dential and commercial buildings or considering specific electrical loads such
as air‑conditioning;

(b) Perform forecasting analyses using two approaches: one incorporating weather data
as input features, and another relying solely on historical load data during
normal periods;

(c) Inclusion of sensitivity analysis on the tuning parameters of the hybrid method;
(d) Adding more experiments for calculation of speed and resources of the

forecasting model.
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Abbreviations

ANN Artificial neural network
ARIMA Auto‑regressive integrated moving average
BFOA Bacterial foraging optimization algorithm
CDD Cooling degree days
CV‑RMSE Cross‑validation root mean square error
DNN Deep neural network
EMS Energy management system
GDP Gross domestic product
HDD Heating degree days
IBFOA Improved bacterial foraging optimization algorithm
LF Load forecasting
LSSVM Least square support vector machine
LSTM Long short‑term memory
LTLF Long term load forecasting
MAE Mean absolute error
MAPE Mean absolute percentage error
MCO Movement control order
ML Machine learning
MSE Mean square error
MTLF Medium term load forecasting
NRMSE Normalized root mean square error
PCC Pearson’s correlation coefficient
R2 Determination coefficient
RE Renewable energy
RMSE Root mean square error
SARIMA Seasonal auto‑regressive integrated moving average
STLF Short‑term load forecasting
SVM Support vector machine
VSTLF Very short‑term load forecasting
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