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A B S T R A C T

Understanding the dynamics of Fractional Vegetation Cover (FVC) is crucial for effective environmental moni-
toring and management, especially in regions like Pakistan that are sensitive to climate change. This study 
employs an innovative approach using MODIS NDVI data and the Pixel Dichotomy Model (PDM) to analyze the 
spatiotemporal dynamics of FVC across Pakistan from 2003 to 2020. Our findings reveal an overall increasing 
trend in FVC, with the highest value recorded in 2017 (0.37) and the lowest in 2004 (0.26). The Hurst exponent 
analysis (R/S ratio = 0.718) indicates a degree of long-term memory in the FVC time series. Rainfall was found to 
positively correlate with FVC (r = 0.6), while Land Surface Temperature (LST) and the Compounded Night Light 
Index (CNLI) exhibited negative correlations (r = − 0.59 and r = − 0.43, respectively). The Random Forest 
regression model highlighted CNLI as the most influential predictor (importance = 62.4%), emphasizing the need 
to consider human-induced factors in environmental management. These results provide critical insights for 
sustainable land management and contribute to understanding vegetation-climate interactions in arid and semi- 
arid environments."

1. Introduction

FVC is a crucial parameter in climatic studies, quantifying the pro-
portion of ground covered by vegetation. It influences surface energy 
balance, evapotranspiration rates, and carbon sequestration, making 
accurate FVC measurements essential for modeling and predicting 

climate change impacts (Anees et al., 2022b). Unlike other vegetation 
indices such as NDVI and EVI, which measure vegetation health through 
greenness but are influenced by soil background and atmospheric con-
ditions, FVC offers a precise measure of vegetation density and spatial 
distribution. LAI focuses on vertical vegetation structure, while FVC 
directly quantifies horizontal coverage, making it valuable for ecological 
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assessments, land cover change detection, and habitat suitability anal-
ysis (see Fig. 1).

FVC is also crucial for understanding interactions with hydrological 
processes, such as groundwater recharge and soil moisture retention. 
Areas with higher FVC typically have better soil structure and increased 
organic matter, enhancing water infiltration and reducing surface 
runoff. These hydrological insights are not captured by NDVI, EVI, or 
LAI, highlighting the unique value of FVC in environmental monitoring 
and management. As a comprehensive quantitative index, FVC is widely 
used in ecological environment assessments, groundwater enrichment 
assessments, groundwater level monitoring (Zhao et al., 2023), and soil 
degradation and desertification monitoring. It also represents vegetation 
growth trends (Muhammad et al., 2023a, 2023b; Mehmood et al., 
2024a, 2024b, 2024c, 2024e; Pal and Ziaul, 2017). Additionally, FVC 
can significantly aid in groundwater enrichment. Areas with higher 
vegetation cover tend to have better soil structure and increased organic 
matter, which improve water retention and infiltration rates (Lal et al., 
2021). This process reduces surface runoff and promotes water perco-
lation into deeper soil layers, enhancing groundwater recharge. The role 
of FVC in the hydrological cycle underscores its importance in sustain-
able water resource management.

Recent research on FVC dynamics has highlighted various method-
ologies and their applications in understanding environmental and 
ecological changes. For instance, Wang et al. (2022) introduced an 
improved FVC estimation model by integrating the optimized dynamic 
range vegetation index (ODRVI) model, which enhances sensitivity to 
water content, roughness degree, and soil type. Additionally, using 
MODIS data, Hill and Guerschman (2020) explored the levels and trends 
in FVC across global grassland types and savanna woodlands. Their 
analysis demonstrated significant variations in FVC trends, driven by 
interactions between drought, livestock utilization, and agricultural 
expansion. Mehmood et al. (2024e) used NDVI to assess the impact of 
climatic variability on vegetation dynamics in Pakistan. The study 
identified a strong relationship between NDVI values and climatic var-
iables, indicating that temperature and precipitation are crucial in 
vegetation changes. Furthermore, surface soil moisture (SM) is critical 
for biotic life and geophysical processes, but its spatiotemporal evolu-
tion under global warming remains uncertain. Over 40 years, 48% of the 
global vegetated area has been drying, while 9% has shown a wetting 
pattern. This study reveals that the drying areas often correspond to 
increased evapotranspiration or decreased precipitation, with signifi-
cant implications for soil water resource conservation and management 
(Lal et al., 2023; Mehmood et al., 2024a; Mehmood et al., 2024c; 
Mehmood et al., 2024e).

Vegetation plays a crucial role in ecosystems, significantly influ-
encing land surface energy, the biogeochemical cycle, and hydrology 
(Akram et al., 2022; Pan et al., 2023; Mehmood et al., 2024a). Re-
searchers have utilized the FVC to effectively and statistically assess 
surface vegetation coverage and its temporal changes (Pal and Ziaul, 
2017; Mehmood et al., 2024d). Annual variations in FVC are attributed 
to increased population and urbanization, which significantly alter 
vegetation quantity (Mirzaei et al., 2020). Climatic elements, particu-
larly temperature and rainfall, also play a critical role in influencing FVC 
dynamics. These climatic variations can either enhance FVC, promoting 
crop growth (Aslam et al., 2022; Mehmood et al., 2024c) or lead to a 
decline in FVC, potentially resulting in land cover flooding (Pal and 
Ziaul, 2017). Understanding these dynamics is essential for compre-
hending the broader impacts of climatic and anthropogenic factors on 
vegetation patterns (Andreevich et al., 2020; Anees et al., 2024b). 
Traditional surface measuring methods for FVC include the photo-
graphic method, the sample strip method, the sample point method, and 
the spatial quantitative meter (Deng et al., 2021). These methods are 
limited by short measuring ranges, time-consuming processes, labor 
intensity, and potential constraints due to natural conditions. With ad-
vancements in remote sensing technology, remote sensing monitoring 
based on the link between vegetation spectral information and 

vegetation coverage has emerged as the primary method for obtaining 
FVC over broad regions (Wang et al., 2022; Mehmood et al., 2024a, 
2024c, 2024e).

Landsat, MODIS (Moderate-resolution Imaging Spectroradiometer), 
GaoFen (GF), SPOT (Systeme Probatoire d’Observation de la Terre), and 
other satellite data sources are the most commonly used for remote 
sensing estimation of FVC (Mirzaei et al., 2020; Pal and Ziaul, 2017; 
Shao et al., 2020). These sources utilize various wavelength bands, such 
as the blue band (450–520 nm), the green band (520–590 nm), the red 
band (630–690 nm), and the near-infrared band (770–890 nm) (Kang 
et al., 2021; Mehmood et al., 2024a, 2024c, 2024e). Vegetation indices 
based on these bands, such as the normalized green-red difference index 
(NGRDI), the normalized green-blue difference index (NGBDI), the 
visible-band difference vegetation index (VDVI) (Song et al., 2023), and 
the normalized difference vegetation index (NDVI) (Mehmood et al., 
2024a, 2024c, 2024e), have demonstrated excellent accuracy in remote 
sensing estimations of FVC (Mudereri et al., 2021). However, there have 
been few applications of FVC estimation in dry and semi-arid environ-
ments. In recent years, understanding the dynamics of FVC has become 
increasingly important for ecological monitoring, especially in regions 
vulnerable to climatic and anthropogenic pressures. This study not only 
focuses on the spatiotemporal dynamics of FVC but also rigorously an-
alyzes the driving forces, climatic factors like rainfall and temperature, 
and human activities as indicated by the CNLI that influence these dy-
namics. Notably, FVC estimation in dry and semi-arid environments has 
been challenging due to sparse vegetation, high soil reflectance, and 
seasonal variability, which complicate remote sensing analyses. Our 
study addresses these challenges by leveraging advanced methodologies 
and robust datasets, thus providing a comprehensive understanding of 
FVC dynamics across Pakistan’s diverse landscapes. The primary moti-
vation for this study is to address the challenge of accurately quantifying 
and understanding the dynamics of FVC in Pakistan, a region charac-
terized by diverse ecosystems and significant climatic variability. By 
employing an innovative approach that integrates MODIS NDVI data 
with the Pixel Dichotomy Model (PDM) and advanced machine learning 
techniques, this research seeks to uncover the spatiotemporal trends in 
FVC over 18 years. Specifically, we analyze the influence of climatic 
factors (temperature and rainfall) and anthropogenic drivers (urbani-
zation) on vegetation cover. The study also introduces the use of the 
Hurst exponent to assess the long-term persistence of vegetation dy-
namics, providing new insights into the resilience and stability of eco-
systems. The findings of this research have significant implications for 
ecological assessment, groundwater enrichment, soil degradation 
monitoring, and sustainable water management. By enhancing our un-
derstanding of vegetation dynamics, this study contributes to devel-
oping more effective ecosystem management and conservation 
strategies in Pakistan (Mehmood et al., 2024a, 2024c, 2024e).

2. Material and methods

2.1. Study area

Pakistan, located in South Asia between latitudes from approxi-
mately 24◦–37◦ N and longitudes from 60◦ to 77◦ E spans an area of 
87.98 million hectares (see Fig. 1). Of this, 4.57 million hectares, or 5.2 
percent of the country’s total area, are covered by forests (Yaqoob, 
2018). Pakistan ranks as the sixth most densely populated country 
globally, with an average population density of 2.6 persons per square 
kilometer (Baig et al., 2021). Since gaining independence in 1947, 
Pakistan’s population has grown at an average annual rate of 2.7 
percent, increasing from 32.5 million to 208 million by 2017 (Statistics, 
2017). Within its forestry sector, commercial forestry constitutes 32.8 
percent of forested land, while the remaining two-thirds is preserved for 
watershed protection, soil conservation, and climate regulation services. 
Pakistan’s climate varies widely across different regions. The north-
western and northern high mountainous areas experience severely cold 
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winters, although April and September offer more pleasant weather. 
Summers across various regions are typically dry and hot, whereas 
winters are chilly and dry. The southern coastal regions, for instance, 
benefit from a milder climate than other areas. Annual rainfall across the 
country ranges significantly from 160 to 1200 mm, depending on the 
specific location. This variability in precipitation, combined with pro-
nounced diurnal temperature fluctuations, results in relatively low hu-
midity levels nationwide (Baig et al., 2021).

2.2. Remote sensing data and preprocessing

2.2.1. MODIS data
MODIS data from NASA’s satellite system was used, which captures 

images in visible and thermal wavelengths to assess changes in vegeta-
tion cover. The VI has been proven to be the most reliable indicator of 
the health of forest vegetation (Gu et al., 2013). This study used NASA’s 
MODIS NDVI data (MOD13Q1, Version 6.1) (https://earthexplorer.usgs. 
gov/), obtained from 2003 to 2020 at a spatial resolution of 250 m and a 
temporal resolution of 16 days. A total of 12 temporal images were 
selected each year, with one image per month. These images were pre-
processed to ensure consistency in spatial extent and resolution and to 
mask out pixels impacted by cloud cover or low-quality conditions using 
the provided quality assurance layers (Mu et al., 2022). The selection of 
12 images was guided by the need to balance temporal coverage with 
data quality and computational efficiency. Monthly images effectively 
capture the major vegetation growth stages while reducing redundancy 
and ensuring the robustness of the mean NDVI calculation for annual 
analysis. This approach allowed us to produce a consistent dataset that 
accurately represents the vegetation dynamics throughout the year 
(Mehmood et al., 2024a, 2024c, 2024e). The NDVI values were accu-
mulated for each pixel across the 12 images for each year, calculated to 
derive the mean NDVI value, and generated an annual NDVI raster that 
captures the average vegetation status (Yan et al., 2022). NDVI is a 
crucial indicator for assessing vegetation health and coverage, providing 
standardized plant density and growth health measurements. NASA 
Earth Observations (NEO) datasets were used to select high-quality 
MODIS NDVI data while reducing atmospheric noise (Ustin and Mid-
dleton, 2021). The relevant data was selected based on the phenological 
time series to ensure accuracy and consistency in monitoring vegetation 

status across Pakistan.

2.2.2. Nighttime light remote sensing data
Data from nighttime lights are used in this research to compute CNLI 

and to analyze human activities, such as urbanization. The sensor is 
primarily used for nighttime light observations of the surface of the 
Earth, focusing on urban areas and other artificial light sources (Small 
et al., 2005; Anees et al., 2022a, 2022b). We used the nighttime lights 
datasets and the MODIS NDVI images to link FVC with CNLI, allowing us 
to forecast vegetation cover (Mirzaei et al., 2020; Pal and Ziaul, 2017; 
Shao et al., 2020; Wu, 2014; Anees et al., 2022a, 2022b). In this manner, 
significant yearly changes in FVC were identified, and spatial patterns of 
vegetation dynamics were observed (Shao et al., 2020; Anees et al., 
2022a, 2022b).

Nighttime light is commonly utilized to investigate the regional as-
pects of urbanization because earlier studies showed that it provides an 
understanding of the artificial light intensity (Anees et al., 2022a, 
2022b; Chen et al., 2022). Human activity, such as urbanization, was 
examined in this study by using a harmonized nighttime light dataset 
(https://doi.org/10.6084/m9.figshare.9828827) from 2003 to 2020. 
The spatial resolution of this nighttime light data is 30 arc-seconds. It 
indicated a temporally consistent trend and was tagged in GEOTIFF file 
format with digital numbers (DN) from 0 to 63. Moreover, because of 
higher uncertainties in low-DN regions, we only focus on areas with DN 
values greater than 10 in conformity with the usage notes of this 
nighttime light data (Li et al., 2020). Researchers have investigated 
various national, global, and regional study topics because of long-term 
data availability with a modest spatial resolution (He and Gao, 2015; 
Elvidge et al., 2009). From 2003 to 2020, data were retrieved, and mean 
values were determined.

2.2.3. Meteorological data
The European Center for Medium-Range Weather Forecasts 

(ECMWF) version 5 reanalysis (ERA5) dataset (https://cds.climate. 
copernicus.eu/) was used for the meteorological data (Hersbach et al., 
2020). Compared to the previous ERA-Interim reanalysis product, ERA5 
is the current generation of ECWMF reanalysis data, having better 
spatial and temporal resolution, a more accurate radiative transfer 
model, and more refined assimilation techniques. These datasets have a 

Fig. 1. Study area map.
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horizontal resolution of 0.1◦ × 0.1◦, accessible from 1979 to the present. 
Here, we used data from ERA5 from 2003 to 2020. LST is the ERA5 
meteorological factor employed in this research to examine its impact on 
FVC. The climate pattern in Pakistan is due to the South Asian monsoon, 
which substantially affects vegetation. Climatic factors are used in this 
research to show how vegetation cover and this parameter interact. 
PERSIANN-CDR was utilized to estimate rainfall from remotely sensed 
information. This dataset is comprised of daily rainfall data from the 
satellite. The NOAA CDR Initiative and National Climatic Data Center 
(NCDC) have recognized it as a valuable source of high-resolution 
rainfall data that can be used in climate research throughout the 
globe. It is possible to use PERSIANN-CDR to examine global rainfall 
trends (Santos et al., 2021). The layers’ configuration demonstrates a 
predisposition towards certain spectral resolution units. To address 
inherent biases in the spatial representation of meteorological factors, 
an approach was adopted where every layer was reprojected to a pro-
jected coordinate system (Cox et al., 2020).

The methodology employed in this study ensured that the spatial 
integrity of the utilized datasets was carefully maintained. The datasets 
had varying original spatial resolutions—MODIS NDVI data at 250 m, 
meteorological data (rainfall) at 27.75 km, and CNLI data at 1 km and 
different temporal resolutions ranging from 16 days to monthly. To 
mitigate potential biases from these discrepancies and promote consis-
tency across the datasets, each dataset underwent a rigorous resampling 
and reprojection process to a unified coordinate system. Specifically, the 
MODIS NDVI data, with its native 250-m resolution, was used as the 
reference spatial resolution. The meteorological data (rainfall), origi-
nally at 27.75 km resolution, was downscaled to match the 250-m res-
olution using bilinear interpolation, suitable for continuous data. 
Similarly, CNLI data at 1 km resolution was resampled to 250 m using 
nearest-neighbor interpolation, which is appropriate for categorical data 
like urbanization indicators. Temporal discrepancies were addressed by 
aligning all datasets to a monthly time scale, where the MODIS NDVI 16- 
day composites were averaged to create monthly values. This rigorous 
resampling procedure ensured that all datasets were harmonized to a 
common spatial resolution of 250 m and a monthly temporal resolution. 
Such preprocessing was critical for maintaining the spatial and temporal 
consistency required for accurate analysis, reducing the risk of spatial 
inconsistencies in the derived results. (see Table 1)

2.3. FVC estimation

The Pixel Dichotomy Model (PDM) requires a solid linear connection 
between the FVC and the remote sensing data. Individual or multiple 
band data can extract vegetation information; however, a vegetation 

index (VI) can better represent the vegetation information. Many 
vegetation indices have been found to reduce or eliminate the impacts of 
radiometric factors such as satellite observation angle, solar altitude, 
cloud, topography and shadows, and atmospheric conditions. NDVI is 
the most effective (Mehmood et al., 2024a, 2024c, 2024e), and PDM 
employed the NDVI as a standard source for vegetation coverage 
assessment (Anees et al., 2022a; Anees et al., 2022b; Zhang et al., 2013; 
Wang et al., 2022; Gao and Zhang, 2019).

In this study, the Pixel Dichotomy Model (PDM) was employed using 
NDVI as the primary vegetation index, which is particularly effective in 
regions with variable climatic conditions, like Pakistan (Mehmood et al., 
2024a, 2024c, 2024e). To enhance the accuracy of FVC estimation under 
dry conditions, we recalculated NDVImin and NDVImax values for each 
year to reflect annual variability in vegetation dynamics. This annual 
recalibration ensured the model accurately captured the true extent of 
vegetation cover each year, even under drought stress. By normalizing 
NDVI values annually, we maintained consistency across the entire time 
series, ensuring comparable FVC estimates across different years. This 
approach made the PDM method robust against atmospheric variability, 
particularly in dry and semi-arid regions, ensuring accurate FVC esti-
mation under challenging conditions. The formula for calculating NDVI 
is as follows: 

NDVI=
NIR − RED
NIR + RED

(1) 

The vegetation fractions of each year are estimated based on NDVI 
data. As a result, a yearly percentage of vegetation cover was calculated 
by averaging twelve months’ vegetation cover data.

In this study, the values of NDVImin and NDVImax were calculated 
for each year individually, based on the NDVI data from that specific 
year. This approach allowed us to capture the annual variability in 
vegetation conditions, which climate variations and land use changes 
can influence. However, we employed a normalization process to ensure 
consistency in the FVC product across the entire time series from 2003 to 
2020. This process involved standardizing the NDVI values each year by 
calculating the NDVImin and NDVImax within the same dataset, thereby 
consistently maintaining the relative scale of NDVI variations. By doing 
so, we ensured that the FVC values derived for each year were compa-
rable across the entire study period, allowing us to analyze temporal 
trends in vegetation cover accurately.

From 2003 to 2020, the FVC was determined using the following 
formula: 

FVC=
NDVI − NDVImin

NDVImax − NDVImin
(2) 

NDVImin and NDVImax are the lowest and highest values of NDVI, 
respectively (Cheng and Li, 2019).

2.4. FVC trends analysis

FVC data from 2003 to 2020 were used for trend analysis using Hurst 
exponent (Peng et al., 2012). The Hurst exponent is often determined via 
the R/S method developed by Hurst. Hurst popularized using the 
rescaled range (R/S) analytical method for calculating the Hurst expo-
nent: The first step is to divide the long-time series into several shorter 
ones. Hurst (1951) proposed the following five general equations for R/S 
analysis, and they can be used in any time series. 
(

R
S

)

s
= ksH (3) 

where k is a constant and s is the total length of the shorter time series, 
with 1 being less than s, s being less than N, and the total time series 
length is denoted by N. The time series range is (R), and the standard 
deviation is (S). The following formula is for determining each size 
distribution’s range. 

Table 1 
List of different datasets and sources.

Datasets Data Scale Years Source

MODIS MODIS 
TERRA

16 days 
temporal 
resolution; 
spatial 
resolution 
(250 m)

2003–2020 https://eart 
hexplorer. 
usgs.gov/

Meteorological Rainfall Monthly data 
(27.75 km)

2003–2020 https://ch 
rsdata.eng. 
uci.edu/

Temperature https://cds. 
climate. 
copernicus. 
eu/

CNLI The nighttime 
lights datasets

(1 km) 2003–2020 https://doi. 
org/ 
10.6084/m9. 
figshar 
e.9828827
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R = max (Z1, Z2, …,Zs) - min (Z1, Z2, ….., Zs)                                 (4)

The cumulative series, denoted by Zs, is calculated as: 

Zs =
∑s

i=1
yi (5) 

Taking the sample mean and subtracting it from each shorter time 
series gives an adjusted time series, ys, where s = 1, 2, …, N. 

ys = xs − x (6) 

and 

x=

∑N

i=1
xi

N
(7) 

The Hurst exponent is calculated as the slope of the line plotted 
among (R/S)s and s on the log–log scale.

The R/S analysis approach is straightforward as it doesn’t need 
complicated mathematical modeling or assumptions about the under-
lying data’s distribution. It requires just elementary knowledge of sta-
tistics, such as determining the range and standard deviation of a sample 
of data. Therefore, R/S analysis does not require a particular probability 
distribution for the data and is unaffected by outliers (Kotenko et al., 
2022).

2.5. Driving forces analysis

The driving forces analyzed in this study include temperature, 
rainfall, and CNLI for Pakistan. The hypothesis tested in this study is as 
follows. 

Null Hypothesis (H0). There is no significant relationship between 
FVC and its driving factors (temperature, rainfall, urbanization, and 
CNLI).

Alternative Hypothesis (H1). There is a significant relationship be-
tween FVC and its driving factors (temperature, rainfall, urbanization, 
and CNLI).

We used the Random Forest regression model to test these hypoth-
eses and assess the statistical significance of the relationships (Anees 
et al., 2024a). The results support rejecting the null hypothesis, indi-
cating that the driving factors significantly influence FVC dynamics. 
Finally, the satellite data were analyzed in a spatiotemporal framework 
by applying new approaches and consolidated methods such as GIS 
spatial analysis, Hurst exponent, Random Forest Regression to identify 
the main factors causing FVC changes and examine the correlation of 
FVC with other variables.

2.5.1. Weighted overlay analysis and spatial correlation
Extracting values to points analysis is an effective method for 

obtaining information from several study areas, such as geographic in-
formation. The working principle is to extract grid pixel values based on 
a set of point features and record these values to the attribute table of the 
output feature class. The weighted overlay is one technique of modeling 
suitability. The following procedure for this analysis was used in ArcGIS. 
Each raster layer is given a weight in the analysis of suitability. Raster 
values are reclassified to a common scale of suitability. Raster layers are 
overplayed, multiplying each raster cell’s suitability value by its layer 
weight and totaling the values to find a value of suitability. These values 
are written to new cells in an output layer. The symbology in the output 
layer is based on these values (Zhang et al., 2021).

2.5.2. Random Forest Regression (machine learning algorithm)
Random Forest Regression is a popular algorithm for regression 

problems predicting continuous outcomes (Luo et al., 2024; Anees et al., 
2024a). Breiman (2001) and Iannace et al. (2019) describe it as an 

ensemble learning strategy that mixes many decision trees to improve 
the model’s performance. The RF can find the best predictor automati-
cally, and its ability to give accurate performance and minimize over-
fitting arises from its use of many tree features (Anees et al., 2024a; Luo 
et al., 2024). A regression tree is created when numerous linear seg-
ments are combined, and the RF model is created using trees grown by 
random vectors. Tree predictors give numerical results as their output 
(Breiman, 2001; Luo et al., 2024; Anees et al., 2024a; Shahzad et al., 
2024).

Assuming a regression problem with n data and M variables, the 

intention is to determine f̂
B
rf (x) in x. Computing variance is reduced 

when using bootstrap aggregation or bagging averages. Every bootstrap 
pattern (b = 1, 2, 3, …, B) is represented by this model. Selecting the m 
variables of M at random is the first step in building the RF model; then, 
the most influential variable is chosen from the m variables, and the 
node is split into two successive daughter nodes (Safari, 2020; Anees 
et al., 2024a; Luo et al., 2024). Repeating the steps outlined above until 
the required node size is reached at each terminal node is what it takes to 
build an RF with Tb tree from bootstrapped data. The expression for the 
value predicted at point x is: 

f̂
B
rf (x)=

1
B
∑B

b=1
Tb(x) (8) 

(see Fig. 2)

3. Results and discussion

3.1. FVC distribution at different periods

The data from 2003 to 2020 reveals that the average yearly FVC was 
31%. In 11 out of the 18 years, the FVC was below this average; in the 
remaining years, it was above 31%. This cyclic trend hints at periodic 
shifts in vegetation cover. In 2004 and 2007, severe dry spells (Chand 
et al., 2006) characterized by limited rainfall and extended daylight 
hours led to decreased FVC. This highlights vegetation’s sensitivity to 
extreme weather conditions and their direct impact on coverage. Despite 
relatively stable annual rainfall levels (ranging from 499.872 mm to 
669.798 mm) over the 18 years studied, FVC responses were inconsis-
tent. This suggests that factors beyond rain, such as temperature varia-
tions and human activities (urbanization), play crucial roles in 
influencing vegetation health. Notably, 2020 experienced a substantial 
increase in vegetation coverage, resulting in notably higher FVC. 
Favorable environmental conditions, including increased rainfall, opti-
mum temperatures, or reduced human activities (urbanization), likely 
facilitated this surge in vegetation growth (Li et al., 2020). This detailed 
analysis underscores the intricate web of factors influencing vegetation 
dynamics. It emphasizes the multifaceted nature of vegetation responses 
to environmental changes beyond mere rainfall, showcasing the com-
plexities of understanding and interpreting FVC fluctuations (see Fig. 2).

During the initial phase from 2003 to 2010, Pakistan experienced a 
relatively stable period in FVC, fluctuating consistently between 0.26 
and 0.3. This steady state indicated a consistent and balanced vegetation 
cover across the country, suggesting an environment conducive to sus-
tained growth. From 2011 to 2016, there was a gradual but noticeable 
increase in FVC, rising from 0.3 to 0.36. Probable contributors to this 
growth include increased rainfall, lower temperatures, and a reduced 
CNLI. These favorable conditions likely supported enhanced vegetation 
health and expansion. Between 2014 and 2017, FVC values averaged 
between 0.35 and 0.37, indicating a sustained period of increased 
vegetation cover. This sustained growth might be attributed to condu-
cive weather conditions, optimal rainfall, and potentially reduced ur-
banization, allowing for a healthier and more expansive vegetation 
cover. In 2018–2019, FVC exhibited minor fluctuations, averaging 
around 0.34, but slightly increased to 0.35 in 2020 (Fig. 3). These var-
iations might be linked to natural shifts in climatic conditions or slight 
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human-induced changes, resulting in subtle alterations in vegetation 
cover.

A closer examination highlights the influence of environmental fac-
tors such as rainfall patterns, temperature changes, and the CNLI in 
driving shifts in FVC. Periods of increased or sustained FVC potentially 
align with more favorable environmental conditions and reduced 
human disturbances, emphasizing the combined impact of natural ele-
ments and human activities on vegetation dynamics. Understanding 
these nuanced fluctuations in FVC provides valuable insights into the 
complex interplay between environmental factors and human influences 
on vegetation health. This knowledge underscores the importance of 
adaptive conservation strategies and sustainable land management 
practices to preserve and enhance vegetation health across diverse 
ecosystems in Pakistan.

Our results presented variations in FVC per annum in different years, 
as shown in Fig. 4. Various factors influence FVC, causing fluctuations in 

vegetation cover. Regions with high vegetation typically experience less 
human disruption, favorable climatic conditions, and specific land-
forms. In contrast, areas with low vegetation face challenges due to 
urbanization, less favorable climatic conditions, and particular land-
forms. The spatial distribution of FVC over the 18 years shows that the 
northeast and southwest parts of the research area usually have lower 
vegetation coverage due to human interference and specific landforms. 
The areas characterized by mountains, particularly in the northwest and 
northeast regions, have limited human influence and exhibit moderate 
to high vegetation quality. This spatial pattern is closely connected to 
regional urbanization differences, where fewer disturbances and favor-
able climatic conditions in the northern hilly parts of Pakistan lead to 
greater FVC values. Conversely, human disturbance is critical in the 
southeastern zone, resulting in a low FVC.

3.2. FVC spatio-temporal dynamics by hurst exponent

The Hurst Exponent was used to analyze the dynamics of FVC across 
all time (Peng et al., 2012). Results showed the Hurst exponent value for 
Pakistan’s annual FVC data from 2003 to 2020. The estimated value of 
the R/S Hurst ratio is 0.718. As it is more than 0.5, the FVC time series 
data exhibits some degree of long-term memory or autocorrelation. 
Accordingly, the FVC values in Pakistan show some persistence or trend 
over time, as the Hurst exponent is between 0.5 and 1. If the Hurst 
exponent is greater than 0.5, the series displays persistence or memory 
effects, which may suggest structural changes over time in the vegeta-
tion’s dynamics. This suggests that past values of FVC influence future 
values, indicating sustained trends or patterns. Environmental factors 
like rainfall, temperature variations, and urbanization likely negatively 
impact vegetation health, contributing to this sustained behavior. The 
Hurst exponent’s confirmation of persistent trends underscores the 
importance of long-term monitoring and understanding environmental 
influences on vegetation dynamics. It emphasizes the necessity for 
adaptive strategies and sustained efforts in managing and preserving 
vegetation health. Understanding the persistent nature of FVC changes, 
highlighted by the Hurst exponent, aids in comprehending the long-term 
impacts of environmental factors on vegetation. It highlights the sig-
nificance of prolonged analysis for effectively managing and conserving 
vegetation cover. There have been notable trends in Pakistan’s annual 
FVC values over the past 18 years. From 2003 to 2020, annual FVC 
values in Pakistan fluctuated slightly but stayed consistent overall, 
increasing little in some years. However, there were also times of 
decline; the FVC values could have been affected by several causes, such 
as changes in rainfall, temperature, and urbanization. FVC changes in 
Pakistan may be distinguished using the dataset over a longer time 
frame. For instance, a rising trend in FVC values over time may indicate 
a progressive increase in plant cover, while a falling trend may indicate a 
decline in plant life. Our findings confirm this conclusion; we found that 
urbanization had a negative impact on FVC. This finding significantly 
contributes to our knowledge of plant cover’s long-term dynamics and 
predictability in urban areas. As more people move into cities, vegeta-
tion cover gradually decreases.

3.3. FVC driving forces

However, our analysis revealed that human activities, such as ur-
banization, and environmental conditions, such as temperature and 
rainfall, have impacted the dynamics of FVCs. The study area experi-
enced changes due to human activities and climatic factors between 
2003 and 2020. The spatial distribution of FVC exhibited a pattern of 
decreasing coverage from north to south and from colder mountainous 
regions to warmer plains. These trends corresponded to variations in 
CNLI and temperature, indicating their influence on vegetation health. 
Inequalities in urbanization levels were apparent in the distribution of 
FVC, illustrating the impact of urban development on vegetation cover. 
Notably, distinct CNLI and temperature variations affected FVC, 

Fig. 2. Technological flowchart outlines the key steps in methodology.
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resulting in lower values during increased CNLI and temperature pe-
riods. Rainfall emerged as a positive factor influencing FVC, directly 
affecting vegetation health. Variations in rainfall and temperature 
significantly impacted plant growth by regulating photosynthesis and 
respiration rates, ultimately affecting vegetation vitality and health.

The study highlighted varying effects of climate change on plant 
growth across regions. Correlations examined between FVC, rainfall, 
temperature (Shobairi et al., 2022; Usoltsev et al., 2020, 2022), and 
CNLI depicted the complex interplay among these factors, emphasizing 
their collective influence on vegetation dynamics. Rainfall and tem-
perature played critical roles in regulating photosynthesis and respira-
tion rates in plants, impacting vegetation growth. This understanding 
explains their substantial impact on observed FVC variations across 
different regions. The research extensively explored correlations 

between FVC, rainfall, temperature, and CNLI, shedding light on the 
intricate relationships among these factors and their combined influence 
on Pakistan’s vegetation dynamics. In essence, this analysis delineates 
the complex relationships between environmental factors, urbanization, 
and FVC in Pakistan. It underscores the profound impact of climate el-
ements like rainfall and temperature on vegetation health, emphasizing 
the necessity of considering these factors for effective vegetation man-
agement and conservation across diverse geographic regions.

3.3.1. Relationship between FVC and rainfall
The maps of FVC for 2003–2020 (Fig. 5) have been analyzed against 

the mean annual rainfall. Visual inspection of the maps shows the 
variability in vegetation cover density at the research site, which is 
influenced by rainfall, playing a significant role in vegetation growth. 

Fig. 3. MODIS data were used to determine the dynamics of FVC in Pakistan from 2003 to 2020.

Fig. 4. FVC map of Pakistan from 2003 to 2020.
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However, because many small tributaries, distributaries, and canals 
supply water to these regions, the shift in plant cover density as a 
function of rainfall seems less severe in the east and north. Indeed, these 
regions show a constant vegetation pattern (see Table 1).

Furthermore, rainfall patterns in the study area show substantial 
yearly variation in duration and distribution. Table 2 shows that over 

the study period (2003–2020), the lowest recorded annual rainfall was 
400.72 mm in 2007, and the highest record was almost 692 mm in 2017. 
Results showed a decreasing trend in rainfall with latitude, with a 
smaller decline in the north and a more significant decline in the south. 
On the other hand, mountain ranges and the foot-hills receive more rain 
than the surrounding plains. The average distribution of decadal rainfall 
is between 400 and 692 mm, as summarized in Table 2. These results 
confirm the climatic trend between 1970 and 1996, as demonstrated by 
other researchers (Zakieldeen, 2009).

Moreover, the visual inspection of the regions where the annual 
mean of rainfall is between 500 and 700 mm illustrates an excellent 
spatial correlation with vegetation cover density from 2003 to 2020. 
Although this visual analysis shows a particular good trend regarding 
some specific geographic locations, the results demonstrate that the FVC 
and the rainfall values are not uniform and strongly homogeneous 
during the study period, as summarized in Table 2. Even if these two 
variables change yearly, they follow the same trend. These findings 
corroborate the results obtained by Mohammed et al. (2015).

To establish a causal relationship between the rainfall and FVC, a 
correlation analysis was carried out for each year during the study 
period (2003–2020). Fig. 6 displays the results of a statistical analysis 
showing an important correlation between the time series of FVC and 
the interannual variability of rainfall. The R2 values vary between 0.49 
and 0.57 from 2003 to 2020. However, the correlations between these 
variables in this research are significant enough to allow the use of 
rainfall as an indicator for FVC changes. These results corroborate the 

Fig. 5. Weighted overlay of FVC and Rainfall from 2003 to 2020 in Pakistan.

Table 2 
FVC and rainfall from 2003 to 2020 in Pakistan.

Year FVC (Mean) Rainfall (mm)

2003 0.28 572.28
2004 0.26 423.74
2005 0.30 557.95
2006 0.29 500.02
2007 0.27 400.72
2008 0.29 600.40
2009 0.29 500.88
2010 0.30 670.85
2011 0.30 670.20
2012 0.28 549.83
2013 0.30 609.75
2014 0.35 641.27
2015 0.35 659.66
2016 0.36 671.18
2017 0.37 692.09
2018 0.34 530.64
2019 0.34 513.14
2020 0.35 570.37
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Fig. 6. Relationship of FVC and Rain in Pakistan. Number of samples are 270 and confidence level is 95%.
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findings of Tucker and Nicholson (1999) and other studies that 
demonstrated a similar correlation between FVC trends and rainfall 
(Herrmann et al., 2005). The correlation between rainfall and FVC can 
be variable. However, the findings remain useful as input in the carbon 
cycle models and climate impact modeling.

3.3.2. Relationship between FVC and temperature
The LST is affected by different surface conditions, so areas with 

vegetation accumulation tend to have lower LST than vegetation-free 
areas. By absorbing sunlight and transpiration of water through its 
leaves (Yasmeen et al., 2023), vegetation creates a natural 
air-conditioning system. Changes from forest to rangeland and rainfed 
farming land use reduce the vegetation cover, remove the cooling sys-
tem of natural surfaces, and increase LST (Hussain et al., 2024a). Fig. 7
shows the differences between the FVC and LST in the study area be-
tween 2003 and 2020. LST has decreased wherever the vegetation has 
increased and vice versa.

Minimum LSTs of 17.45 ◦C and 16.65 ◦C were recorded in 2016 and 
2017, indicating cooler conditions. Conversely, maximum LSTs of 21.91 
C (2009) and 21.97 C (2012) depict warmer temperatures (Table 3). The 
lower temperature in 2017 was linked to dense forest cover, aligning 
with cooler average temperatures. On the other hand, increased LSTs 
hint at potential climate change effects, suggesting potential future 
consequences due to rising temperatures. The notable temperature drop 
in 2017, attributed to increased rainfall, coincided with higher FVC. This 
correlation between rainfall, lower temperatures, and enhanced FVC 
underscores precipitation’s impact on vegetation health and LSTs. LST 
fluctuations may signify climate variability, potentially influenced by 

broader climate change. The observed temperature changes, notably 
cooler temperatures due to increased forest cover and rainfall, may 
reflect temporary shifts influenced by local environmental conditions. 
Understanding these temperature fluctuations is crucial for anticipating 
and addressing the potential impacts of climate change on vegetation 
and the overall environment. Monitoring such changes aids in planning 
effective conservation and adaptation strategies for future environ-
mental well-being.

Fig. 7. Weighted overlay of FVC and Temperature from 2003 to 2020 in Pakistan.

Table 3 
FVC and LST from 2003 to 2020 in Pakistan.

Year FVC (Mean) LST (◦C)

2003 0.28 20.12
2004 0.26 21.04
2005 0.30 17.90
2006 0.29 18.59
2007 0.27 19.90
2008 0.29 18.64
2009 0.29 21.91
2010 0.30 21.47
2011 0.30 21.81
2012 0.28 21.97
2013 0.30 20.77
2014 0.35 18.46
2015 0.35 18.56
2016 0.36 17.45
2017 0.37 16.65
2018 0.34 20.67
2019 0.34 20.67
2020 0.35 18.43

S.A. Anees et al.                                                                                                                                                                                                                                 Environmental and Sustainability Indicators 24 (2024) 100485 

10 



During the study period, forest land had a lower average temperature 
than sparse forest and rangeland, mainly due to the high moisture 
content in forest land and the greater degree of evapotranspiration. 
Water bodies have the lowest average temperature due to their high- 
water heat capacity. Changes between 2003 and 2020 showed that 
land use types were subject to an increase in average temperature, which 
can be attributed to the increasing trend in temperature (Hussain et al., 
2024b). The results exhibited a rise in average LST in areas where ur-
banization increased. This indicates increased heat-producing human--
based activities, such as converting forest land to agriculture. The 
average temperature was higher in several regions, except for areas with 
vegetation cover.

For a better analysis of the relationship between LST and FVC, the 
correlation coefficients between LST and FVC were calculated (Fig. 8). 
The highest negative correlation coefficient was obtained in 2010 and 
2020. The lowest negative correlation coefficient was observed in 2006. 
A comparison of LST and FVC values from 2003 to 2020 concluded that 
low vegetation density occurs in regions with higher average tempera-
tures. As shown in Fig. 8, the FVC correlation is negative with temper-
atures in different years.

Due to the decrease in forest area and the increase in human-induced 
land uses, the areas with lower temperatures have reduced, and the 
higher-temperature regions have experienced notable growth during the 
18 years. Natural vegetation coverage in the region is being replaced and 
converted to lower-value land uses, as evidenced by the decline in 
forested areas and the rise in agricultural and rangeland uses. The in-
crease in population density is directly related to the rise in LST in the 
study area and, consequently, the increase in agricultural land.

3.3.3. Relationship between FVC and CNLI
We used nighttime light imageries to track urban changes. The CNLI 

was calculated from 2003 to 2020. Popular uses of nighttime light im-
agery include analyzing the environmental implications of urban 
expansion, mapping nighttime sky illumination, and assessing natural 
catastrophes and forest fires. Calculating CNLI data, as shown in Table 4, 
dynamically determined the urbanization process. Computing CNLI 
changes showed that urbanization was more dominant in the southern 
and eastern parts of the area (Fig. 9). CNLI closely relates to human 
economic activities such as mine, urbanization, and agriculture and 
enables the evaluation of population density. This spectacle led to a 
vegetation coverage reduction on the mentioned region’s surface 
because vegetation coverage is influenced by urbanization at the 
Pakistan level. CNLI is regarded as an essential indicator for assessing 
urbanization trends.

A research work conducted by Chand et al. (2006) stated that ur-
banization monitoring over Indian regions by using nighttime lights 
satellite data concluded that over 98% accuracy was found between 
several satellite data sets and ground observations in determining ur-
banization trends. Nighttime light data directly relates to human ac-
tivities (urbanization) and affects land cover dynamics. For example, 
when urbanization increases, the value of nighttime light data also in-
creases, which can be a threading factor for the FVC. These findings are 
consistent with our result, so human activities such as urbanization are 
rising annually and will subsequently have different consequences.

The CNLI provides national-level details for industrial development, 
urbanization processes, and population density. The spatial correlation 
determines the link between the FVC and CNLI over 18 years. CNLI 
variations were observed yearly during this period, as shown in Fig. 9. 
These variations are also because of different government policies. 
Decreased or increased streetlights due to government policies after 
06:00 p.m. is one of the reasons for yearly changes in CNLI. The mean 
values of CNLI are shown in Table 4. Human action, like urbanization, is 
linked to the CNLI (Chand et al., 2006).

Urbanization is fundamentally a land use type. Cultivated land and 
specific urban greening spaces are the primary sources of expansion in 
fast-growing areas. The FVC calculated from MODIS was used as the 

vegetation indicator in this study to assess the influence of urbanization 
on urban greenness. Urbanization and industrialization have spread 
from east to west, north to south. The spatial and temporal changes of 
FVC and CNLI were examined. The study area experienced changes due 
to human activities between 2003 and 2020 (Mirzaei et al., 2020; Pal 
and Ziaul, 2017; Shao et al., 2020; Wu, 2014). On the other hand, those 
regions with medium and high vegetation coverage percentages expe-
rienced the least urbanization changes during this period. However, our 
analysis revealed that human activities (urbanization) had impacted the 
dynamics of FVC (Mallick et al., 2008).

Human activities (urbanization) increased throughout 2004, 2006, 
2007, 2009, 2012, and 2013, but we saw ecological protection and 
reforestation with reduced human activities from 2014 to 2020. In 
addition, we confirmed that the study area’s east, north, and west re-
gions had a medium and high percentage of vegetation coverage and less 
urbanization change from 2003 to 2020 (Fig. 10). We may use the above 
indicators to show that urbanization has reached a standstill, indicating 
that FVC is concentrated in the north and east between 2010 and 2020. 
However, human activities like urbanization affect FVC dynamics, as we 
discovered via our research.

Based on the time series of NDVI (Mehmood et al., 2024a, 2024c, 
2024e) in connection to nighttime light data, our study produced 
extensive maps displaying geographical patterns and the assessment 
indicators of FVC change. Because of human activities, FVC dynamics, 
natural changes, and climatic conditions, all lands must be monitored 
regularly to assess no forest, degraded, or forest areas. Human distur-
bance, such as urbanization, is prominent in the southern region, 
resulting in poor FVC.

To evaluate FVC changes over time, it was monitored from 2003 to 
2020. By spatial correlation analysis, the connection between CNLI and 
FVC was identified (Fig. 11). In the previous two decades, interannual 
variability of FVC in the periphery of the enlarged built-up area 
exhibited a substantial decrease, and urbanization has increased 
significantly. The CNLI and FVC correlation coefficients show how ur-
banization has affected vegetation distribution. It is possible to monitor 
green cover in urban areas through urbanization. For example, the 
reduction in urbanization intensity and the modest negative influence 
on FVC in the city core may be observed. The decrease in FVC coincided 
with an increase in CNLI. FVC decreased in the extended region mainly 
because of the occupation of built-up areas, but FVC increased in the 
area, significantly impacting the green development policy.

3.3.4. Relationship between FVC, CNLI, and climate factors
People and the climate play a role in FVC changes. The relationship 

between rainfall, temperature, CNLI, and FVC was studied using the 
Pearson correlation coefficient (Table 5). FVC is favorably correlated 
with rainfall and negatively correlated with temperature and CNLI 
(Fig. 12). FVC is linked to precipitation because the rate at which water 
evaporates in the rainy season is lower. However, there is no effect on 
the plant’s ability to photosynthesize, which leads to an increased 
vegetation cover. Because of the rain, substantial vegetation areas can 
grow well, leading to much vegetation and a higher FVC. City devel-
opment has affected the area’s average FVC each year.

3.4. FVC prediction using Random Forest Regression

A higher number of trees can potentially improve the model’s pre-
dictive performance but also increase computational time (Anees et al., 
2024a; Luo et al., 2024). The parameter “1” indicates that at each node 
split, only one randomly selected predictor variable (out of LST, Rain, 
and CNLI) was considered. This setting prevents strong bias towards a 
specific variable during tree-building. Since ‘importance = TRUE’ was 
specified, the model calculated the variable importance measures for the 
predictor variables (LST, Rain, and CNLI). The model’s results and 
interpretation benefited by analyzing the variable importance measures. 
These measures provide information about the relative importance of 

S.A. Anees et al.                                                                                                                                                                                                                                 Environmental and Sustainability Indicators 24 (2024) 100485 

11 



Fig. 8. Relationship of FVC and Temperature in Pakistan. Number of samples are 270 and confidence level is 95%.
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the predictor variables in predicting the FVC. Examining the variable 
importance determined which variables contribute the most to the 
model’s predictive accuracy (Anees et al., 2024a; Luo et al., 2024). A 
higher percentage indicates a more important variable.

3.4.1. Variable importance
The variable importance measures obtained from the Random Forest 

model are illustrated in Fig. 13. The outcomes show what percentage of 
weight each variable should be given in the Random Forest model 
(Anees et al., 2024a; Luo et al., 2024). The relative weight of each of 
these factors is described as follows. First, the CNLI is the most important 
factor, having relative importance of 62.40%. This suggests that it plays 
a significant role in the model’s predictions (Anees et al., 2024a; Luo 
et al., 2024). Indicators of urbanization, such as a higher CNLI, may have 
an impact on the results of the model.

The relative influence of predictor LST is 28.30%. It is also very 
significant. Although not as crucial as CNLI, LST is still an important 
consideration. Possible link to changes in the FVC caused by rising 
temperatures and their effect on the model’s projections. Research 
related to environmental dynamics and land management techniques in 
many regions, including Pakistan, is greatly aided by LST and FVC an-
alyses. LST is a crucial variable in ecological studies since it directly 

Table 4 
FVC and CNLI from 2003 to 2020 in Pakistan.

Year FVC (Mean) CNLI

2003 0.28 0.10
2004 0.26 0.23
2005 0.30 0.16
2006 0.29 0.23
2007 0.27 0.28
2008 0.29 0.19
2009 0.29 0.24
2010 0.30 0.11
2011 0.30 0.11
2012 0.28 0.28
2013 0.30 0.21
2014 0.35 0.17
2015 0.35 0.17
2016 0.36 0.16
2017 0.37 0.14
2018 0.34 0.18
2019 0.34 0.17
2020 0.35 0.16

Fig. 9. From 2003 to 2020, evening illumination of the research region.
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measures the temperature at the earth’s surface. It highlights the rela-
tionship between surface energy balance, global warming, and the ef-
fects of urban heat islands. LST is affected by various factors, such as 
land cover, land use, and vegetation. Better knowledge of LST trends in 
Pakistan aids in assessing heat stress, monitoring the effects of urbani-
zation, and creating efficient land management strategies. FVC is key in 
ecosystem maintenance, temperature control, and conservation. Remote 
sensing data is frequently used in FVC studies to assess the spatial dis-
tribution and changes in vegetation cover over time. By conducting FVC 
analysis, researchers can better understand plant health, cover, water- 
vegetation linkages, and species suitability. Several investigations 
worldwide have shown such metrics’ significance (Anees et al., 2022a, 
2022b).

Our study’s results are similar to Zhang et al. (2015). Higher levels of 
vegetation cover are associated with lower LSTs, demonstrating a strong 
correlation between these two variables. They are studied for seasonal 
correlations, and FVC negatively correlates with LST; our findings are 
consistent with Guha and Govil (2020). This correlation can highlight 
the interplay between temperature and plant growth (Haider et al., 
2017; Jallat et al., 2021; Khan et al., 2020, 2024). Changes in urbani-
zation and impervious surfaces are two examples of land use and land 
cover changes that can substantially affect LST. Assessing the urban heat 

island effect and improving sustainable urban planning practices can be 
aided by mapping and monitoring these changes (Badshah et al., 2024).

The relative influence of predictor Rain is 9.30%. This indicates that 
rain is a factor in the model but is less important than CNLI and LST. 
Although rainfall can impact ecological and environmental processes, it 
is given less importance in this framework. While lower than LST, this 
value suggests that Rain moderately influences the model’s predictive 
accuracy. This indicates that splitting on the Rain variable contributes 
slightly but not as much as LST for improving relative importance. The 
studies on the role of rainfall and FVC in Pakistan are vital for under-
standing the country’s environmental dynamics and land management 
practices. Rainfall is a critical climatic factor that influences various 
aspects of the environment, including vegetation growth, hydrological 
processes, and ecosystem functioning. Understanding rainfall patterns 
and their relationship with other environmental variables, such as FVC, 
is crucial for sustainable land and water resource management. Our 
research has confirmed a significant positive correlation between rain-
fall and FVC (Anees et al., 2022a, 2022b). Sufficient rainfall, which 
provides water for plant growth, leads to increased FVC in the research 
area. Increased rain and FVC have been found to promote ecosystem 
services. These findings highlight the importance of studying the rela-
tionship between rainfall, FVC, and ecosystem functioning in Pakistan. 

Fig. 10. Weighted overlay of FVC and CNLI from 2003 to 2020 in Pakistan.
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Fig. 11. Relationship of FVC and CNLI in Pakistan. Number of samples are 125 and confidence level is 95%.
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Each variable’s relevance percentage reflects its weight in the prediction 
process as a whole (Anees et al., 2024a; Luo et al., 2024). Based on the 
results, we can conclude that CNLI has the highest importance, followed 
by LST and Rain. The role of the CNLI and FVC studies in Pakistan can 
provide a valuable understanding of urbanization patterns and envi-
ronmental dynamics (Anees et al., 2022a, 2022b; Sohail et al., 2023). 

Understanding the interactions between CNLI and FVC is essential for 
comprehensive monitoring and management of the environment (Anees 
et al., 2022a, 2022b).

3.4.2. Accuracy assessment of training set
The accuracy assessment results for the Random Forest Regression 

model on the training set are shown in Fig. 14.
The Root Mean Squared Error (RMSE) value of 0.008 is the square 

root of the MSE and measures the average magnitude of the residuals. It 
represents the standard deviation of the errors by the model. A lower 
RMSE indicates better model performance. The R2 value of 0.89 in-
dicates that approximately 89% of the dependent variable (FVC) vari-
ability can be explained by the predictor variables (LST, Rain, and CNLI) 
in the model. It is a measure of how well the model fits the data. Higher 
R2 values indicate a better fit. The R-value of 0.94 indicates a very strong 
positive correlation between the predicted and actual values (Anees 
et al., 2024a; Luo et al., 2024). It measures the linear relationship, in-
tensity, and direction between the expected and actual values. When the 
R-value is larger, the correlation is more substantial. Overall, the RMSE, 
R2, and R-value indicate that the model performed well on the training 
set.

3.4.3. Accuracy assessment of validation set
The accuracy assessment results for the Random Forest Regression 

model on the validation set are presented in Fig. 15.
The RMSE value of 0.011 is the square root of the MSE and provides a 

measure of the average magnitude of the residuals on the validation set. 
With R-value of 0.89, the Random Forest model accounts for 89% of the 
variation in the dependent variable. The R2 of 0.80 indicates that the 
Random Forest model can explain the target variable’s variability. 
Lower RMSE values suggest higher model performance since they 
signify fewer errors in the predictions by the model (Anees et al., 2024a; 
Luo et al., 2024). The Random Forest regression model performed 
adequately on the validation set, as shown by these results. The high R 
and R2 values suggest that the values predicted and observed for the 
dependent variable are highly correlated. The small RMSE value in-
dicates that the model’s predictions are also reasonably close to the 
actual values (Anees et al., 2024a; Luo et al., 2024).

The study employed MODIS NDVI data to assess and analyze 

Table 5 
Correlation between CNLI, FVC, and climate factors.

Variables FVC (mean) LST (◦C) Rainfall (mm) CNLI

FVC 
(mean)

1 ¡0.59 0.6 − 0.43

LST (◦C) ¡0.59 1 − 0.33 0.23
Rainfall 

(mm)
0.6 − 0.33 1 ¡0.7

CNLI − 0.43 0.23 ¡0.7 1

Values in bold recorded significant correlation with a significance level of alpha 
= 0.05.

Fig. 12. This figure is generated by R programming, which illustrates the 
correlation of FVC with different factors.

Fig. 13. Variable importance with RF model.

Fig. 14. RF training set.
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Pakistan’s nationwide FVC over 18 years. The findings revealed a 
consistent overall increasing trend in Pakistan’s FVC, with an average 
value of 0.31. Notably, fluctuations were observed between 2003 and 
2012, while a steady increase was noted from 2013 to 2020. Moreover, 
regions characterized by mountainous terrain exhibited notably higher 
FVC, reaching up to 70%, possibly due to lower urbanization levels. The 
analysis utilizing the Hurst exponent underscored the long-term mem-
ory or persistence in vegetation dynamics, showcasing a value (0.718) 
signifying substantial autocorrelation in the FVC time series data. Fac-
tors influencing FVC were identified, with rainfall showing a positive 
correlation (0.6), while LST and CNLI exhibited negative correlations 
(− 0.59 and − 0.43, respectively). The Random Forest regression model 
demonstrated strong performance, displaying low RMSE (0.008) and 
high R2 (0.89) values. Notably, CNLI emerged as the model’s most 
influential predictor (62.40%), underscoring its significance in under-
standing urbanization patterns and environmental dynamics. CNLI is a 
proxy for urbanization and human activities, significantly impacting 
vegetation cover. High CNLI values indicate areas with intense human 
activity, often leading to reduced vegetation cover due to land use 
changes, infrastructure development, and other anthropogenic factors. 
Therefore, CNLI emerges as a critical predictor in our model, as it en-
capsulates the extent of human influence on vegetation dynamics. This 
study highlights the crucial role of CNLI in comprehensively monitoring 
and managing environmental changes, emphasizing the importance of 
studying its interactions with FVC for a holistic ecological understanding 
in Pakistan.

4. Conclusions

MODIS NDVI, climatic, landforms, and nighttime light data were 
used to study FVC changes from 2003 to 2020. The study reveals that the 
average FVC value was 31%. Key factors affecting FVC include climate 
variables like rainfall and temperature and the CNLI, which serves as a 
proxy for human activities such as urbanization. Interestingly, land-
forms, particularly hilly areas, exhibit higher FVC than plains. Various 
analytical methods were employed in this study. The Hurst exponent 
assessed the persistence of FVC patterns over time. Additionally, 
weighted overlay analysis was used to understand the impact of rainfall, 
temperature, and CNLI on FVC distribution. Correlation analysis 

measured the relationships between FVC and its influencing factors. It 
was found that FVC correlates positively with rainfall but negatively 
with CNLI and temperature. A machine learning approach, specifically a 
Random Forest (RF) regression model, was employed to predict FVC 
using factors like LST, Rain, and CNLI. The model performed strongly, 
with an R2 value of 0.89, indicating that the predictor variables can 
explain approximately 89% of FVC variability. The analysis highlights 
the significant impact of rainfall, urbanization, and temperature on FVC 
fluctuations. It underscores the importance of considering both envi-
ronmental and human-induced factors when assessing changes in 
vegetation cover.
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