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Resistance in pathogenic bacteria has emerged as a major global public health concern. 

Antibiotic-resistant bacterial infections are a major cause of patient mortality and 

morbidity, and rising antibiotic resistance is seriously compromising the vast medical 

advances made possible by antibiotics over the last decade. Hence, alternative 

approaches in controlling the bacterial infections are urgently needed. Paenibacillus 

polymyxa Kp10 (Kp10) and Lactococcus lactis Gh1 (Gh1) both are bacterial isolates that 

were believed to exhibit antimicrobial activity. Therefore, the effectiveness of secretome 

protein extracts isolated from Kp10 and Gh1 as the therapeutic agent in the treatment 

against antibiotic-resistant bacterial strains, namely, vancomycin-resistant Enterococcus 

(VRE) and methicillin-resistant Staphylococcus aureus (MRSA) were investigated. The 

main objective of this study is to determine the inhibition mechanisms of secretome 

protein extracted from Kp10 and Gh1 against MRSA and VRE bacteria. Minimal 

Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and time-

to-kill assays were used to determine the sensitivity and viability of MRSA and VRE 

bacterial cells following treatment with the secretome proteins of Kp10 and Gh1. Next, 

to determine the morphological changes of MRSA and VRE after treated with Kp10 and 

Gh1, the microscopic analysis using scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM) were observed. Then, to elucidate the 

antimicrobial mechanism of secretome protein of Kp10 and Gh1 against MRSA and 

VRE, 2D gel and sonication proteomic analysis based on time dependent manner by 

using liquid chromatography-mass spectrometry (LCMS) were run by comparing 

upregulated and downregulated proteins. Subsequently, the proton motive force study 

included the efflux of ATP; the pH gradient and the membrane potential study in treated 

MRSA and VRE were conducted. The differential proteins expression in MRSA and 

VRE treated with secretome proteins Kp10 and Gh1 in time dependent manner were 

analyzed. Protein extracts were obtained from treated MRSA and VRE cells by 

sonication and the protein profiling were identified by using liquid chromatography-mass 

spectrometry (LCMS). The safety of both secretome proteins in human cell also were 
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evaluated by the characterization of serum stability towards secretome proteins and their 

potential toxicity towards Medical Research Council cell strain 5 cell (MRC5), a kind of 

human lung cells. MRSA and VRE bacteria that were found to be sensitive to secretome 

proteins of Kp10 and Gh1 were treated with the respective secretome protein extract and 

were found to display several distinguished and apparent signs of morphological and 

internal composition changes, based on the microscopic analysis. Several proteins that 

were found to be important in cell wall functions and cell division, cell wall biosynthesis/ 

protein synthesis and the stress response were identified to be down-regulated or up-

regulated in both treated cells without changing the membrane potential gradient. Next, 

the cytotoxicity test suggested that there were no cytotoxic effects have been observed 

on both secretome proteins when treated on MRC5 cells. Hence, there is no IC50 was 

determined. Finally, the preliminary test on the effect of secretome proteins in human 

serum was done using the agar well diffusion method. From this study, there are no 

significant changes in the inhibition zone of secretome proteins in serum when treated 

on the bacterial strain, thus giving the initial impression that peptide is safe to use in the 

human body. In conclusion, secretome proteins of Kp10 and Gh1 were demonstrated to 

reduce the growth number of VRE and MRSA by damaging the cell membrane, 

suggesting that both secretome proteins may serve as a potential therapeutic agent for 

antibiotic-resistant pathogen. 
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MEKANISTIK PROTEIN REMBESAN DARI Paenibacillus polymyxa Kp10 

DAN Lactococcus lactis Gh1 TERHADAP Staphylococcus aureus TAHAN 

METHICILLIN DAN Enterococcus TAHAN VANCOMYCIN 

Oleh 

NURUL HANA BINTI ZAINAL BAHARIN 

Januari 2023 

Pengerusi :   Mohd Nasir bin Mohd Desa, PhD 

Fakulti  :   Institut Penyelidikan Produk Halal 

Kemunculan rintangan dalam bakteria patogen telah menjadi ancaman awam yang ketara 

terhadap kesihatan global. Jangkitan bakteria tahan antibiotik telah menyebabkan 

kematian dan morbiditi terhadap pesakit yang besar, dan peningkatan rintangan 

antibiotik secara serius mengancam kemajuan antibiotik dalam perubatan sepanjang 

dekad yang lalu. Oleh itu, pendekatan alternatif untuk mengawal jangkitan bakteria amat 

diperlukan. Paenibacillus polymyxa Kp10 (Kp10) dan Lactococcus lactis Gh1 (Gh1) 

kedua-duanya adalah pengasingan bakteria yang dipercayai mempamerkan aktiviti 

antimikrob. Oleh itu, keberkesanan ekstrak protein rembesan yang diasingkan dari Kp10 

dan Gh1 sebagai agen terapeutik dalam rawatan terhadap jangkitan strain bakteria tahan 

antibiotik, iaitu, Enterococcus tahan vancomycin (VRE) dan Staphylococcus aureus 

tahan methicillin (MRSA) telah dikaji. Objektif utama kajian ini adalah untuk 

menentukan mekanisme perencatan protein rembesan yang diekstrak dari Kp10 dan Gh1 

terhadap bakteria MRSA dan VRE. Kepekatan Minimal Inhibitory (MIC), Kepekatan 

Bakteria Minimum (MBC) dan ujian masa untuk membunuh bacteria digunakan untuk 

menentukan sensitiviti dan daya maju sel bakteria MRSA dan VRE berikutan rawatan 

dengan protein rembesan dari Kp10 dan Gh1. Kemudian, untuk menentukan perubahan 

morfologi MRSA dan VRE selepas dirawat dengan Kp10 dan Gh1, analisis mikroskopik 

menggunakan mikroskopi elektron pengimbasan (SEM) dan mikroskopi elektron 

penghantaran (TEM) telah diperhatikan. Seterusnya, ntuk menjelaskan mekanisme 

antimikrob protein rembesan Kp10 dan Gh1 terhadap MRSA dan VRE, analisis 

proteomik 2D gel dan protein sonikasi yang bergantung pada masa rawatan yang berbeza 

telah dijalankan dengan menggunakan spektrometri jisim kromatografi cecair (LCMS) 

dengan membandingkan protein yang dikawal selia dan kajian daya motif proton 

termasuk efflux ATP; kecerunan pH dan kajian potensi membran dalam MRSA dan VRE 

yang dirawat juga turut dijalankan dijalankan. Keselamatan kedua-dua protein rembesan 

dalam sel manusia juga dinilai oleh pencirian kestabilan serum terhadap protein 

rembesan dan potensi ketoksikan mereka terhadap sel Majlis Penyelidikan Perubatan 

strain 5 sel (MRC5), sejenis sel paru-paru manusia. Bakteria MRSA dan VRE yang 
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didapati sensitif terhadap Kp10 dan Gh1 dirawat dengan ekstrak protein rembesan 

masing-masing dan didapati menunjukkan beberapa tanda-tanda perubahan morfologi 

dan komposisi dalaman yang jelas berdasarkan analisis mikroskopik. Beberapa 

rembesan protein yang didapati penting dalam fungsi dinding sel dan pembahagian sel, 

biosintesis dinding sel / sintesis protein dan tindak balas tekanan telah dikenal pasti untuk 

semakin meningkat atau semakin menurun dalam kedua-dua sel yang dirawat tanpa 

mengubah kecerunan potensi membran. Seterusnya, ujian sitotoksik menunjukkan 

bahawa tiada kesan sitotoksik terhadap kedua-dua rembesan protein telah diperhatikan 

apabila dirawat pada sel MRC5 sehingga kepekatan yang dikenal pasti. Oleh itu, tiada 

IC50 ditentukan. Akhirnya, ujian awal mengenai kesan rembesan protein dalam serum 

manusia yang dilakukan secara ringkas menggunakan kaedah penyebaran agar telah 

menunjukkan bahawa tiada perubahan ketara dalam zon perencatan rembesan protein 

apabila dibandingkan dengan rembesan protein dalam serum setelah dirawat pada strain 

bakteria, dengan itu memberikan kesan awal bahawa rembesan protein dari kedua-dua 

sumber adalah selamat untuk digunakan dalam tubuh manusia. Dari kajian ini, dapat 

disimpulkan bahawa protein rembesan yang berasal dari protein rembesan Kp10 dan Gh1 

mempunyai aktiviti antibakteria dan terbukti dapat mengurangkan jumlah pertumbuhan 

VRE dan MRSA dengan merosakkan membran sel, menunjukkan bahawa kedua-dua 

protein rembesan tersebut sebagai agen terapeutik yang berpotensi untuk patogen tahan 

antibiotik. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Study 

Antibiotic resistance in pathogenic bacteria has become a major global public health 

concern. Vancomycin-resistant Enterococcus (VRE) and Methicillin-resistant 

Staphylococcus aureus (MRSA) are among the known prominent antibiotic-

resistant bacteria. They have resulted in a significant number of patient deaths and 

financial burdens on health-care systems (Ventola, 2015; Dadgostar, 2019). 

Moreover, antibiotic resistance poses a significant risk to current medical advances, 

which is heading toward a post-antibiotic era in which common infections and 

minor injuries can once again lead to death. (Golkar, Bagasra & Pace, 2014; 

Ventola, 2015). The effectiveness of traditional antibiotics has deteriorated 

dramatically over time, and more effective therapeutic agents against infections 

caused by antibiotic-resistant bacteria are desperately needed (Golkar, Bagasra, & 

Pace, 2014; Sengupta, Chattopadhyay & Grossart, 2013; Wright, 2014). Various 

studies are currently looking for alternative substances that could potentially replace 

existing antibiotics. 

Secretome protein has been shown to have antimicrobial activity due to the presence 

of antimicrobial elements that can inhibit bacterial growth and could potentially 

replace antibiotics (Damayanti, 2021). As the number of antibiotic-resistance cases 

rises, the use of secretome protein may be one of the options to tackle drug 

resistance. Secretome protein has been shown in some studies to release 

antimicrobial peptides (AMPs) such as cathelicidin, RNase3, human -defensins, and 

calprotectin (Kasiri et al., 2016). For example, secretome protein that was found in 

adipose tissue was observed to suppress the growth of Staphylococcus aureus via 

the increased activity of cathelicidin (Yagi et al., 2020; Harman et al., 2017). Based 

on these intriguing findings, the understanding of antimicrobial properties found in 

secretome proteins should be expanded. 

AMPs in secretome protein act as host defenses, where most of them have been 

isolated from eukaryotes, such as animals, plants, and fungi (Zainal Baharin et al., 

2021; Kumar, Kizhakkedathu & Straus, 2018). Some bacteria are also found to 

produce secretome proteins that can inhibit food-borne pathogens and other 

pathogenic bacteria (Vieco-Saiz et al., 2019). For example, the secretome protein 

on bacteria found in skin wounds inhibited the growth of Gram-positive bacteria 

Staphylococcus aureus and Gram-negative Escherichia coli by producing secreted 

factors that can affect bacterial membranes (Harman et al., 2017). For that reason, 

more potential bacteria should be searched and explored. 
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In this study, Paenibacillus polymyxa Kp10 (Kp10) and Lactococcus lactis Gh1 

(Gh1) were chosen because of their ability to kill some bacteria based on previous 

studies (Mokhtar et al., 2020; Suzuki, 2021).  For example, Gh1 has been shown to 

have antimicrobial activity against pathogenic Staphylococcus aureus, Listeria 

monocytogens, Salmonella and Bacillus cereus (Jawan et al., 2020), and Kp10 has 

been shown to have antimicrobial activity against Escherichia coli (Mokhtar et al., 

2020). Because of their distinct characteristics, a focus on their secretome extract 

with abilities as therapeutic agents against antibiotic-resistant pathogens should be 

further documented for inhibition mechanisms. This is a common drug discovery 

strategy that can provide insight into the mechanism of protein activity of the 

bacterial extract.  

Although the mechanism of secretome protein derived from Kp10 and GH1 action 

in pathogen inhibition remains unknown, bacteriocins with a conserved amino acid 

sequence and low molecular weight are generally hypothesized to interact with 

bacterial membranes, particularly negatively charged bacterial cell membranes 

(Negash & Tsehai, 2020), causing cell membrane damage and thus impairing the 

transport of large molecules (e.g. proteins), resulting in cell death and a disrupted 

cell. Furthermore, these bacteriocins have the ability to cross bacterial membranes 

and act on intracellular targets (Lei et al., 2019). 

Several studies have shown that different bacterial strains can inhibit the growth of 

pathogenic microorganisms and degrade mycotoxins. Furthermore, studies have 

been conducted to describe the probiotic properties and antimicrobial activity of 

bacterial strain’s extracts isolated from various sources (Ndiaye et al., 2022; Vieco-

Saiz et al., 2019; Azat et al. 2016). Although bacterial strains are commonly used as 

culture starters and source for bacteriocins as food preservatives, more research on 

their inhibitory potential against antibiotic-resistant pathogens is required. As a 

result, the use of various current technologies to identify and characterize new 

bacterial strains carrying high potential of antimicrobial secretome proteins are 

warranted to allow better elucidation of the mechanisms. 

Therefore, the purpose of this study is to investigate the properties of bacterial 

isolates; Kp10 and Gh1, as well as their ability to inhibit antibiotic-resistant 

pathogens. The inhibition mechanisms of secretome protein extracted from Kp10 

and Gh1 against VRE and MRSA bacteria were studied through the determination 

of the sensitivity and viability of the cells and the morphological changes by 

microscopic studies by using scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM). The antimicrobial mechanism of 

secretome protein of Kp10 and Gh1 against MRSA and VRE were analyzed by by 

using 2-DE gel and protein sonication proteomic analysis based on time dependent 

manner with liquid chromatography-mass spectrometry (LCMS). The safety of 

secretome proteins derived from Kp10 and Gh1 in human cell were also evaluated 

by the characterization of serum stability towards both secretome proteins and their 

potential toxicity towards MRC5 cells, a type of human lung cells. The findings of 

this study may provide detailed biological observations on the potential of the 
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secrotome proteins of Kp10 and Gh1 to be used as the therapeutic agents and 

eventually to reduce reliance on antibiotics. 

1.2 Proplem Statement 

The emergence of antibiotic-resistant pathogens worldwide is partly associated with 

the use of some available antibiotics that impose some identical mechanisms of 

inhibition. This issue has been identified as a major public health threat affecting 

human health globally. Multidrug-resistant pathogens have emerged not only in 

hospital settings but are now frequently identified in community settings, implying 

that an antibiotic-resistant bacteria reservoir exists outside of the hospital. 

VRE and MRSA are two of the most common pathogens, causing a significant 

number of deaths and a financial burden on healthcare systems (Ventola, 2015; 

Dadgostar, 2019). Controlling bacterial infections is an ongoing process, and as 

antibiotic resistance spreads, an alternative antimicrobial agent is required to 

address the issues associated with MRSA and VRE infections. 

Kp10 and Gh1 are well-known probiotic bacterial strains with antimicrobial 

activity, which could be used to develop antitherapeutic candidates. As a result, the 

secretome proteins Kp10 and Gh1 containing AMPs with a novel inhibition 

mechanism are being studied. Understanding the inhibition mechanism of resistance 

is critical for developing strategies to suppress resistance emergence and spread, as 

well as novel therapeutic approaches against multidrug-resistant organisms. 

1.3 Objectives 

1.3.1 General Objective 

The general objective of this study is to determine the inhibition mechanisms of 

secretome protein extracted from Kp10 and Gh1 against MRSA and VRE bacteria. 
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1.3.2 Specific Objectives 

a. To determine the sensitivity and viability of MRSA and VRE bacterial 

cells following treatment with the secretome proteins of Kp10 and Gh1. 

b. To determine the morphological changes of MRSA and VRE after 

treatment with Kp10 and Gh1 based on microscopic analysis. 

c. To elucidate the antimicrobial mechanism of secretome protein of Kp10 

and Gh1 against MRSA and VRE based on 2D gel from 2D-

electrophoresis and LC MS-gel image analyses. 

d. To compare differential proteins expression in response to secretome 

proteins of Kp10 and Gh1 in MRSA and VRE in time-dependent manner. 

e. To evaluate the safety of secretome proteins derived from Kp10 and Gh1 

based on serum stability and potential toxicity in MRC5 cells. 
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