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Soil CO2 efflux has been identified as playing a key role in the forest carbon balance, 

as logging and recovering forest ecosystems increase CO2 efflux into the atmospheric 

carbon pool in response to changes in environmental factors such as soil temperature 

and soil moisture. Hence, it is essential to understand soil CO2 efflux in forests of 

different ages, logged-over areas and the carbon cycles in the tropical lowland forest 

of Peninsular Malaysia.  

The aim of this study is to assess soil CO2 efflux from logged-over forest and 

recovering forest of different age and it effects on the atmospheric carbon balance. A 

study was conducted in the recovering tropical lowland forest of Sungai Menyala,

Port Dickson, Peninsular Malaysia. Five experimental plots were established based 

on logged-over area, recovering forests of different ages (10, 30, 50, and 70-year

forests) and tree mixed species, as this is significant in efflux estimation and the 

effect of soil CO2 efflux from these various forest of different age. Soil CO2 efflux 

measurement was conducted in the day time from February to June and September to 

December 2013, using a constructed continuous open flow chamber technique 

connected to a multi gas-handling unit and infrared CO2/H2O gas analyser.

 The soil temperature and soil moisture were measured while forest biomass; total 

above ground biomass (TAGB), below ground biomass (BGB), total forest carbon 

(SOCs), soil organic carbon stock (SOCstock) and total organic carbon (TOC), soil 

organic carbon (SOC), soil pH, bulk density and carbon to nitrogen ratio (C/N) were 

measured and analysed based on the standard method. The results indicated that the 

soil CO2 efflux varies, temporarily increasing from February and peaking in June and 

decreasing from September to December parallel to the soil temperature and soil 

moisture.  The efflux rate showed a positive and significant correlation between soil 

CO2 efflux, soil temperature and soil moisture, forest biomass carbon input, changes 

in total organic carbon and soil organic carbon (R
2
=0.958; p˂0.01), suggesting that

the environmental factors influence the soil CO2 efflux. The results showed that soil 

CO2 efflux was the highest in the logged-over area and decreased as the forest 
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increased in age: 10, 30, 50, 70-years old recovering forest at 392.14, 383.07, 372.26, 

329.18 and 319.08 mg m
-2

 h
-1

, respectively, and, in comparison, the primary forest

was recorded to emit the lowest CO2 efflux at 301.23 mg m
-2

 h
-1

. A high percentage

of TOC, SOC and SOCstock concentration occurred within the top 10 cm soil depth 

and decreased with the depth. Similarly, a high amount of forest biomass carbon 

input was recorded, both tending to be significantly higher in the older forest and 

decreased with forest age.  

The soil temperature was observed to increase from February to June and decrease

from September to December while the soil moisture decreased during the Southwest

monsoon regime and increased during the Northeast monsoon period, thereby

increasing the soil CO2 efflux. These results indicated that the soil CO2 efflux 

increased in the logged-over forest and decreased as the forest recovered. This is 

attributed to the high activities of microorganisms in the presence of changes in the

environmental factors and soil properties, and exposure of the surface of the land

directly to heat in the logged over area. In comparison, the lower soil CO2 efflux in

the recovering forests increased their carbon use efficiency, as the increase in the

canopy cover in the recovering forest absorbed the CO2 for photosynthesis, caused 

refraction of the solar radiation and regulated the forest floor temperature. The high

percentage of CO2 efflux into the atmospheric carbon pool from the logged area

signified that logging activity has wide-reaching consequences and displaced a

considerable amount of soil CO2 into the atmospheric carbon pool, and had a marked

influence on the atmospheric carbon balance. In spite high soil CO2 efflux recorded

from the logged-over forest, the percentage of soil CO2 reduction between the

logged-over forest and the recovering forest ranged between 2.31 to 23.18%. This 

Indicate that forest recovering would serve as a carbon sink and forest logging will

be an implication for the atmospheric carbon balance.    
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Penghasilan efluks CO2 tanah telah dikenalpasti memainkan peranan utama dalam 

keseimbangan karbon hutan. Pembalakan dan pemusnahan ekosistem hutan telah 

meningkatkan penghasilan efluks CO2 ke dalam kandungan karbon atmosferik yang 

bertindak balas kepada perubahan faktor sekeliling seperti suhu tanah dan 

kelembapan tanah. Oleh itu, adalah penting untuk memahami penghasilan efluks 

CO2 tanah di  hutan yang mempunyai jangka umur yang berbeza, di kawasan 

pembalakan dan kitaran karbon di hutan tanah rendah tropika di Semenanjung 

Malaysia.  

 

Kajian ini bertujuan untuk menafsir penghasilan efluks CO2 daripada kawasan 

pembalakan hutan dan pemuliharaan hutan di pelbagai peringkat umur serta 

penentuan kesan terhadap keseimbangan karbon atmosferik. Kajian telah dijalankan 

dalam usaha memulihara hutan tanah rendah tropika Sungai Menyala, Port Dikson, 

Semenanjung Malaysia. Lima plot eksperimen diwujudkan berdasarkan kawasan 

pembalakan, pemuliharaan hutan pada jangka umur yang berbeza (10, 30 , 50 dan 70 

tahun) dan spesis campuran pokok yang difikirkan penting dalam penganggaran 

efluks CO2 tanah dan kesannya daripada pelbagai peringkat umur hutan. Pengukuran 

efluks CO2 tanah dilakukan pada waktu siang dari bulan Febuari hingga Jun dan 

September hingga Disember tahun 2013 dengan menggunakan teknik pembinaan 

kebuk aliran terbuka yang disambungkan kepada unit pengendalian pelbagai gas dan 

penganalisa gas CO2/H2O secara inframerah.  

 

Suhu tanah dan kelembapan tanah diukur manakala biojisim hutan; jumlah biojisim 

permukaan tanah (TAGB), biojisim bawah tanah (BGB), jumlah karbon hutan 

(SOCs), stok karbon tanah organik (SOCstock) dan jumlah karbon organik (TOC), 

karbon organik tanah (SOC), nilai pH tanah, ketumpatan pukal, julat karbon kepada 

nitrogen (C/N) diukur dan dianalisa berdasarkan kaedah piawaian. Keputusan 

menunjukkan bahawa penghasilan efluks CO2 tanah adalah berbeza mengikut musim 

iaitu meningkat dari bulan Februari dan mencapai puncak pada bulan Jun dengan 

penurunan dari bulan September hingga Disember selari dengan suhu tanah dan 
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kelembapan  tanah. Kadar penghasilan efluks menunjukkan hubungan yang positif 

dan signifikan antara efluks CO2 tanah, suhu tanah, kelembapan tanah, input karbon 

biojisim hutan dan perubahan jumlah karbon organik dan karbon organik tanah 

(R
2
=0.958; p˂0.01), mencadangkan bahawa terdapat pengaruh faktor persekitaran ke 

atas efluks CO2 tanah. Keputusan yang diperoleh menunjukkan efluks CO2 tanah 

berada pada tahan tertinggi di kawasan pembalakan dan menurun berdasarkan 

pengingkatan umur hutan pada 10, 30, 50, dan 70 tahun hutan pulih pada bacaaan 

392.14, 383.07, 372.26, 329.18 dan 319.08mgm
-2

h
-1

 dan perbandingan dengan hutan 

primer yang mencatatkan nilai efluks CO2 yang paling rendah iaitu pada 301.23mgm
-

2
h

-1
. Nilai peratusan yang tinggi pada input biojisim karbon (TOC, SOC dan 

kepekatan SOCstock) dicatatkan pada kedalaman 10 cm dari aras permukaan tanah 

dan akan menurun selari dengan pertambahan kedalaman. Tambahan, nilai input 

biojisim karbon adalah tinggi pada hutan yang lebih berusia dan nilainya akan 

menurun dengan dengan penurunan umur hutan.  

 

Suhu tanah diperhatikan meningkat dari Februari hingga Jun dan menurun dari bulan 

September hingga Disember manakala penurunan kelembapan tanah mencatatkan 

penurunan semasa musim kering (Monsun Barat Daya) dan mengingkat pada musim 

hujan (Monsun Timur Laut) yang akhirnya meningkatkan efluks CO2 tanah.  

Keputusan ini menunjukkan bahawa efluks CO2 tanah meningkat dengan aktiviti 

pembalakan dan menurun dengan pemuliharaan hutan, kerana dikaitkan dengan 

aktiviti-aktiviti mikroorganisma yang tinggi dengan perubahan dalam keadaan iklim 

dan tanah serta pendedahan permukaan tanah secara langsung kepada haba di 

kawasan pembalakan.  Perbandingan dilakukan dan menunjukkan bahawa efluks 

CO2 tanah aras bawah di hutan pulih mengingkatkan penggunaan karbon yang 

efisyen di mana peningkatan perlindungan kanopi membolehkan penyerapan oleh 

hutan melalui proses fotosintesis selain pembiasan sinar suria untuk tujuan mengawal 

suhu lantai hutan. Peratusan efluks CO2 yang tinggi dalam kolam karbon atmosferik 

(atmospheric carbon pool) dari kawasan yang telah dibalak menandakan aktiviti 

pembalakan menunjukkan sejumlah besar efluks CO2 tanah telah berpindah ke dalam 

kolam karbon atmosfera dan mempengaruhi keseimbangan karbon atmosfera. 

Walaupun kadar efluks CO2 direkod tinggi dari hutan yang telah dilakukan 

pembalakan, peratusan penurunan CO2 tanah antara kawasan pembalakan hutan 

dengan kawasan baikpulih hutan  berada pada julat 2.31 hingga 23.18%. Ini 

menunjukkan pemulihan hutan akan mengalami fenomena pengurangan karbon 

(carbon sink) dan pembalakan hutan menjadi penyebab kepada ketidakseimbangan 

karbon atmosferik.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Study  

One of the topical challenges of recent times is the determination of soil carbon 

dioxide (CO2) efflux from deforestation (logged-over), recovering forest. Likewise 

how regional and global climate will respond to the increase in atmospheric carbon 

dioxide concentrations and the effect on the carbon balance. Carbon dioxide (CO2) is 

the dominant gas classified as one of the greenhouse gases due to their ability to 

absorb long wave radiation radiated from the earth's surface and this has altered the 

global temperature. In the 18
th

 century, it had been realised that there had been a 

pronounced warming trend in the global average temperature by 0.5°C (Lal, 2003).  

 

The average result from many stations in the eastern United States  and scattered 

locations elsewhere around the world  showing that the temperature had risen several 

degrees Fahrenheit in most regions (Kintisch, 2010). In eastern North America and 

western Europe were the only parts of the world found to be cooler in the winter and 

the snows deeper in 1930, (Brookfield & Byron, 1990). IPCC (2007)  reported that in 

the 1940s and 1950s there was a striking event of glaciers retreating, while crops 

were growing farther north, Arctic ice had become thinner than ever before in 

historic time. In the early 1970s temperature took a new dimension with a series of 

droughts and other exceptionally bad spells of weather in various parts of the world 

provoked warning that world food stock might run out.  Records showed that the 

global temperature in the 19
th

 century has increased by 0.8°C. Enough evidence in 

2005 indicated a striking change everywhere from Argentina (Glacier National park) 

to New Guinea (Mount Kilimanjaro).  The majority of mountain glaciers and ice-

caps were in retreat (IPCC, 2007b), also the heat content of the ocean rose steadily, 

leading to sea-level  rise of about 15-23 cm (IPCC, 2007b). With notable shift in 

ecosystem (Greene & Pershing, 2007),  frequency and intensity of occurrences of 

wild fire, (Westerling et al., 2006). The earth’s temperature for the 21
st
  century has 

been projected to increase by 1.5–5.8°C per decade, (Lal, 2003; IPCC, 2007c).   

 

Records have pointed directly to greenhouse warming by CO2 as the major 

greenhouse gas in the atmosphere, and the concentration of atmospheric greenhouse 

gases and their radiative forces have progressively increased since the onset of the 

industrial age. Atmospheric CO2 levels have been steadily rising as a result of  

changes in deforestation, land use patterns and combustion of fossil fuels (Houghton 

et al., 1983; Harmon et al., 1990). Investigation of the ice core samples from the 

Antarctic have shown that atmospheric CO2 levels were relatively stable at about 280 

ppm for most of the past years (National Research Council, 1998). While as of 2014, 

the ambient CO2 level has risen to about 400 ppm, and it is hoped that future 

concentrations can be stabilized between 350 and 700 ppm (Sarmiento et al., 1995).  
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To understand soil CO2 efflux, its impact on the atmospheric carbon balance and to 

stabilize future concentrations, there should be a clear knowledge of the individual 

contributing environmental factors and the components of the total carbon balance. It 

has been estimated that CO2 existing in some portion of the global carbon pool such 

as soil, the atmosphere, terrestrial vegetation  and oceans total approximately 38,000, 

1500, 750, and 560 Pg C each (1 Pg C = 1015 g carbon) (Rustad et al., 2000; 

Schlesinger et al., 2000).  While carbon stored in the soil is about 1576 gigatons  

(Eswaran et al., 1993) and the soil respiration in the terrestrial ecosystem contributes 

55-85% of CO2  to the atmosphere, greater than terrestrial  net primary  productivity  

(Davidson et al., 2006). The soil CO2 efflux is as a result of deforestation and 

logging with increase in atmospheric temperature, and even if there is an increase in 

atmospheric temperature by 0.03°C per year, it will result in soil CO2 respiration 

producing a net release of additional CO2 into the atmosphere. This temperature 

changes has a negative effect on the atmospheric carbon balance (Ming et al., 2001).   

 

In turn the direct output of  the temperature could be great enough to disturb the 

entire global climate (Wingham, 2009). This scenario will increase surface, 

subsurface and storage water evaporation with increase in flooding. This will affect 

agricultural productivity, human health and consumption, energy production, 

irrigation and other essential services that support the standard of living. Therefore, it 

will raise the poverty level on the human population (Groisman et al., 2004). The 

forest ecosystems and oceans are acting as a net sink for carbon at an estimated rate 

of 3.8 and 2.0 Pg Cyr
-1 

respectively. Whereas deforestation (logging) and fossil fuel 

combustion serve as net sources of carbon at an approximate rate of 1.6 and 5.4 Pg C 

yr
-1

 respectively  (Rustad et al., 2000). Raich and Schlesinger (1992) have also  

reported on the gross primary productivity (GPP) of carbon annual  uptake from the  

terrestrial ecosystems to be between 100 and 120 Pg C yr
-1

, with net primary 

productivity (NPP) of about  50-60 Pg C yr
-1

. While the carbon efflux  rate from soil 

respiration, decomposed materials and root respiration stand at 63-77 Pg C yr
-1

 

(Schlesinger & Andrews, 2000). These changes in the flux can potentially alter the 

carbon balance and create partitioning between the atmosphere, soil, terrestrial 

vegetation and oceanic carbon pools (Raich & Tufekcioglu, 2000).  

 

The magnitude of soil CO2 efflux is large enough to affect an increase in the 

atmospheric CO2 with an implication on climate change (Tang et al., 2006). This has 

been the environmental management scientists’ key concern in view of the fact that 

the rate of increasing levels of greenhouse gases (CO2) in the atmosphere is 

alarmingly high.   

 

Carbon dioxide in the atmosphere can be reduced via the forest ecosystem as it has 

the capacity and potential to act as a net sink for atmospheric carbon in the 21
st
 

century. On the other hand, soil serves as a source of CO2 emission  if  deforestation 

occurs (Harmon et al., 1990; Rustad et al., 2000). Intensive logging and forest  

harvesting practices globally are going on at a rate of 100,000—165,000 km
2
 per 

year (UNEP, 1990). This scenario is distorting the carbon dynamics and 

understanding this sequence is necessary to predict the carbon sequestration and its 

impact on the atmospheric carbon balance. Forest management and productivity can 

further enhance the role of forests as a potential carbon sink. However, the potential 

of soils to sequester additional carbon depends on any newly-formed biomass being 

added to pools that are relatively stable with slow turnover rates or conversely added 
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to pools with short turnover rates that decompose quickly (Kirschbaum, 2000; 

Trumbore, 2000). The only setback in this scenario is where environmental and 

predictor factors such as soil type, moisture, and nutrient availability limit the 

response of a forest stand density to increasing CO2 concentrations uptake.   

 

Deforestation, logging activity, land conversion and disturbance have very 

significant implications on soil CO2 efflux. This has been reported to either increase  

or decrease  CO2 efflux from forest soils compared to undisturbed forest (Ewel et al., 

1981; Toland & Zak,  1994) as the soil is been exposed directly to high increases in 

temperature, drastically causing unexpected change in microbial activity, litter fall 

input, root density, production, insolation, absence of CO2 storage and 

photosynthesis. Hence, this will result in predictable changes in CO2 efflux from 

forest soils from which CO2 is emitted directly into the atmosphere. The overall 

effect of deforestation, logging activity, land conversion and disturbance will 

displace the aboveground biomass as the forest ecosystem serves as a carbon sink 

and carbon assimilation via photosynthesis results in the efflux of CO2 into the 

atmospheric carbon pool (Striegl & Wickland, 1998).  

 

Deforestation at regional scale had a great uncertainty in Southeast Asia in term of 

soil CO2 efflux (Kadir et al., 2010). The Southeast Asia contributed 1.08 Gt yr
-1

 of 

carbon emission according to Houghton (1999)  and 0.30-0.49 Gt yr
-1

 according to 

Cramer et al. (2004). While in Malaysia, deforestation, land conversion, and logging 

activities are occurring at an alarming rate; the forest ecosystem has been damaged 

by high logging activities, conversion of land into palm oil plantations, rubber 

plantations and other land uses. This scenario has led to a significant rise in 

temperature in Malaysia by 1.1°C for the last three decades and is expected to warm 

further at the rate of 0.9°C (Toshihiro et al., 2006). The impact of this temperature 

increase in Malaysia’s climate will severely test the viability of the many current 

agricultural practices, change in rainfall pattern, and increase in the intensity and 

frequency of severe storms. Consequently, the flooding can cause devastating 

damage to the Malaysia environment if precaution is not taken to check the CO2 

efflux and introduce mitigating strategies.   

 

This study was conducted in a logged-over area and four compartments of different 

tress ages, mixed species, canopy stand density which were compared with a primary 

forest. The trees varied in age from 10 to 30, 50, and 70 years old and the logged-

over area was all located within a distance of 2500 m, 1800 m and 3 km apart. The 

objectives were to; (1) to determine the influence of environmental factors on soil 

CO2 efflux (2) to determine the contributing effect of forest biomass input on 

biological process to emit soil CO2, and (3) to determine the rate of soil CO2 efflux 

from logged-over area and recovering forests using innovative constructed 

equipment. 
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1.2 Problem Statement 

The entire global community is being increasingly jeopardized by unpremeditated, 

non-military environmental threats which are self-generated by fouling of air and 

water pollution. Likewise over-harvesting of land resources leading to climate 

change is causing negative effects over the entire globe which may likely last for the 

next 50 to 100 years. Despite these omnipresent challenges, environmental issues are 

still not high on the international and national security agenda. Climate change is the 

most pressing challenge and life threat,  as a result  of the  high rate of deforestation, 

logging, poor land use and urban heat where part per million (ppm) of CO2 are being 

emitted into the atmosphere. Governments do not see these connections through to its 

higher-order effects and those who study security problems such as non-proliferation, 

terrorism, and civil conflict often do not recognise the environmental roots and 

effects of these problems. Consequently, the nexus of climate change is seen neither 

as a security issue nor an environmental issue. However, environmental issues are 

often security concerns because even without directly causing open conflict, they 

have the potential to destabilize regimes, displace populations, cause hunger, and 

lead to state collapse. Recent studies have shown significant changes in the climate 

due to increase in temperature resulting from global increase in CO2. Meanwhile, 

attention has been focused on the tropical forest ecosystems as forest logging for 

industrial purposes and conversion of the forest to permanent croplands account for 

approximately 75% of the total CO2 emission from tropical Asia (Houghton & 

Hackler, 1999). The tropical forest ecosystem stands to play a major role in the 

global terrestrial carbon cycle as its vegetation and soil contain approximately 37% 

of the global terrestrial carbon pool. Whereas, any change in the tropical CO2 fluxes 

would change the global carbon budget  (Dixon et al., 1994). 

 

Land degredation and loss of Malaysia’s original forest have resulted from rapid 

logging and conversion of land for agricultural purposes (Gillis & Repetto, 1988), 

and the forest had decreased by 1.2 million hectare by 1990 (FAO, 2010). Half of the 

forests in the Peninsular Malaysia witnessed forests cleared in the late 1980s (Gillis 

& Repetto, 1988), as this decreased the total forest cover to 57% of the original area 

by 2002 (Langner et al.,  2007).  This has resulted in a serious land cover challenge 

in the Peninsular Malaysia (Brookfield & Byron, 1990). This resulted activity have 

affected soil CO2 efflux and there is still considerable uncertainty about soil CO2 

efflux and subsequent losses and accumulation rates in the logged area and 

recovering foresta in the lowland forests Peninsular Malaysia (Pan et al., 2011). In 

spite of this aforementioned challenge in the tropical forest of Malaysia, few studies 

has been conducted in the forests of different age of the lowland Peninsular Malaysia 

(Adachi et al., 2006). A more detailed understanding of the impacts of logging on 

soil CO2 efflux and the emission rate in the recovering forest, from the soil into the 

atmosphere in Malaysia is needed for forest management and mitigation of climate 

change. This study will determine soil CO2 efflux from logged-over area and 

recovering forests of different ages and it influencial factors to ascratin the rate of 

CO2 emission rate as result of forests disturbance in the Peninsular Malaysia. 

 

The Malaysian forest logging and land conversion scenario has resulted in high 

average temperature increases by 1.1°C for the last two decades and is expected to 

warm further at the rate of 0.9°C. This changing air temperature in Malaysia’s 

climate will severely test the viability of many current agricultural practices, its 
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regional change in rainfall pattern, increase in the intensity and frequency of severe 

storms, flooding, landslides, and urban heat as gas been observed in several towns 

and cities in Malaysia. Urgent and precautionary steps need to be taken in order to 

check the CO2 emission rate by determining the hotspots and factors responsible and 

thereby establishing mitigation strategies. Malaysia is already facing the maladies of 

the environmental problem due to climate change with little research done to   

ascertain the rate of soil CO2 efflux from logged-over areas, deforestation, 

agricultural land changes and recovering forests, which means there are no 

corresponding concepts being developed to deal with these issues by measuring CO2 

emission  (Bari et al., 2012). Over time CO2 emission is at a high rate of increase in 

Malaysia: in 2007, the UNDP ranked Malaysia as the 27
th

 largest CO2 emitter in the 

world. However, Malaysia will heading in the fast lane towards the top of the list if 

no action is taken soon to ascertain CO2 efflux rate, determination of environmental 

variables and introduce mitigation measures. In such a case there would be serious 

negative impacts on the environment resulting from soil CO2 efflux the logged-over 

area in Sungai Menyala forest. Also this could lead to a general  human health and 

water supply implication as well as impact on the national economy   (UNFCC, 

2011).  

 

 

1.3 Scope of the Research 

 

Soil CO2 efflux is a major contributor to the global carbon cycle. The magnitude of 

soil CO2 efflux  into the atmospheric carbon pool is estimated to be 68 - 100 Pg 

C/year (Akburak & Makineci, 2013). While forest harvesting, land conversion and 

disturbance can have great implication on soil CO2 efflux, and this has been reported 

to either increase  or decrease  CO2 efflux from forest soils compared to undisturbed 

forest (Ewel et al., 1981; Toland & Zak, 1994). Therefore, there is need to determine 

soil CO2 efflux in recovering forests and logged-over areas and the various 

associated environmental factors. 

 

This research basically attempts to cover various recovering forests of different ages 

- 10, 30, 50, and 70-year-old forests - with a logged-over area, forest biomass input, 

soil carbon stock, soil temperature, soil moisture, water potential and total organic 

carbon (TOC), soil organic carbon (SOC), soil carbon stock (SOCstock),  soil pH 

and bulk density. The location of this research is within the forest reserve of Sungai 

Menyala, Port Dickson, Negeri Sembilan in Peninsular Malaysia, with a landmass of 

1,273.43 hectares. This study will hopefully bridge the knowledge gap in terms of 

soil CO2 efflux data from different forest ages and its impact on the atmospheric 

carbon balance in the lowland forests of Peninsular.  

 

 

 

 

 



@
COPYRIG

HT U
PM

6 
 

1.4 Research Questions 

 

I. What are the rates of soil CO2 efflux from various forest ecosystems? 

II. What are the variations in soil CO2 efflux across the seasons in forests of 

different ages? 

III. What is the relationship between forest biomass input, soil carbon stock, 

SOC, TOC, soil pH, microbial activities, soil temperature and soil 

moisture?  

IV. What is the amount of soil CO2 efflux compared to the various forest 

ages? 

V. What are the percentages of soil CO2 efflux being contributed to the 

atmospheric carbon pool and climate change? 

VI. What is the ingenuity in the techniques constructed?  

 

 

1.5 General Objectives 

 

 To Asses soil CO2 efflux from logged-over forest and recovering forest of 

different age and it effects on the atmospheric carbon balance. 

 

 

1.6 Specific Objectives 

 

 To  determine the influence of environmental factors on soil CO2 efflux 

 To determine the contributing effect of forest biomass input on biological 

process to emit  soil CO2  

 To determine the rate of soil CO2 efflux from logged-over area and 

recovering forests using innovative constructed equipment.  

  

1.7 Hypotheses  

 

Based on the above objectives the following general hypotheses will be tested:  

HO: Soil CO2 efflux will not significantly be affected based on the forest canopy   

       stand density. 

H1: Soil CO2 efflux will significantly be affected based on the forest canopy stand  

      density  

Ho: Carbon and nitrogen input from litter fall will not significantly increase both  

      microbial activity and root respiration resulting in high soil CO2 efflux rate. 

H1: Carbon and nitrogen input from litter fall will significantly increase both  

      microbial activity and root respiration resulting in high soil CO2 efflux rate. 

Ho: Soil temperature, soil moisture, TOC, SOC, bulk density will not all be  

      significant positive corrected with soil CO2 efflux   

H1: Soil temperature, soil moisture, TOC, SOC, bulk density will all be significant  

      positive corrected with soil CO2 efflux    

Ho: Forest biomass will not increase carbon input, thereby will not significantly  

      affect the biological precess to emit soil CO2 in both forest stand and logged-over  

      areas.  

H1: Forest biomass will increase carbon input, thereby will significantly affect the  

      biological precess to emit soil CO2 in both forest stand and logged-over areas.  
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1.7 Significance of the Study 
 

Soil CO2 efflux determination in the recovering forest of different ages, logged-over 

area and environmental factors is of paramount importance and conspicuous in 

recognising that higher-order effects result from more intervening variables.  Soil 

CO2 efflux from logged-over and forest of different ages will enable prompt action to 

be taken in addressing sustainable forest management. The detail implication of 

logging on the net carbon budget of the forest will enable new strategy for carbon 

management. Whereas, soil CO2 efflux data generated from this study area will be 

used by relevant government agencies to sustain their policy on climate change and 

environmental management strategies. This research will prompt Malaysia 

government on systematic CO2 efflux observation for predicting, communicating and 

environmental planning to curtail adverse effects. The data will be relevant to 

governmental on adaptation based on wise resource management: mitigation to 

enhance adaptation and sustainable development. Also government will improve on 

afforestation for emission reduction and carbon sink enhancement. Furthermore, this 

data will be important to forest managers and forest stewards for carrying out 

appropriate action in forest management to serve as a carbon sink.  

 

 

1.9 Organisation of the Thesis 

 

In order to have a holistic approach to the subject of soil CO2 efflux and its 

atmospheric carbon impact from the recovering lowland forests of Peninsular 

Malaysia, the following steps were taken in this study:  Chapter I deal with the 

introductory aspect of the study. This involved an overview of climate change 

resulting from CO2 efflux, deforestation and changing environmental factors likewise 

objectives, hypothesis and significance of the study were highlighted.   

 

Chapter II focus on a review from the onset to recent issues regarding soil CO2 efflux 

determination and environmental measurement of various forest forest age. Likewise 

the implication of soil CO2 efflux on the atmospheric carbon balance was study. 

Measuring techniques was reviewed in order to identify the suitable techniques to be 

adopted for modification and the conceptual framework of the flow-path of soil CO2 

efflux.   

 

Chapter III elucidates the research methodology which includes; the experimental 

design and structure, techniques construction and function. Forest site characteristics 

in terms of leaves area index (LAI), litter fall, total aboveground biomass (TAGB),  

belowground biomass (BGB), total forest carbon stock (SOCs), soil organic carbon 

stock (SOCstock), environmental factors measurements and soil samples analyses 

will also be presented.  

Chapter IV was focus on the results presentation, statistical analysis and discussion. 

Chapter V was deal on conclusion and recommendations for further study.  
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