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June 2022 
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Institute : Mathematical Research 

The elliptic curve cryptosystem (ECC) is applied to meet the requirement for 
public-key cryptosystem, mainly because ECC has shorter key lengths, and its 
algorithms are more efficient than Rivest-Shamir-Adleman (RSA) cryptosystem. 
The elliptic curve point multiplication (ECPM) operation in ECC faces, however, 
major computational efficiency issue. The primary objective of this study is to 
improve the performance of ECPM algorithm of ECC using the elliptic net (EN) 
method in affine coordinate over binary and prime fields. In particular, this study 
looked into point and field arithmetic levels over the elliptic curve. The literature 
depicts that point multiplication (PM) can be computed using double (DBL) and 
double add (DBLADD) via binary method (BM), but this method rely on the 
Hamming weight of scalar. As a consequence, PM computation via BM is costly. 
The EN method is an alternative in ECPM computation since the first DBL and 
DBLADD via EN in the literature appear to dismiss the Hamming weight of scalar. 
In this study, the proposed DBL and DBLADD algorithm using the Karatsuba 
method for non-supersingular Koblitz curve over m bits binary field with gcd(2m–
1, 3)=1 that incorporates eight blocks of EN with three temporary variables saved 
two multiplications or 9.09% in DBL and DBLADD algorithms, in comparison to 
the recent literature pertaining to EN. For safe curves of 283, 409, and 571 bits 
over binary field, upon comparison with BM algorithm, the developed ENPM 
algorithm to enhance computational efficiency of ECC displayed better 
performance in overall multiplications based on the following average values; 
8.70%, 8.79%, and 8.85% respectively, thus successfully speeding up the 
running time by an average of 9.00%. The designed ENPM algorithm over binary 
field gained 9.06%, 9.07%, and 9.07% respectively, and 9.06% average rapid 
time in comparison to eight blocks of EN method. The proposed DBL and 
DBLADD algorithm via EN using Karatsuba method for Twisted Edwards curve 
over p prime field with gcd(p–1, 3)=1 that embeds seven blocks of EN and three 
temporary variables saved two multiplications and squaring or 12.5% 
multiplication and 20% squaring in DBL, while one multiplication and two 
squaring or 6.25% multiplication and 20% squaring in DBLADD, in comparison 
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to EN with 10 temporary variables. For safe curves of 384 and 512 bits, the 
developed ENPM algorithm over prime field outperformed the BM algorithm in 
terms of overall multiplications with 57.60% and 59.16% average running time. 
The developed ENPM method performed better than eight blocks of EN for short 
Weierstrass curve with averages of 31.26% and 31.02%. The designed ENPM 
algorithm also exhibited better performance in terms of overall multiplication and 
running time by averages 13.17% and 13.22%, in comparison to EN with 10 
temporary variables for short Weierstrass curve. 
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TAMBAH BAIK ALGORITMA PENDARABAN SKALAR KELUK ELIPTIK 
MERANGKUMI MEDAN BINARI DAN PERDANA MENGGUNAKAN 

JEJARING ELIPTIK 

Oleh 

NORLIANA BINTI MUSLIM 

Jun 2022 

Pengerusi : Faridah Yunos, PhD 
Institut  : Penyelidikan Matematik 

Sistem kripto keluk eliptik (ECC) digunakan untuk memenuhi keperluan sistem 
kripto kekunci awam, terutamanya kerana sistem ECC memiliki kunci yang lebih 
pendek dan algoritma-algoritma yang lebih berkesan berbanding sistem kripto 
Rivest-Shamir-Adleman (RSA). Namun begitu, operasi pendaraban titik keluk 
eliptik (ECPM) dalam sistem ECC menghadapi masalah kecekapan pengiraan. 
Objektif utama kajian ini adalah untuk menambahbaik prestasi algoritma ECPM 
menggunakan kaedah jejaring eliptik (EN) dalam koordinat afin ke atas medan 
binari dan perdana. Kajian ini secara khusus menyasar pada tahap aritmetik titik 
dan aritmetik medan ke atas keluk eliptik. Berdasarkan kajian lepas, pendaraban 
titik (PM) boleh dikira menggunakan kaedah berganda (DBL) dan penambahan 
berganda melalui binari (BM), tetapi kaedah ini bergantung kepada pemberat 
Hamming skalar. Oleh itu, pengiraan PM melalui BM mempunyai kos pengiraan 
yang tinggi. Kaedah EN adalah alternatif kepada pengiraan ECPM 
memandangkan kaedah pertama yang dibangunkan dalam kajian lepas tidak 
bergantung kepada pemberat Hamming skalar. Dalam kajian ini, algoritma DBL 
dan DBLADD yang dicadangkan melalui EN menggunakan kaedah Karatsuba 
melalui keluk Koblitz tak-super-tunggal untuk medan binari dengan bit m 
berserta pst(2m – 1, 3)=1 yang menggunakan lapan blok EN dengan tiga 
pembolehubah sementara telah menjimatkan kos sebanyak dua pendaraban 
atau 9.09% dalam algorithma DBL dan DBLADD berbanding dengan kajian EN 
yang lepas.  Untuk keluk selamat bagi 283, 409, dan 571 bit ke atas medan 
binari, ENPM yang dibangunkan bagi meningkatkan kecekapan pengiraan ECC 
menunjukkan prestasi lebih baik berbanding kaedah binari (BM) bagi 
keseluruhan pendaraban berdasarkan nilai purata masing-masing sebanyak 
8.70%, 8.79%, dan 8.85% serta berjaya mempercepatkan masa dengan purata 
9.00%. Jika dibandingkan dengan kaedah lapan blok EN, algoritma ENPM yang 
direka bentuk ke atas medan binari masing-masing memperolehi 9.06%, 9.07%, 
dan 9.07% dengan purata masa yang lebih laju sebanyak 9.06%. Algoritma DBL 
dan DBLADD yang dicadangkan melalui EN menggunakan kaedah Karatsuba 
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ke atas keluk Twisted Edwards untuk medan perdana p berserta pst(p – 1, 3)=1 
berdasarkan tujuh blok EN dengan tiga pembolehubah sementara telah 
menjimatkan kos dua operasi pendaraban dan dua operasi kuasa dua iaitu 
sebanyak 12.5% pendaraban dan 20% kuasa dua dalam DBL, manakala satu 
operasi pendaraban dan dua operasi kuasa dua atau 6.25% pendaraban dan 
20% kuasa dua dalam DBLADD, berbanding dengan EN bersama 10 
pembolehubah sementara. Untuk keluk selamat bagi 384 dan 512 bit, algoritma 
ENPM yang dibangunkan ke atas medan perdana mengatasi algoritma BM bagi 
keseluruhan pendaraban dengan purata tempoh perlaksanaannya sebanyak 
57.60% dan 59.16%. Pada panjang bit yang serupa, bagi jumlah pendaraban 
dan masa perlaksanaan, algorithma ENPM yang dibangunkan berprestasi lebih 
baik daripada lapan blok EN keluk Weierstrass pendek dengan purata sebanyak 
31.26% dan 31.02%. Algorithma yang direka bentuk juga menunjukkan prestasi 
lebih baik bagi keseluruhan pendaraban dan masa perlaksanaan dengan purata 
sebanyak 13.17% dan 13.22%, berbanding dengan lapan blok EN bersama 10 
pembolehubah sementara untuk keluk pendek Weierstrass.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Overview 
 
 
The internet is the most effective and valuable knowledge-sharing platform used 
for communication purposes. To date, not only conventional computers are 
connected to the internet, but devices such as televisions, tablets, electrical 
appliances, automobiles, and smartphones are also substantially 
heterogeneous. The rapid progress of electronic commerce platforms, such as 
Lazada and Shopee, contributes to the widespread use of online banking 
transactions. Online transmission of information demands protection due to 
lurking cyber threats. One method that ascertains data security is secret writing 
or algorithm known as cryptography. 
 
 
Cryptographic algorithms are high-performance and safe engines that require 
considerable design space. If countermeasures are included to thwart intrusion 
threats, the demands for space and memory further increase. Therefore, 
cryptographic algorithms have traditionally been incorporated into hardware, 
including smart cards and 8-bit chips as proprietary designs (Awaludin et al., 
2021; Seo et al., 2015).  
 
 
Practically, algorithms initiated by the crypto communities must meet the 
fundamental principles of security in terms of confidentiality, availability, integrity, 
authentication, and non-repudiation (Hankerson et al., 2004; Jesus et al., 2018; 
Menezes et al., 1997). Cryptographic algorithms are composed of asymmetric 
and symmetric schemes (Zhang, 2021). The variance between these schemes 
lies in the key management during the encryption and decryption processes. The 
encryption process converts plaintext to ciphertext, while the decryption process 
recovers plaintext from ciphertext. Asymmetric cryptography, or public-key 
cryptography, uses two keys; one public key to encrypt and one private key to 
decrypt. Symmetric cryptography uses one single key for both encryption and 
decryption processes (Zhang, 2021).  
 
 
Modern cryptosystems are designed mathematically based on several 
fundamental principle problems. For instance, the RSA cryptosystem (Rivest et 
al., 1983) depends on integer factorization problem. Hasan et al. (2021) asserted 
that attack in cryptography is one way to solve an issue. The goal of an attack is 
to devise a quick solution to a problem that relies on an encryption algorithm (Xu 
et al., 2020). This means; the difficulty of attacking RSA is based on the difficulty 
of identifying the prime factors of a composite number.  
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The ElGamal cryptosystem (ElGamal, 1985) is designed based on discrete 
logarithm problem (DLP). Let x = gn mod p. The DLP refers to the problem used 
to determine the value of n. On the other hand, the ElGamal model works by 
integrating the discrete logarithm and integer factorization problems (Dijesh et 
al., 2020). Elliptic curve cryptosystem (ECC) was introduced by Koblitz (1987) 
and Miller (1986b). The cryptosystem was developed based on elliptic curve 
discrete logarithm problem (ECDLP). Consider an elliptic curve E over a finite 

field Fq, a given point ( )qP E F  of order pN  and ( )qQ E F . A problem that is 

used to determine an integer n where 0 1pn N  −  such that Q nP=  is known 

as ECDLP (Adj et al., 2018). 
 
 
A well-known method of attacking an elliptic curve is DLP, whereby it works 
slowly for all curves and makes encryption practicable based on the problem 

(Zargar et al., 2017). For any elliptic curve E over a prime field pF , the base point 

in ( )pE F  must adhere to several properties so that the problem to solve ECDL 

turns difficult. A crucial property denotes that the elliptic curve group ( )pE F  must 

possess a large subgroup of prime order pN  and a bit length of ~ 160 or above 

with a small co-factor .fc  According to Scholl (2017), the next property is 

avoiding weak curves, such that the ECDLP can be solved within short time and 
the curve must have a large embedding degree to prevent Menezes, Okamoto, 
and Vanstone attack. 
 
 
The ECC generates both public and private keys, apart from enabling two parties 
to communicate in a secure manner. Essentially, a 256-bit key in ECC enables 
approximately the same safety as a 3072-bit key with RSA (Keerthi & 
Surendiran, 2017; Wroński, 2016). Mahto and Yadav (2017) reported that in 
order to obtain 112 bits of security level, ECC only requires a key size of 224 bits 
and RSA needs 2048 bits of key size. Since ECC required shorter key length, 
then this attracted researchers to explore more on ECC field.  
 
 
The Advanced Encryption Standard (AES) is a symmetric block cipher chosen 
by the United States government to protect classified information. Table 1.1 lists 
the estimated, comparable, maximum-security strength for approved 
asymmetric-key algorithms and AES key lengths (Barker, 2020), where L is 

public key size, N is private key size, k is size of modulus n, f is size of pN , and 

pN  is the order of base point. 
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Table 1.1: Comparable security strength of AES keys 

 
 
Referring to Table 1.1, ECC requires a key length of more than 512 bits to be as 
strong as 256-bit AES. The performance of ECC relies on the efficiency of 
computing nP operation, which is also known as ECPM. 
 
 
The compression techniques of elliptic curve representation have been patented 
by the United States National Security Agency held by Certicom (Brown, 2010a). 
As a provider of wireless security applications and services for information 
protection, Certicom keeps a patent on efficient multiplication over the binary 
field in normal representation. Several elliptic curves applied in ECC protocols 
can be classified to several standards and field sizes. The National Institute of 
Standard and Technology (NIST) (Standard curve database, 2020a), Brainpool, 
and Microsoft Nothing Up My Sleeve (NUMS) (Standard curve database, 2020b) 
are some ECC standards that are considered secure for cryptographic 
applications. In particular, the ECC domain parameters are given in the following: 
 
q  Field size  
G  Base point 

b1, b2, b6 Elliptic curve coefficients of type 
2 3 2

1 2 6y b xy x b x b+ = + +  

a, d Elliptic curve coefficients of type 
2 2 2 21ax y dx y+ = +  

Np  Order of base point  
x, y  Coordinates of x and y for P 
 
 
1.2 Problem Statement  
 
 
Point multiplication (PM) is the most vital and expensive operation to implement 
ECC (Alkhudhayr et al., 2021). Therefore, enhancing the performance of ECPM 
has always been the most important focus in cryptography. The ECPM is defined 
as follows: 

AES Security 
Strength 

Finite field RSA (bits) ECC (bits) 

80  
L = 1024 

     pN = 160 1024k =  160 - 223f =  

112 
L = 2048 

     pN = 224 2048k =  224 - 255f =  

128 
L = 3072 

     pN = 256 3072k =  256 - 383f =  

192 
L = 7680 

     pN = 384 7680k =  384 -511f =  

256 
 L = 15360 

    pN = 512 15360k =  512f = +  
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Definition 1.1. ECPM refers to the operation of computing n-multiple of an 
element in a group of elliptic curves. The computational process is expressed as 

 timesn

Q nP P P P= = + + + , where n is a positive integer called scalar, while P and Q 

are points on the curve. 
 
 
The conventional method to compute ECPM is the binary method (BM), which is 
based on chord and tangent or points addition and doubling. From Definition 1.1, 
the PM via BM works as a scalar n is decomposed to a binary number where 2P 
denotes DBL, and 2P + P refers to DBLADD process. According to Miller 
(1986b), ECPM can be calculated by using division polynomials in polynomial 
time. This method also known as elliptic net of rank one. Kanayama et al. (2014) 
had adapted this concept to yield the first ENPM on short Weierstrass curve over 
prime field to enhance PM. After that, the algorithm was improved by deploying 
the temporary variables method (Rao et al., 2019). The first ENPM over binary 
field was proposed by Chen et al. (2017). The PM via elliptic net (EN) following 
Definition 1.1 but both DBL and DBLADD processes are based on EN. Given 
points P and Q, scalar n must be computationally difficult to calculate. Hence, 
reducing the number of operations in DBL and DBLADD methods can generate 
faster ENPM and consequently efficient ECC. In fact, many studies have looked 
into ways to speed up this operation over binary or prime fields (see 
AbdulRaheem et al., 2019; Al-Saffar & Said, 2015; Bafandehkar et al., 2016; Rao 
et al., 2019). 
 
 
Several cryptographic curves have been proposed to provide efficient points 
addition or doubling, such as Koblitz (Koblitz, 1991), Huff (Orhon & Hisil, 2018), 
Holm (Alberto, 2016), and Twisted Edwards curves (Bernstein et al., 2008). As 
for ENPM, the non-supersingular Koblitz curve from the elliptic curve of 

( ) 2char K =  and the recent elliptic curve of characteristic ( ) 2,3char K   namely 

Twisted Edwards curves can be applied to compare these alternative curves. 
This is because; the division polynomials of the non-supersingular Koblitz and 
the Twisted Edwards curves satisfy the fundamental relations of EN values (Rao, 
2016, 2017), and the curves contain change of variables from Weierstrass 
(Bernstein & Lange, 2011; Koblitz, 1991; Moloney & McGuire, 2009, 2011). More 
details on EN are discussed in Chapter 2 (see Section 2.8.2). 
 
 
The ECPM can be operated in three levels of computation; scalar, point, and 
field arithmetics. All levels of computation were employed in this present study. 
At the first level, DBL and DBLADD methods are proposed with equivalent 
sequences in EN algorithm over binary and prime fields using eight and seven 
blocks, respectively. At the second level, point operations based on DBL and 
DBLADD processes in the new ENPM algorithms over binary and prime fields 
were enhanced. At the final level, field operations were improved by assessing 
the expected running time of the designed ENPM algorithms. 
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1.3 Research Objectives 
 
 
The primary objective of this study is to improve the performance of PM using 
EN method. Thus, the research objectives are stated as follows: 
 
 
Non-supersingular Koblitz curve over binary field 
 

1. To propose DBL and DBLADD algorithms using Karatsuba method for 
non-supersingular Koblitz curve over binary field with equivalent 

sequences of ( )2 1W = . 

2. To design the ENPM algorithm upon Koblitz curve using the proposed 
DBL and DBLADD in order to improve the computational efficiency of 
ECC over binary field. 

 
 
Twisted Edwards curve over prime field 
 

1. To propose DBL and DBLADD algorithms using Karatsuba method for 
Twisted Edwards curve over prime field with equivalent sequences of 

( )2 1W = .  

2. To design the ENPM algorithm upon Twisted Edwards curve using the 
proposed DBL and DBLADD in order to enhance the computational 
efficiency of ECC over prime field.  

 
 
Essentially, this study attempt to answer the following research questions: (1) 
How do DBL and DBLADD via EN method confirm fast PM over binary and prime 
fields? and (2) Is the cost of PM via EN independent of the Hamming weight of 
scalar? 
 
 
1.4 Research Contributions 
 
 
The following lists the significant contributions of this study: 
 
 
New DBL and DBLADD algorithms via EN over binary field 
 
In the EN method over binary field, the first DBL and DBLADD algorithms were 
structured using eight terms block, together with equivalent sequences and the 
Karatsuba method. The cost of the proposed method was evaluated based on 
the number of DBL and DBLADD, and was later compared with the cost of DBL 
and DBLADD in Chen et al. (2017). 
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New DBL and DBLADD algorithms via EN over prime field 
 
The DBL and DBLADD algorithms with equivalent sequences over prime field 
were formulated using the Karatsuba method based on seven blocks of EN. The 
second proposed method was evaluated based on the number of DBL and 
DBLADD, and was later benchmarked with Kanayama et al. (2014) and Rao et 
al. (2019).   
 
 
New PM algorithm via EN over binary field 
 
A new ENPM algorithm was designed for the non-supersingular Koblitz curve 
over binary field using the first proposed method. This algorithm applied the 
binary form to represent the scalar, as well as both DBL and DBLADD containing 
eight terms with equivalent sequences, along with the explicit formulae of the 
Karatsuba method and multiple points on non-supersingular Koblitz curve. Point 
operation, field operation, and running time of the proposed algorithms were 
evaluated for the new ENPM over binary field. The analysis was benchmarked 
for BM Koblitz and EN Chen. 
 
 
New PM algorithm via EN over prime field 
 
A new ENPM algorithm was constructed for the Twisted Edwards curve over 
prime field by using the new DBL and DBLDD formula via EN method. These 
algorithms represented the scalar in binary form, while DBL and DBLADD were 
used with equivalent sequences that had seven terms of EN block, explicit 
formulae of Karatsuba method, and multiple points on the Twisted Edwards 
curve. The designed algorithm over prime field was analysed based on field 
operation and running time. After that, the analysis was benchmarked with BM 
Twisted and EN Kanayama. 
 
 
1.5 Scope and Thesis Organisation 
 
 
The research scope and thesis organisation are stated in the following sections: 
 
 
1.5.1 Scope of this Study 

 
 
This study had focused on the ENPMs upon Koblitz curves over binary field and 
Twisted Edwards curves over prime field in the affine coordinate system. To 
implement the computation over binary field, three bases can be considered, 
namely polynomial, subfield, and normal bases. However, only polynomial base 
had been included for the computation of ENPM in this study. The ENPM 
algorithm over binary and prime fields had been computed by using properties 
of non-linear recurrence relations, while the experimental calculations were 
conducted in Python language using Sagemath via Intel Core i-7 8565 CPU 1.80 
Ghz, 8 GB memory, and 64-bit operating system. In the computational analysis, 
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only secure non-supersingular Koblitz curves over binary field namely sec283k1, 
sec409k1, and sec571k1 curves (Barker, 2020) and  secure Twisted Edwards 
curve over prime field namely nums384t1 and nums512t1 (Bos et al., 2016) are 
utilised. Some Sagemath references used in this study were Dulhare and Ahmad 
(2019), Finch (2011), and Zimmerman et al. (2018).  
 
 
1.5.2 Thesis Organisation 
 
 
The organisation of this thesis is stated in the following: 
 
 
Chapter 1 begins with the introduction of this study and is followed by the 
overview, problem statement, research objectives, research contributions, and 
research scope.  
 
 
Chapter 2 presents the group structure and finite fields. A comprehensive review 
of short Weierstrass, Koblitz, and Twisted Edwards curves are included. The 
review further looked into the division polynomial properties of the curves, 
multiple points, addition and doubling properties, as well as their affine 
coordinate systems. The review continues to describe PM via BM and EN. 
 
 
Chapter 3 outlines the three phases of the research methodology which are 
problem identification, design, and implementation, and lastly the phase analysis 
and results. This chapter also explains computational analyses methods and the 
running environments that will be used during implementations. 
 
 
Chapter 4 proposes new DBL and DBLADD using the Karatsuba method via 
eight blocks of EN over binary field. The explicit formulae of ENPM based on the 
non-supersingular Koblitz curve is introduced. An experimental calculation of 
ENPM using Koblitz’s division polynomials in the polynomial base is depicted. 
Then, a new ENPM over binary field using proposed DBL and DBLADD is 
designed. 
 
 
Chapter 5 highlights the new DBL and DBLADD using seven blocks of EN for 
Twisted Edwards curve over prime field. The explicit formulae of ENPM over 
prime field with equivalent sequences was obtained. The experimental 
calculation was provided starting from the EN initial values using Twisted 
Edwards division polynomial until the block centred at n-multiple points. Then, a 
new ENPM algorithm based on the Twisted Edwards curve over prime field is 
designed. 
 
 
Chapter 6 presents the cost analysis of DBL and DBLADD, the costs of point 
and field operations, as well as the expected running time of the proposed ENPM 
algorithms over binary field. Additionally, the proposed ENPM algorithm was 
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compared with BM and ENPM algorithm over binary field reported in the 
literature. 
 
 
Chapter 7 outlines the computational analysis of DBL and DBLADD costs, point 
and field operations, as well as the timing of the proposed ENPM algorithm over 
prime field. The proposed ENPM algorithm over prime field was benchmarked 
with BM and ENPM algorithm reported in the literature. 
Finally, Chapter 8 concludes this study and lists several suggestions for future 
research endeavour.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

104 

 

REFERENCES 
 
 

Abarzúa, R., Valencia, C. & López, J. (2021). Survey on performance and 
security problems of countermeasures for passive side-channel attacks on 
ECC. Journal of Cryptographic Engineering, 11, 71–102. 
https://doi.org/10.1007/s13389-021-00257-8 

 
AbdulRaheem, W. K., Yasin, S. M., Udzir, N. I., & Ariffin, M. R. K. (2019). New 

quintupling point arithmetic 5P formulas for Lǒpez-Dahab coordinate over 
binary elliptic curve cryptography. International Journal of Advanced 
Computer Science and Applications, 10(7), 397–401.  
https://dx.doi.org/10.14569/IJACSA.2019.0100754 

 
Abel, N. H. (2013). Oeuvres complètes de Niels Henrik Abel. Cambridge 

University Press. 
 
Abhishek, K., & Raj, E. G. D. P. (2021). Evaluation of computational approaches 

of short Weierstrass elliptic curves for cryptography. Cybernetics and 
Information Technologies, 21(4), 105–118. https://doi.org/10.2478/cait-
2021-0045 

 
Adj, G., Canales-Martínez, I., Cruz-Cortés, N., Menezes, A., Oliveira, T., Rivera-

Zamarripa, L., & Rodríguez-Henríquez, F. (2018). Computing discrete 
logarithms in cryptographically-interesting characteristic-three finite fields. 
Advances in Mathematics of Communications, 12(4), 741–759. 
https://doi.org/10.3934/amc.2018044 

 
Agievich, S. V. E., Poruchnik, S. V., & Semenov, V. I. (2022). Small scalar 

multiplication on Weierstrass curves using division polynomials. 
Математические вопросы криптографии, 13(2), 17-35. 
https://doi.org/10.4213/mvk406 

 
Al-Saffar, N. F. H., & Said, M. R. M. (2015). Speeding up the elliptic curve scalar 

multiplication using the window-w non adjacent form. Journal of Discrete 
Mathematical Sciences and Cryptography, 18(6), 801–821. 
https://doi.org/10.1080/09720529.2015.1023538 

 
Alberto, G. (2016). The division polynomials for the Holm curve and their 

properties. [Doctoral dissertation, Howard University]. ProQuest 
Dissertations and Theses Global. 

 
Alimoradi, R., Arkian, H. R., Razavian, S. M. J., & Ramzi, A. (2020). Scalar 

multiplication in elliptic curve libraries. Journal of Discrete Mathematical 
Sciences and Cryptography, 24(3), 657–666. 
https://doi.org/10.1080/09720529.2017.1378411 

 
Alkhudhayr, F., Moulahi, T., & Alabdulatif, A. (2021). Evaluation study of Elliptic 

curve cryptography scalar multiplication on Raspberry Pie. International 
Journal of Advanced Computer Science and Applications, 12(9), 472–479. 
https://doi.org/10.14569/IJACSA.2021.0120954 

https://doi.org/10.1007/s13389-021-00257-8
https://dx.doi.org/10.14569/IJACSA.2019.0100754
https://doi.org/10.2478/cait-2021-0045
https://doi.org/10.2478/cait-2021-0045
https://doi.org/10.3934/amc.2018044
https://doi.org/10.4213/mvk406
https://doi.org/10.1080/09720529.2015.1023538
https://doi.org/10.1080/09720529.2017.1378411


© C
OPYRIG

HT U
PM

105 

 

Araújo, J., Cameron, P. J., & Matucci, F. (2019). Integrals of groups. Israel 
Journal of Mathematics, 234(1), 1–31. 
https://doi.org/10.48550/arXiv.1803.10179 

 
Aung, T. M., & Hla, N. N. (2017). Implementation of elliptic curve arithmetic 

operations for prime field and binary field using Java BigInteger class. 
International Journal of Engineering Research & Technology, 6(8), 454–
459. https://dx.doi.org/10.2139/ssrn.3269703 

 
Awaludin, A. M., Larasati, H. T., & Kim, H. (2021). High-speed and unified ecc 

processor for generic Weierstrass curves over GF(p) on Fpga. Sensors, 
21(1451), 1–20. https://doi.org/10.3390/s21041451 

 
Bafandehkar, M., Yasin, S. M., & Mahmod, R. (2016). Optimizing (0, 1, 3)-NAF 

recoding algorithm using block-method technique in elliptic curve 
cryptosystem. Journal of Computer Science, 12(11), 534–544. 
https://doi.org/10.3844/jcssp.2016.534.544 

 
Barker, E. (2020). Recommendation for key management: Part 1 - General. 

National Institute of Standards and Technology, U.S. Department of 
Commerce. https://doi.org/10.6028/NIST.SP.800-57pt1r5 

 
Bernstein, D. J., Birkner, P., Joye, M., Lange, T., & Peters, C. (2008). Twisted 

Edwards Curves. In S. Vaudenay (Ed.), Progress in Cryptology – 
AFRICACRYPT 2008. AFRICACRYPT 2008. Lecture Notes in Computer 
Science (Vol. 5023, pp. 389-405). Springer. https://doi.org/10.1007/978-3-
540-68164-9_26 

 
Bernstein, D. J., & Lange, T. (2007a). Analysis and optimization of elliptic-curve 

single-scalar multiplication. Cryptology ePrint Archive, 2007/455. 
https://doi.org/10.1090/conm/461/08979 

 
Bernstein, D. J., & Lange, T. (2007b). Faster addition and doubling on elliptic 

curves. In Kurosawa, K. (Ed.), Advances in Cryptology – ASIACRYPT 2007. 
ASIACRYPT 2007. Lecture Notes in Computer Science (Vol. 4833, pp. 29–
50). Springer. https://doi.org/10.1007/978-3-540-76900-2_3 

 
Bernstein, D. J., & Lange, T. (2011). A complete set of addition laws for 

incomplete Edwards curves. Journal of Number Theory, 131(5), 858–872. 
https://doi.org/10.1016/j.jnt.2010.06.015 

 
Blake, I., Seroussi, G., & Smart, N. (1999). London Mathematical Society, 

Lecture Note Series 265: Elliptic curves in cryptography. Cambridge 
University Press. 

 
Bos, J. W., Costello, C., Longa, P., & Naehrig, M. (2016). Selecting elliptic curves 

for cryptography: an efficiency and security analysis. Journal of 
Cryptographic Engineering, 6(4), 259–286. https://doi.org/10.1007/s13389-
015-0097-y 

https://doi.org/10.48550/arXiv.1803.10179
https://dx.doi.org/10.2139/ssrn.3269703
https://doi.org/10.3390/s21041451
https://doi.org/10.3844/jcssp.2016.534.544
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1090/conm/461/08979
https://doi.org/10.1007/978-3-540-76900-2_3
https://doi.org/10.1016/j.jnt.2010.06.015


© C
OPYRIG

HT U
PM

106 

 

Brown, D. R. L. (2010a). Standards for efficient cryptography 2 (SEC 2): 
Recommended elliptic curve domain parameters, ver. 2.0, Certicom 
Research, 2010. https://www.secg.org/sec2-v2.pdf 

  
Brown, D. R. L. (2010b). Stange’s elliptic nets and coxeter group F4. Cryptology 

ePrint Archive, 2010/161. https://ia.cr/2010/161 
 
Chen, B., Hu, C., & Zhao, C. (2017). A note on scalar multiplication using division 

polynomials. IET Information Security, 11(4), 195–198. 
https://doi.org/10.1049/iet-ifs.2015.0119 

 
Cheon, J., & Hahn, S. (1998). Explicit valuations of division polynomials of an 

elliptic curve. Manuscripta Mathematica, 97, 319–328. 
https://doi.org/10.1007/s002290050104 

 
Chmielewski, Ł., Massolino, P. M. C., Vliegen, J., Batina, L., & Mentens, N. 

(2017). Completing the complete ECC formulae with countermeasures. 
Journal of Low Power Electronics and Applications, 7(1), 1–13. 
https://doi.org/10.3390/jlpea7010003 

 
Chu, D., Großschädl, J., Liu, Z., Müller, V., & Zhang, Y. (2013). Twisted 

Edwards-form elliptic curve cryptography for 8-bit AVR-based sensor 
nodes. Proceedings of the First ACM Workshop on Asia Public-Key 
Cryptography, (pp. 39-44). ACM Digital Library. 
https://doi.org/10.1145/2484389.2484398 

 
Cuevas-Farfan, E., Morales-Sandoval, M., Morales-Reyes, A., Feregrino-Uribe, 

C., Algredo-Badillo, I., Kitsos, P., & Cumplido, R. (2013). Karatsuba-Ofman 
multiplier with integrated modular reduction for GF(2m). Advances in 
Electrical and Computer Engineering, 13(2), 3–10. 
https://doi.org/10.4316/AECE.2013.02001 

 
Dijesh, P., Babu, S., & Vijayalakshmi, Y. (2020). Enhancement of e-commerce 

security through asymmetric key algorithm. Computer Communications, 
153, 125–134. https://doi.org/10.1016/j.comcom.2020.01.033 

 
Dulhare, U. N., & Ahmad, K. (2019). Hands-on “SageMath”. In Ahmad., K., Doja., 

M. N., Udzir, N. I. & Singh, M. P. (Eds.), Emerging Security Algorithms and 
Techniques (1st ed., pp. 293-308). CRC Press. 

 
Edwards, H. M. (2007). A normal form for elliptic curves. Bulletin of the American 

Mathematical Society, 44(3), 393–422. 
 
Eide, O. W. (2017). Elliptic curve cryptography. [Master’s Thesis, University of 

Oslo]. University of Oslo Library. 
 
ElGamal, T. (1985). A public key cryptosystem and a signature scheme based 

on discrete logarithms. IEEE Transactions on Information Theory, 31(4), 
469–472. 

 

https://www.secg.org/sec2-v2.pdf
https://ia.cr/2010/161
https://doi.org/10.1049/iet-ifs.2015.0119
https://doi.org/10.1007/s002290050104
https://doi.org/10.3390/jlpea7010003
https://doi.org/10.1145/2484389.2484398
https://doi.org/10.4316/AECE.2013.02001
https://doi.org/10.1016/j.comcom.2020.01.033


© C
OPYRIG

HT U
PM

107 

 

Elmegaard-Fessel, L. (2006). Efficient scalar multiplication and security against 
power analysis in cryptosystems based on the NIST elliptic curves over 
prime fields. [Master’s Thesis, University of Copenhagen]. Cryptology ePrint 
Archive. https://ia.cr/2006/313 

 
Emmart, N. (2018). A study of high performance multiple precision arithmetic on 

graphics processing units. [Doctoral dissertation, University of 
Massachusetts Amherst].Scholarworks@UMassAmherst. 
https://doi.org/10.7275/11399986.0 

 
Finch, C. (2011). Sage beginner’s guide. Packt Publishing Ltd. 
 
Gezer, O. B. B. (2012). Cubes in elliptic divisibility sequences. Math. Reports, 

14(64), 21–29. 
 
Ghosh, S., Mukhopadhyay, D., & Roychowdhury, D. (2011). Petrel: Power and 

timing attack resistant elliptic curve scalar multiplier based on 
programmable GF(p) arithmetic unit. IEEE Transactions on Circuits and 
Systems I: Regular Papers, 58(8), 1798–1812. 
https://doi.org/10.1109/TCSI.2010.2103190 

 
Guo, C. & Gong, B. (2021). Efficient scalar multiplication of ECC using SMBR 

and fast septuple formula for IoT. Journal on Wireless Communications and 
Networking, 82, 1–17. https://doi.org/10.1186/s13638-021-01967-7 

 
Hadani, N. H., Yunos, F., Ariffin, M. R. K., Sapar, S. H., & Rahman, N. N. A. 

(2019). Alternative method to find the number of points on Koblitz curve. 
Malaysian Journal of Mathematical Science, 13, 13–30. 

 
Hankerson, D., Menezes, A. J., & Vanstone, S. (2004). Guide to elliptic curve 

cryptography. Springer. 
 
Hanwa, A., & Fouotsa, E. (2021). Elliptic divisibility sequences over the Edwards 

model of elliptic curves. Journal of Discrete Mathematical Sciences and 
Cryptography. https://doi.org/10.1080/09720529.2020.1822042 

 
Hasan, M. K., Shafiq, M., Islam, S., Pandey, B., Baker El-Ebiary, Y. A., Nafi, N. 

S., & Vargas, D. E. (2021). Lightweight cryptographic algorithms for 
guessing attack protection in complex internet of things applications. 
Complexity, 2021. https://doi.org/10.1155/2021/5540296 

 
Hisil, H., Wong, K. K., Carter, G., & Dawson, E. (2008). Twisted Edwards Curves 

Revisited. In J. Pieprzyk (Ed.), Advances in Cryptology - ASIACRYPT 2008. 
ASIACRYPT 2008. Lecture Notes in Computer Science (Vol. 5350, pp. 326-
343). Springer. https://doi.org/10.1007/978-3-540-89255-7_20 

 
Hu, Y., Cui, Y. Y., & Li, T. (2010). An optimization base point choice algorithm of 

ECC on GF(p). ICCMS 2010 - 2010 International Conference on Computer 
Modeling and Simulation (pp. 103–105). IEEE. 
https://doi.org/10.1109/ICCMS.2010.128 

https://ia.cr/2006/313
https://doi.org/10.7275/11399986.0
https://doi.org/10.1109/TCSI.2010.2103190
https://doi.org/10.1186/s13638-021-01967-7
https://doi.org/10.1080/09720529.2020.1822042
https://doi.org/10.1155/2021/5540296
https://doi.org/10.1007/978-3-540-89255-7_20


© C
OPYRIG

HT U
PM

108 

 

Imran, M., Kashif, M., & Rashid, M. (2015). Hardware design and implementation 
of scalar multiplication in elliptic curve cryptography (ECC) over GF(2163) on 
FPGA. 2015 International Conference on Information and Communication 
Technologies (ICICT) (pp. 1-4). IEEE. 
https://doi.org/10.1109/ICICT.2015.7469484 

 
Isa, M. A. M., Hashim, H., Adnan, S. F. S., Mohamed, N. N., & Alias, Y. F. (2018). 

Side-channel security on key exchange protocol: Timing and relay attacks. 
Indonesian Journal of Electrical Engineering and Computer Science, 11(2), 
688-695. https://doi.org/10.11591/ijeecs.v11.i2 

 
Jacobson, M. J., Rad, M. R., & Scheidler, R. (2014). Comparison of scalar 

multiplication on real hyperelliptic curves. Advances in Mathematics of 
Communications, 8(4), 389-406. https://doi.org/10.3934/amc.2014.8.389 

 
Jao, D. (2010). Elliptic curve cryptography. In Stavroulakis, P. & Stamp, M. 

(Eds.), Handbook of Information and Communication Security (pp. 35–57). 
Springer.  

 
Javeed, K., Wang, X., & Scott, M. (2017). High performance hardware support 

for elliptic curve cryptography over general prime field. Microprocessors and 
Microsystems, 51, 331–342. https://doi.org/10.1016/j.micpro.2016.12.005 

 
Jesus, E. F., Chicarino, V. R. L., De Albuquerque, C. V. N., & Rocha, A. A. D. A. 

(2018). A survey of how to use blockchain to secure internet of things and 
the stalker attack. Security and Communication Networks, 2018, 1-27 
https://doi.org/10.1155/2018/9675050 

 
Jie, L. K., & Kamarulhaili, H. (2011). Comparison study on point counting 

algorithms of elliptic curves over prime field. European Journal of Scientific 
Research, 61(4), 538–548. 

 
Jin, J. (2013). Homogeneous division polynomials for Weierstrass elliptic curves. 

ArXiv Preprint ArXiv:1303.4327. https://arxiv.org/pdf/1503.08127.pdf 
Judson, T. W. (2019). Abstract Algebra: Theory and applications. Orthogonal 

Publishing. 
 
Kamarulhaili, H., & Jie, L. K. (2012). Elliptic curve cryptography and point 

counting algorithms. In J. Sen (Ed.), Cryptography and Security in 
Computing. IntechOpen. https://doi.org/10.5772/34042 

 
Kanayama, N., Liu, Y., Okamoto, E., Saito, K., Teruya, T., & Uchiyama, S. 

(2014). Implementation of an elliptic curve scalar multiplication method 
using division polynomials. IEICE Transactions on Fundamentals of 
Electronics, Communications and Computer Sciences, 97(1), 300–302. 
https://doi.org/10.1587/transfun.E97.A.300 

 
Keerthi, K., & Surendiran, B. (2017). Elliptic Curve Cryptography for Secured 

Text Encryption. 2017 International Conference on Circuit, Power and 
Computing Technologies (ICCPCT) (pp. 1-5). IEEE. doi: 
10.1109/ICCPCT.2017.8074210. 

https://doi.org/10.1109/ICICT.2015.7469484
https://doi.org/10.11591/ijeecs.v11.i2
https://doi.org/10.3934/amc.2014.8.389
https://doi.org/10.1016/j.micpro.2016.12.005
https://doi.org/10.1155/2018/9675050
https://doi.org/10.5772/34042
https://doi.org/10.1587/transfun.E97.A.300


© C
OPYRIG

HT U
PM

109 

 

Khabbazian, M., Gulliver, T. A., & Bhargava, V. K. (2005). A new minimal 
average weight representation for left-to-right point multiplication methods. 
IEEE Transactions on Computers, 54(11), 1454–1459. doi: 
10.1109/TC.2005.173. 

 
Khan, Z. U. A., & Benaissa, M. (2017). High-Speed and Low-Latency ECC 

Processor Implementation over GF(2m) on FPGA. IEEE Transactions on 
Very Large Scale Integration (VLSI) Systems, 25(1), 165–176. 
https://doi.org/10.1109/TVLSI.2016.2574620 

 
Kim, S., Yoon, K., Kwon, J., Hong, S., & Park, Y.-H. (2018). Efficient isogeny 

computations on Twisted Edwards curves. Security and Communication 
Networks, 2018, 1–11. https://doi.org/10.1155/2018/5747642 

 
Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 

48(177), 203–209. https://doi.org/10.1090/S0025-5718-1987-0866109-5 
 
Koblitz, N. (1991). Constructing elliptic curve cryptosystems in characteristic 2. 

In Menezes, A.J. & Vanstone, S.A. (Eds.), Advances in Cryptology-
CRYPT0’ 90, Lecture Notes in Computer Science (Vol. 537, pp. 156–167). 
Springer. https://doi.org/10.1007/3-540-38424-3_11 

 
Koblitz, N. (1992). CM-curves with good cryptographic properties. In J. 

Feigenbaum (Ed.), Advances in Cryptology-CRYPT0’ 91, Lecture Notes in 
Computer Science (Vol. 576, pp. 279–287). Springer. 
https://doi.org/10.1007/3-540-46766-1_22 

 
Kodali, R. K., & Boppana, L. (2014). FPGA implementation of energy efficient 

multiplication over GF(2m) for ECC. Proceedings of the 2014 International 
Conference on Advances in Computing, Communications and Informatics, 
ICACCI 2014,  (pp. 1815–1821). IEEE. 
https://doi.org/10.1109/ICACCI.2014.6968425 

 
Kudithi, T., & Sakthivel, R. (2019). High-performance ECC processor 

architecture design for IoT security applications. Journal of 
Supercomputing, 75(1), 447–474. https://doi.org/10.1007/s11227-018-
02740-2 

 
Kumar, M. (2014). The signs in an elliptic net. [Master’s Thesis, University of 

Lethbridge]. ProQuest Dissertations Publishing. 
 
Lee, C. Y., Fan, C.-C., Xie, J., & Yuan, S.-M. (2018). Efficient implementation of 

Karatsuba algorithm based three-operand multiplication over binary 
extension field. IEEE Access, 6, 38234–38242. 

 
Liu, S. G., An, S. J., & Du, Y. W. (2021). Efficient and secure elliptic curve scalar 

multiplication based on quadruple-and-add. International Journal of 
Network Security, 23(5), 750–757.  http://dx.doi.org/10.6633/IJNS.202109 
23(5).02) 

 

https://doi.org/10.1109/TVLSI.2016.2574620
https://doi.org/10.1155/2018/5747642
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1007/3-540-38424-3_11
https://doi.org/10.1007/3-540-46766-1_22
https://doi.org/10.1109/ICACCI.2014.6968425
https://doi.org/10.1007/s11227-018-02740-2
https://doi.org/10.1007/s11227-018-02740-2


© C
OPYRIG

HT U
PM

110 

 

Liu, S., Heng, X., & Li, Y. M. (2020). Anti-SPA scalar multiplication algorithm on 
Twisted Edwards elliptic curve. International Journal of Network Security, 
22(6), 1015–1021. http://dx.doi.org/10.6633/IJNS.202011_22(6).16 

 
Longa, P., & Gebotys, C. (2010). Efficient techniques for high-speed elliptic curve 

cryptography. In Mangard, S. & Standaert, F. X. (Eds.), Cryptographic 
Hardware and Embedded Systems, CHES 2010. CHES 2010. Lecture 
Notes in Computer Science (Vol. 6225). https://doi.org/10.1007/978-3-642-
15031-9_6 

 
López, J., & Dahab, R. (1999a). Fast multiplication on elliptic curves over GF(2m) 

without precomputation. In Koç, C. K. & Paar, C. (Eds.), Cryptographic 
Hardware and Embedded Systems. CHES 1999. Lecture Notes in 
Computer Science (Vol. 1717, pp. 316-327). Springer. 
https://doi.org/10.1007/3-540-48059-5_27 

 
López, J., & Dahab, R. (1999b). Improved algorithms for elliptic curve arithmetic 

in GF(2n). In Tavares, S. & Meijer, H. (Eds.), Selected Areas in 
Cryptography. SAC 1998. Lecture Notes in Computer Science (Vol. 1556, 
pp. 201-212). Springer. https://doi.org/10.1007/3-540-48892-8\_16 

 
Mahto, D., & Yadav, D. K. (2017). RSA and ECC: A comparative analysis. 

International Journal of Applied Engineering Research, 12(19), 9053–9061. 
 
Matteo, S. D., Baldanzi, L., Crocetti, L., Nannipieri, P., Fanucci, L. & Saponara, 

S. (2021). Secure elliptic curve crypto-processor for real-time IOT 
applications. Energies, 14(15), 4676. https://doi.org/10.3390/en14154676 

 
Menezes, A. J., Oorschot, P. C. V., & Vanstone, S. A. (1997). Handbook of 

applied cryptography. CRC Press. 
 
Menezes, A. J., Vanstone, S. A., & Zuccherato, R. J. (1993). Counting points on 

elliptic curves over F2
m. Mathematics of Computation, 60(201), 407–420. 

https://doi.org/10.2307/2153177 
 
Miller, V. S. (1986a). Short programs for functions on curves. [Unpublished 

Manuscript]. https://www.researchgate.net/profile/Victor-Miller-
2/publication/ 
2551688_Short_Programs_for_functions_on_Curves/links/0c96052e065c
a0bdbf000000/Short-Programs-for-functions-on-Curves.pdf 

 
Miller, V. S. (1986b). Use of elliptic curves in cryptography. In H. C. Williams 

(Ed.), Advances in Cryptology - CRYPTO ’85, Lecture Notes in Computer 
Science (Vol. 218, pp. 417–426). Springer. https://doi.org/10.1007/3-540-
39799-X_31 

 
Mohamed, M. A. (2011). On the improvement of addition chain in applications to 

elliptic curve cryptosystem. [Doctoral dissertation, Universiti Putra 
Malaysia]. Universiti Putra Malaysia. 

 

http://dx.doi.org/10.6633/IJNS.202011_22(6).16
https://doi.org/10.1007/978-3-642-15031-9_6
https://doi.org/10.1007/978-3-642-15031-9_6
https://doi.org/10.1007/3-540-48059-5_27
https://doi.org/10.1007/3-540-48892-8/_16
https://doi.org/10.3390/en14154676
https://doi.org/10.2307/2153177
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31


© C
OPYRIG

HT U
PM

111 

 

Moloney, R., & McGuire, G. (2009). Two kinds of division polynomials for Twisted 
Edwards curves. Applicable Algebra in Engineering, Communications and 
Computing, 22, 321–345. https://doi.org/10.1007/s00200-011-0153-5 

 
Moloney, R., & McGuire, G. (2011). Division polynomials for Twisted Edward 

curves. ArXiv Preprint ArXiv:0809.2182. https://arxiv.org/pdf/0809.2182.pdf 
 
Mordell, L. J. (1922). On the rational solutions of the indeterminate equations of 

the third and fourth degree. Proc. Camb. Phil. Soc., 21, 179–192. 
 
Mrabet, A., El-Mrabet, N., Bouallegue, B., Mesnager, S., & MacHhout, M. (2017). 

An efficient and scalable modular inversion/division for public key 
cryptosystems. International Conference on Engineering and MIS 
(ICEMIS), (pp. 1-6). IEEE. https://doi.org/10.1109/ICEMIS.2017.8272995. 

 
Naccarato, F. (2021). Counting rational points on elliptic curves with a rational 2-

torsion point. Rendiconti Lincei, 32(3), 499-509. 
https://doi.org/10.48550/arXiv.2105.04032 

 
Nagy, G. P., & Lanzone, V. (2015). Binary fields on limited systems. Acta 

Scientiarum Mathematicarum, 80(3-4), 409-418. 
https://doi.org/10.14232/actasm-012-813-7 

 
Orhon, N. G., & Hisil, H. (2018). Speeding up Huff form of elliptic curves. 

Designs, Codes and Cryptography, 86, 2807–2823. 
https://doi.org/10.1007/s10623-018-0475-4 

 
Rabah, K. (2005). Theory and implementation of elliptic curve cryptography. 

Journal of Applied Sciences, 5(4), 604–633. 
https://dx.doi.org/10.3923/jas.2005.604.633 

 
Rabah, K. (2006). Elliptic curve cryptography over binary field GF(2m). 

Information Technology Journal, 5(1), 204–229. 
 
Rao, S. R. S., Hu, Z., & Zhao, C. A. (2019). Division polynomial-based elliptic 

curve scalar multiplication revisited. IET Information Security, 13(6), 614–
617. https://doi.org/10.1049/iet-ifs.2018.5361 

 
Rao, S. R. S. (2016). An improved elliptic net algorithm for Tate pairing on 

Weierstrass’ curves, faster point arithmetic and pairing on Selmer curves 
and a note on double scalar multiplication. In Batten, L. & Li, G. (Eds.), 
Applications and Techniques in Information Security. ATIS 2016. 
Communications in Computer and Information Science (Vol. 651, pp. 93–
105). Springer. https://doi.org/10.1007/978-981-10-2741-3_8 

 
Rao, S. R. S. (2017). Elliptic Curve Arithmetic for Cryptography. [Doctoral 

dissertation, The Australian National University]. Australian National 
University Press. 

 

https://doi.org/10.1007/s00200-011-0153-5
https://arxiv.org/pdf/0809.2182.pdf
https://doi.org/10.1109/ICEMIS.2017.8272995
https://doi.org/10.48550/arXiv.2105.04032
https://doi.org/10.14232/actasm-012-813-7
https://doi.org/10.1007/s10623-018-0475-4
https://dx.doi.org/10.3923/jas.2005.604.633
https://doi.org/10.1049/iet-ifs.2018.5361
https://doi.org/10.1007/978-981-10-2741-3_8


© C
OPYRIG

HT U
PM

112 

 

Reynolds, J. (2012). Perfect powers in elliptic divisibility sequences. Journal of 
Number Theory, 132(5), 998–1015. 
https://doi.org/10.1016/j.jnt.2011.09.013 

 
Rivest, R. L., Shamir, A., & Adleman, L. (1983). A method for obtaining digital 

signatures and public-key cryptosystems. Communications of the ACM, 
26(1), 96–99. https://doi.org/10.1145/357980.358017 

 
Roy, M., Deb, N., & Kumar, A. J. (2014). Point generation and base point 

selection in ECC : An overview. International Journal of Advanced Research 
in Computer and Communication Engineering, 3(5), 6711–6713. 

 
Sadek, M., & El-Sissi, N. (2016). Edwards curves and gaussian hypergeometric 

series. Journal de Theorie Des Nombres de Bordeaux, 28(1), 115–124. 
https://doi.org/10.5802/jtnb.931 

 
Satoh, T. (2004). Generalized division polynomials. Mathematica Scandinavica, 

94(2), 161–184. https://doi.org/10.7146/math.scand.a-14436 
 
Scholl, T. (2017). Isolated curves and the MOV attack. Journal of Mathematical 

Cryptology, 11(3), 131–146. https://doi.org/10.1515/jmc-2016-0053 
 
Schoof, R. (1985). Elliptic curves over finite fields and the computation of square 

roots mod p. Mathematics of Computation, 44(170), 483–494. 
https://doi.org/10.2307/2007968 

 
Schoof, R. (1995). Counting points on elliptic curves over finite fields. Journal de 

Theorie Des Nombres de Bordeaux, 7(1), 219–254. 
 
Seo, S. C., Kim, T., & Hong, S. (2015). Accelerating elliptic curve scalar 

multiplication over GF(2m) on graphic hardwares. Journal of Parallel and 
Distributed Computing, 75, 152–167. 

 
Shipsey, R. (2000). Elliptic divisibility sequences. [Doctoral dissertation, 

University of London]. Goldsmiths Research Online. 
 
Silverman, J. H. (2009). The arithmetic of elliptic curve. In S. Axler & K. A. Ribet, 

(Eds). Graduate Text in Mathematics (pp. 41-58). Springer. 
 
Silverman, J. H. & Tate J. (1992). Rational points on elliptic curves. In Ewing, J. 

H., Gehring, F. W. & Halmos, P. R. (Eds). Undergraduate Texts in 
Mathematics (pp. 9-32). Springer-Verlag. 

 
Silverman, J. H. (1994). Advanced topics in the arithmetic of elliptic curves. In P. 

Landweber, D. Rochrlich, (Eds). Graduate Texts in Mathematics (pp. 408-
413). Springer-Verlag. 

 
Somos, M. (1989). Problem 1470. Crux Mathematicorum, 15(1989), 208. 
 
Standard curve database. (2020a). Standard curve database for NIST. Retrieved 

June 10, 2022, from https://neuromancer.sk/std/nist 

https://doi.org/10.1016/j.jnt.2011.09.013
https://doi.org/10.1145/357980.358017
https://doi.org/10.5802/jtnb.931
https://doi.org/10.7146/math.scand.a-14436
https://doi.org/10.1515/jmc-2016-0053
https://doi.org/10.2307/2007968


© C
OPYRIG

HT U
PM

113 

 

Standard curve database. (2020b). Standard curve database for NUMS. 
Retrieved June 10, 2022, from https://neuromancer.sk/std/nums 

 
Stange, K. E. (2008). Elliptic net and elliptic curve. [Doctoral dissertation, Brown 

University]. Proquest.  
 
Stange, K. E. (2012). Formulary for elliptic divisibility sequences and elliptic nets 

[UnpublishedManusript]. 
https://math.colorado.edu/~kstange/papers/edsformulary.pdf  

 
Stange, K. E. (2016). Integral points on elliptic curves and explicit valuations of 

division polynomials. Canadian Journal of Mathematics, 68(5), 1120–1158. 
https://doi.org/10.4153/CJM-2015-005-0 

 
Sutherland, A. (2021). Stronger arithmetic equivalences. Discrete Analysis, 1-

23. https://doi.org/10.19086/da.29452 
 
Tall, A., & Sanghare, A. Y. (2013). Efficient computation of addition-subtraction 

chains using generalized continued fractions. Cryptology ePrint Archive, 
2013/466. https://ia.cr/2013/466 

 
Thangarasu, N. & Selvakumar, A. (2019). Improved elliptical curve cryptography 

and Abelian group theory to resolve linear system problem in sensor-cloud 
cluster computing. Cluster Computing, 22(6), 13185–13194. 
https://doi.org/10.1007/s10586-017-1573-1 

 
Trappe, W., & Washington, L. C. (2006). Introduction to cryptography with coding 

theory. Pearson Education India. 
 
Ward, M. (1948). Memoir on elliptic divisibility sequences. American Journal of 

Mathematics, 70(1), 31–74. 
 
Wroński, M. (2016). Faster point scalar multiplication on short Weierstrass elliptic 

curves over Fp using Twisted Hessian curves over Fp
2. Journal of 

Telecommunication and Information Technology, 98–102. 
 
Wu, H., & Zhao, C. (2011). Faster scalar multiplication on ordinary Weierstrass 

elliptic curves over fields of characteristic three. Cryptology ePrint Archive, 
2011/468. https://ia.cr/2011/468 

 
Xu, J., Hu, L., & Sarkar, S. (2020). Cryptanalysis of elliptic curve hidden number 

problem from PKC 2017. Designs, Codes, and Cryptography, 88, 341–361. 
https://doi.org/10.1007/s10623-019-00685-y 

 
Yan, S. Y. (2002). Number theory for computing. Springer. 
 
Yang, H. J., & Shin, K. W. (2021). A hardware implementation of point scalar 

multiplication on Edwards25519 curve. 2021 International Conference on 
Electronics, Information, and Communication, ICEIC 2021, (pp. 1–3). IEEE. 
https://doi.org/10.1109/ICEIC51217.2021.9369815 

https://neuromancer.sk/std/nums
https://math.colorado.edu/~kstange/papers/edsformulary.pdf
https://doi.org/10.4153/CJM-2015-005-0
https://doi.org/10.19086/da.29452
https://ia.cr/2013/466
https://doi.org/10.1007/s10586-017-1573-1
https://ia.cr/2011/468
https://doi.org/10.1007/s10623-019-00685-y


© C
OPYRIG

HT U
PM

114 

 

Yasin, S. M. (2011). New signed digit {0,1,3}-NAF scalar multiplication algorithm 
for elliptic curve over binary field. [Doctoral dissertation, Universiti Putra 
Malaysia]. Universiti Putra Malaysia. 

 
Yunos, F., Atan, K. A. M., Ariffin, M. R. K., & Said, M. R. M. (2015). Pseudo τ –

adic non adjacent form for scalar multiplication on Koblitz curves. Malaysian 
Journal of Mathematical Sciences, 9, 71–88. 

 
Zargar, A. J., Manzoor, M., & Mukhtar, T. (2017). Encryption/Decryption using 

elliptical curve cryptography. International Journal of Advanced Research 
in Computer Science, 8(7), 48–51. 
http://dx.doi.org/10.26483/ijarcs.v8i7.4208 

 
Zhang, Q. (2021). An overview and analysis of hybrid encryption: The 

combination of symmetric encryption and asymmetric encryption. 
Proceedings - 2021 2nd International Conference on Computing and Data 
Science, CDS 2021, (pp. 616–622). IEEE. 
https://doi.org/10.1109/CDS52072.2021.00111 

 
Zimmerman, P., Casamayou, A., Cohen, N., Connan, G., Dumont T., Fousse, L. 

& Connan, G. (2018). Computational mathematics with SageMath. Society 
for Industrial and Applied Mathematics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ES 

http://dx.doi.org/10.26483/ijarcs.v8i7.4208
https://doi.org/10.1109/CDS52072.2021.00111

	Blank Page



