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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

CLASSIFICATION OF MULTI-QUBIT STATES WITH HIGHER
ORDER SINGULAR VALUE DECOMPOSITION AND

CONCURRENCY OF THREE LINES

By

CHOONG PAK SHEN

December 2022

Chairman : Assoc. Prof. Hishamuddin Zainuddin, PhD
Institute : Mathematical Research

This research studied the classification problem of multipartite states. Since the
Hilbert space of a multipartite system has a tensor product structure, we made
use of a tensor decomposition, called higher order singular value decomposition
(HOSVD) to solve the problem. We focused on finding the solutions to the set of all-
orthogonality conditions from HOSVD to obtain a complete classification of three
qubits. Based on the relationship between the set of first n-mode singular values,
σ
(n)2
1 , we identified three possible cases that contain all the entanglement classes

of three qubits. An entanglement polytope was illustrated to demonstrate how the
entanglement classes of three qubits change with respect to σ

(n)2
1 , which is in ac-

cordance with the existing literature. The geometrical significance of our classifi-
cation method was studied by finding the stabilizer dimensions of all the entangle-
ment classes of three qubits. We found that different entanglement classes of three
qubits have different stabilizer dimensions. Furthermore, by making use of the con-
currency of three lines, we generalized our classification approach for multi-qubit
states, which is computationally simple and yet capable of producing a finite number
of family of states. As a demonstration, we classified four-qubit states with our pro-
posal and found four possible cases that contain the genuinely entangled four-qubit
states.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN KELAS KETERBELITAN BERBILANG QUBIT
DENGAN HURAIAN NILAI SINGULAR TERTIB TINGGI DAN

KESERENTAKAN TIGA GARISAN

Oleh

CHOONG PAK SHEN

Disember 2022

Pengerusi : Prof. Madya Hishamuddin Zainuddin, PhD
Institut : Penyelidikan Matematik

Penyelidikan ini mengkaji pengkelasan keterbelitan untuk keadaan kuantum
berbilang parti. Oleh sebab ruang Hilbert untuk sistem berbilang parti mempunyai
struktur hasildarab tensor, kami menggunakan huraian tensor yang dipanggil hura-
ian nilai singular tertib tinggi (HOSVD) untuk menyelesaikan masalah ini. Kami
fokus kepada penentuan penyelesaian untuk syarat ortogon keseluruhan daripada
HOSVD supaya kami memperolehi satu pengkelasan keterbelitan yang lengkap un-
tuk keadaan tiga qubit. Berdasarkan hubungan antara satu set yang mengandungi
nilai singular n-mod pertama, σ

(n)2
1 , kami mengenalpasti tiga kes yang mengan-

dungi semua kelas keterbelitan tiga qubit. Satu politop keterbelitan telah dilakarkan
untuk menunjukkan bagaimana kelas keterbelitan keadaan tiga qubit berubah den-
gan σ

(n)2
1 . Hasil kajian ini menyetujui dengan rujukan lain yang ada. Kepentingan

cara pengkelasan kami dari segi geometri telah dikaji dengan dimensi penstabil un-
tuk semua kelas keterbelitan tiga qubit. Kami mendapati bahawa kelas keterbelitan
yang berbeza mempunyai dimensi penstabil yang berbeza. Tambahan pula, dengan
menggunakan keserentakan tiga garisan, kami menbuat pengitlakan cara pengke-
lasan kami untuk keadaan kuantum berbilang qubit. Pengitlakan ini adalah mudah
secara komputasi, namun masih mampu menghasilkan bilangan keluarga keadaan
yang terhingga. Sebagai demonstrasi, kami mengkelaskan keadaan empat qubit den-
gan cadangan kaedah di atas dan berjaya mengenalpasti empat kes yang mengan-
dungi keadaan empat qubit yang terbelit secara tulen.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and basic concepts

Tying to the fundamental understanding of our physical world, quantum entangle-
ment has been in the limelight among the quantum research community. Historically,
a thought experiment proposed by Einstein et. al. (1935) questioned the complete-
nesss of quantum theory as a physical theory. With a pair of entangled particles,
they showed that the measurement outcome of a particle can be predicted if the other
particle is measured, thus concluding that information can be transmitted faster than
the speed of light. In order to resolve this contradiction with relativity theory which
stated that nothing can travel faster than the speed of light, Bell (1964) devised a
statistical constraint that a local hidden variable theory must obey, and showed that
quantum theory does not fit into such a local hidden variable theory, hence entangle-
ment is seen as a type of non-local correlation. The statistical constraint was known
as Bell inequality later on. Multiple more convenient forms of Bell-type inequali-
ties and experimental setups had been derived later on, such as the CHSH inequality
(Clauser et al., 1969) and GHZ-Mermin experiments (Greenberger et al., 1990; Mer-
min, 1990).

Meanwhile, a series of breakthroughs in cryptography and computer science sparked
new interests in quantum theory. The successes in making use of quantum properties
to detect eavesdroppers, for instance the BB84 (Bennett and Brassard, 1984) and E91
(Ekert, 1991) quantum key distribution protocols, plus the quantum algorithms such
as Deutsch-Jozsa algorithm (Deutsch and Jozsa, 1992) and Shor’s algorithm (Shor,
1994), had shown that quantum computers are capable to perform certain computa-
tional tasks more efficiently than classical computers. These achievements encour-
aged physicists to look at quantum theory from a more operational perspective. In
this sense, entanglement is a resource in quantum information processing tasks under
the local operation and classical communication (LOCC) protocols (Chitambar and
Gour, 2019). One prominent example of this perspective is the expense of entangle-
ment between a maximally entangled qubit pair after a round of LOCC procedure in
quantum teleportation (Bennett et al., 1993).

Motivated by the two reasons above, entanglement is mainly studied from two differ-
ent approaches. The density matrix formalism introduced by Von Neumann (2018)
allowed us to extend terminologies from classical statistical mechanics, particu-
larly ideas from the pioneering work by Shannon and Weaver (1964) on informa-
tion theory. From here, we can quantify entanglement by using entanglement mea-
sures, such as the von Neumann entropy (Nielsen and Chuang, 2010) and negativity
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(Życzkowski et al., 1998). Qualitatively, one would like to understand the available
entanglement classes under operations that preserve entanglement. This is impor-
tant because ideally, multipartite states from the same entanglement class can be
converted to each other without any loss of entanglement between the subsystems,
hence having the same resources to perform the same quantum informational tasks.
Our work concerns with the latter approach.

In quantum theory, quantum states are represented by normalized state vectors be-
longing to the Hilbert space H = Cd modulo with a multiplicative constant, known
as the global phase factor. Since only the direction of state vectors are important
in distinguishing between them, we can projectivize the global phase from the state
vectors by defining an equivalence relation,

|ψ⟩ ∼ |φ⟩ if and only if |ψ⟩= c |φ⟩ , (1.1)

where c = eiθ , θ ∈ [0,2π). Quantum states are now more precisely defined as rays in
the complex projective Hilbert space. Geometrically, complex projective space is a
kähler manifold with three mutually compatible geometrical structures, i.e. complex,
symplectic and Riemannian structures (Hou and Hou, 1997; Bengtsson et al., 2002).

In addition, the Hilbert space of a multipartite quantum system is a tensor product
of its constituents’ Hilbert spaces (Nielsen and Chuang, 2010). As a counterpart to
classical information theory, only two-level (generally d-level) quantum systems are
important from the quantum information perspective. Therefore, the Hilbert space
of such n-partite two-level quantum systems can be explicitly written as the tensor
product of C2 (or Cd),

H =
n⊗

i=1
C

2
i . (1.2)

This tensor product structure of the Hilbert space for multipartite systems bestows
tensorial properties to the multipartite state vectors (Lathauwer et al., 2000). As a
side note, we call two-level quantum systems as qubits and d-level quantum systems
as qudits.

Owing to the rich mathematical structures of the Hilbert space and complex pro-
jective space for multipartite quantum states, many mathematical tools were used
to study the classification problem of quantum states, such as local symmetries and
invariants (Carteret and Sudbery, 2000; Sudbery, 2001), tensor decomposition (Lath-
auwer et al., 2000; Liu et al., 2012; Li and Qiao, 2013; Li et al., 2014) and geometry
of quantum states (Kuś and Życzkowski, 2001; Sinolecka et al., 2002). It is worth
noting that extending the classification problem to multipartite states is not straight-
forward at all. For bipartite states, Schmidt decomposition can be used to simplify
the classification problem since Schmidt rank is an entanglement monotone (Terhal

2
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and Horodecki, 2000). However, its counterpart in multipartite states do not gener-
ally exist (Peres, 1995). Multiple generalizations to the classification of multipartite
states had been proposed, such as writing down the Schmidt canonical form (Acı́n
et al., 2001) or characterizing multipartite entanglement by a vector of Schmidt num-
bers (Huber and de Vicente, 2013), where each solution emphasized different facets
to the same problem.

In this thesis, we attempted to offer another solution to the classification of multi-
partite states by using a generalized version of singular value decomposition (SVD),
called higher order singular value decomposition (HOSVD) (Lathauwer et al., 2000).
Previously, HOSVD has seen its applications in numerical analysis (Xu, 2017;
Kempf et al., 2022), image processing (Rajwade et al., 2012; Miao et al., 2023),
signal processing (Kreimer and Sacchi, 2012; Li et al., 2020) and the construction
of the projected entangled simplex states (PESS) (Xie et al., 2014). In our work, we
identified the special states of three qubits by HOSVD and showed that our results
correspond to the local unitary (LU) classification of three qubits (Carteret and Sud-
bery, 2000). Additionally, we proved that the special states can be identified by the
eigenvalues of one-body reduced density matrices and constructed an entanglement
polytope comparable to the work by Walter et al. (2013), where they used symplectic
geometry and geometric invariant theory for their construction. Lastly, we proposed
a method to generalize the identification of special states for multi-qubit systems by
using a simple geometrical result called the concurrency of three lines. We demon-
strated our proposal with four-qubit states.

1.2 Problem statements

Based on singular value decomposition (SVD), Schmidt decomposition offers a way
to rewrite bipartite states into the Schmidt canonical form, whereby the Schmidt
ranks are used as an entanglement measure. However, Schmidt decomposition for
multipartite states does not generally exist. While it is still possible to write three-
qubit states into the Schmidt canonical form (Acı́n et al., 2001), its generalization to
multipartite states is unclear. The closest alternative is a generalized version of SVD,
called higher order singular value decomposition (HOSVD). HOSVD is a tensor
decomposition that relaxes the matrix diagonalization of SVD into orthogonality on
the subtensors and has been well-studied for its possibility to classify multipartite
states by local symmetries (Liu et al., 2012; Li and Qiao, 2013; Li et al., 2014).

Here, we would like to consider the classification of multipartite states by HOSVD
from a different perspective. Since the decomposition provides a set of conditions
that needs to be satisfied, we are interested to see if it is possible to classify multi-
partite states by finding all the states that automatically satisfy the all-orthogonality
conditions. Specifically, we aim to answer the following two major questions:-

3
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1. What is HOSVD in quantum information terminologies?

2. How to classify multipartite states with HOSVD?

1.3 Research objectives

The objectives of this research are

1. to improve the definition of higher order singular value decomposition
(HOSVD) from the quantum information perspective

2. to classify three-qubit states with HOSVD by satisfying the all-orthogonality
conditions

3. to construct the generalization of the classification procedure to multi-qubit
states

4. to give a geometric interpretation of the classification of multi-qubit states with
HOSVD and the concurrency of three lines

1.4 Scope of current work

In this work, we did not consider an entanglement measure to complement our clas-
sification results. Since the core tensors of higher order singular value decomposition
(HOSVD) are invariant from local unitary (LU) actions, our classification is based
on LU properties. Our proposed classification procedure to multipartite states is cur-
rently limited only to two-level subsystems.

1.5 Organization of thesis

This thesis is structured as follows. We will first review relevant works on the classi-
fication of quantum states in Chapter 2. There are two important types of operations,
i.e. local unitary (LU) and stochastic local operation and classical communication
(SLOCC). While LU classification is finer than the SLOCC counterpart, SLOCC
group is the complexification of LU group from group-theoretic viewpoint. There-
fore, we find that it is important to understand some geometrical results regarding to
the classification of multipartite states. In Chapter 3, we will introduce some basic
concepts of quantum theory and group theory. The ideas of tensors and multilinear
algebra will be explained with quantum information terminologies. At the end of
the chapter, we will prove that higher order singular value decomposition (HOSVD)
simultaneously diagonalizes the one-body reduced density matrices for multipartite
states. The results of our work will be separated into three chapters. Chapter 4 will

4
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discuss our LU classification of three qubits by HOSVD. In Chapter 5, we propose
to use the concurrency of three lines to simplify some calculations demonstrated in
Chapter 4. Ultimately, we are able to identify all the special states of three qubits.
Such simplification is needed so that we can generalize the classification of quantum
states by HOSVD to multi-qubit states. Using our proposal, we will identify special
states of four qubits in Chapter 6. Finally, we discuss some of the limitations of our
proposal and possible future improvements in Chapter 7.

5
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