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The aim of this research is to analyse the Generalized Exponential distribution in the 

presence of interval-censored data with fixed and time-dependent covariates. The 

analysis starts with a thorough simulation study to compare the performance of the 

estimation procedure by evaluating the bias, standard error (SE) and root mean square 

error (RMSE) of the maximum likelihood estimates (MLE) with and without 

imputation at various censoring proportions and sample sizes. The results clearly 

indicate that the estimates, based on the random imputation method, work slightly 
better than the traditional method when dealing with the interval censored data and 

fixed covariate. Thereafter, we assessed the goodness of fit for this model by 

comparing the performances of the Cox-Snell and modified Cox-Snell residuals based 

on the empirical geometric and harmonic means via simulation study at various 

censoring proportions and sample sizes. The results indicate that the residuals based on 

the harmonic mean perform slightly better than other residuals, especially when sample 

sizes in the data are high. 

 

 

Subsequently, the Generalized Exponential distribution is further extended to 

incorporate time-dependent covariates with interval-censored data as well as 

uncensored data. The model is then investigated thoroughly via a comprehensive 
simulation study at various sample sizes and attendance probabilities when the time-

dependent covariate has two levels, before and after update time. Following that, 

comparison using the values of RMSE is made when a fixed covariate model was fitted 

wrongly to a data set with time-dependent covariate. The results clearly indicate that 

the estimates, based on the time dependent covariate, work slightly better than the time 

dependent covariate when dealing with the interval censored data time dependent 

covariate. Then we studied two methods of constructing confidence interval estimates 

namely the Wald and jackknife for the parameters of this model with time-dependent 

covariate and conclusions were drawn based on the results of the coverage probability 
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study. The results indicate that the Wald technique works slightly better than the 

jackknife technique when dealing with interval censored data and time dependent 

covariate. 

 

 

Finally, the methods in the simulation study were applied to real interval-censored data 
from Diabetic Nephropathy (DN) study with fixed and time-dependent covariates. The 

results indicate that the Generalized Exponential distribution performs well with 

interval censored data, fixed, and time-dependent covariates while providing a good fit 

for dataset. The modified Cox-Snell residual using the harmonic mean was also very 

useful at assessing the model adequacy using fixed covariates. The Wald confidence 

interval outperformed the jackknife confidence interval estimation technique was 

applied to the parameters of model and was useful at indicating the significance of both 

the fixed and time-dependent covariate parameters. 
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Matlamat penyelidikan ini adalah untuk menganalisis taburan Eksponen Teritlak 

dengan kehadiran data yang ditapis selang dengan kovariat tetap dan bersandar pada 

masa. Analisis bermula dengan kajian simulasi menyeluruh untuk membandingkan 

prestasi prosedur anggaran dengan menilai bias, ralat piawai (SE) dan ralat purata 

kuasa dua (RMSE) bagi penganggar kebolehjadian maksimum (MLE) dengan dan 

tanpa imputasi pada pelbagai perkadaran penapisan dan saiz sampel. Keputusan jelas 

menunjukkan bahawa anggaran, berdasarkan kaedah imputasi rawak, berfungsi sedikit 
lebihbaik daripada kaedah tradisional apabila berurusan dengan data ditapis selang dan 

kovariat tetap. Selepas itu, kami menilai kebangusan penyuaian untuk model ini 

dengan membandingkan prestasi Cox-Snell dan reja Cox-Snell yang diubah suai 

berdasarkan min empirikal geometri dan harmonik melalui kajian simu- lasi pada 

pelbagai perkadaran penapisan dan saiz sampel. Keputusan menunjukkan bahawa baki 

berdasarkan min harmonik berprestasi sedikit lebihbaik daripada reja lain, terutamanya 

apabila saiz sampel dalam data adalah tinggi. 

 

 

Berikutan itu, taburan Eksponen Teritlak diperluaskan lagi untuk menggabungkan 

kovariat bersandar masa dengan data yang ditapis selang serta data yang tidak ditapis. 

Model ini kemudiannya disiasat secara menyeluruh melalui kajian simulasi 
komprehensif pada pelbagai saiz sampel dan kebarangkalian kehadiran apabila 

kovariat bersandar masa mempunyai dua tahap, sebelum dan selepas kemaskini masa. 

Berikutan itu, perbandingan menggunakan nilai RMSE dibuat apabila model kovariat 

tetap dipadan secara salah ke pada set data dengan kovariat bersandar masa. Keputusan 

jelas menunjukkan bahawa anggaran, berdasarkan kovariat bersan- dar masa, berfungsi 

sedikit lebihbaik daripada kovariat bersandar masa apabila berurusan dengan kovariat 

bersandar masa data ditapis selang. Kemudian kami mengkaji dua kaedah membina 

anggaran selang keyakinan iaitu Wald dan jackknife bagi parameter model ini dengan 

kovariat bersandar masa dan kesimpulan dibuat berdasarkan keputusan kajian 
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kebarangkalian liputan. Keputusan menunjukkan bahawa teknik Wald berfungsi sedikit 

lebihbaik daripada teknik jackknife apabila berurusan dengan data ditapis selang dan 

kovariat bersandar masa. 

 

 

Akhir sekali, kaedah dalam kajian simulasi diapplikasikan kepada data sebenar yang 
ditapis selang sebenar daripada Nefropati Diabetik (DN) dengan kajian kovariat tetap 

dan bersandar pada masa. Keputusan menunjukkan bahawa taburan Eksponen Ter- 

itlak beraksi baik dengan data yang ditapis selang dan kovariat yang bersandar pada 

masa sambil menyediakan kesesuaian yang baik untuk set data. Reja Cox-Snell yang 

diubah suai menggunakan min harmonik juga sangat berguna untuk menilai kecuku- 

pan model menggunakan kovariat tetap. Selang keyakinan Wald yang mengatasi teknik 

penganggaran selang keyakinan jackknife telah digunakan pada parameter kedua-dua 

model dan berguna dalam menunjukkan signifikasi kedua-dua parameter kovariat tetap 

dan bersandar pada masa. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

v 

ACKNOWLEDGEMENTS 

 

 

In the name of Allah, the most Gracious, most Merciful 

 

 
First and foremost, I am grateful to Allah s.w.t, for providing me his strength and grace 

throughout my doctoral pursue and giving me the opportunity for me to 

continue my studies in Malaysia. 

 

 

I am extremely indebted to my supervisor, Assoc. Prof. Dr. Jayanthi Arasan for her 

excellent supervision, invaluable guidance, patience and support through the past 

years. Her charisma and enthusiasm during these years has made these challenging life 

period a very enjoyable and useful experience. She is the one always leading me to 

keep faith during some difficult times. She really deserves special recognition because 

without her help, this work would not be accomplished. I have learned immensely from 

her not only in survival analysis but also in various other aspects of life. She has helped 
me so much in so many ways that I do have not enough words to express them. 

 

 

Special thanks and appreciation goes to Dr. Mohd Shafie Mustafa and Dr. Lim Fong 

Peng being as a members of supervisory committee for their cooperation. 

 

 

I would like to thank all members of Institute for Mathematical Research (INSPEM) 

and Department of Mathematics and Statistics for all their friendly support and for 

their great effort to provide a unique academic environment for the graduate students. I 

am highly grateful to the Universiti Putra Malaysia (UPM) for all the fruitful years of 
my study that left an enduring positive impression on my life and professional 

development. 

 

 

My special thanks goes to my beloved mother (Mrs. Najeeba Hilo), my beloved father 

(late Mr. Ali Ghaffoori), my sister and her husband (Mrs. Duaa Ali and Mr. Ali 

Abdulhassan), my brother and his wife (Mr. Abass Ali and Mrs. Shahad Hameed), for 

their prayers, love, encouragement, support and all their favours. 

 

 

Finally, I would like to express my deepest gratitude to my beloved fiancee, Raghda 

Hameed for her continuous encouragement and kind patience. Without her i never 
finished my studies. Raghda I Love You. 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

vii 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been 

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The 

members of the Supervisory Committee were as follows: 

 

 

Jayanthi a/p Arasan, PhD 
Assosiate Professor 

Faculty of Science 

Universiti Putra Malaysia 

(Chairman) 

 
Mohd Shafie bin Mustafa, PhD 

Senior Lecturer 
Faculty of Science 

Universiti Putra Malaysia 

(Member) 

 
Lim Fong Peng, PhD 

Senior Lecturer 

Faculty of Science 
Universiti Putra Malaysia 

(Member) 

 

 

 

 

 

 

 

 

 

ZALILAH MOHD SHARIFF, PhD  

Professor and Dean  

School of Graduate Studies  

Universiti Putra Malaysia 

 
Date: 9 March 2023 

 
 

 

 

 

 

 

 

 

 

 

 
 



© C
OPYRIG

HT U
PM

viii 

Declaration by the Graduate Student 

I hereby confirm that: 

 this thesis is my original work;

 quotations, illustrations and citations have been duly referenced;

 this thesis has not been submitted previously or concurrently for any other degree

at any institutions;

 intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

(Research) Rules 2012;

 written permission must be obtained from supervisor and the office of Deputy

Vice-Chancellor (Research and innovation) before thesis is published (in the form

of written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports,

lecture notes, learning modules or any other materials as stated in the Universiti

Putra Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia

(Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:  Date: 

Name and Matric No: Al Hakeem Hussein Ali Ghaffoori



© C
OPYRIG

HT U
PM

 

ix 

Declaration by Members of the Supervisory Committee 

 

 

This is to confirm that: 

 the research conducted and the writing of this thesis was under our  supervision; 

 supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate 
Studies) Rules 2003 (Revision 2012-2013) are adhered to. 

  

 

 

Signature:   

Name of  Chairman  

of Supervisory 
Committee: 

 

 
Associate Professor Dr. Jayanthi a/p Arasan 

 

 

 

 

Signature: 

  

Name of  Member 

of Supervisory 

Committee: 

 

 

Dr. Mohd Shafie bin Mustafa 

 

 

 

 

Signature: 

  

Name of  Member 

of Supervisory 

Committee: 

 

 

Dr. Lim Fong Peng 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

x 

TABLE OF CONTENTS 

 

                                                                                                                                                          

Page 

 

ABSTRACT      i 

ABSTRAK iii 

ACKNOWLEDGEMENTS v 

APPROVAL vi 

DECLARATION viii 

LIST OF TABLES                                                                                                        xiii 

LIST OF FIGURES                                                                                                     xv 

LIST OF ABBREVIATIONS xvii 

  

CHAPTER 

 

 

1 INTRODUCTION 1 
1.1 Survival Analysis 1 
1.2 General Definitions in Survival Analysis 2 

1.2.1 The Survival Function 2 
1.2.2 The Hazard Function 3 
1.2.3 The Cumulative Hazard Function 4 

1.3 Some Censoring Schemes 4 
1.3.1 Left Censoring 5 
1.3.2 Right Censoring 5 
1.3.3 Interval Censoring 6 
1.3.4 Independent Random Censoring 9 

1.4 Survival Models 10 
1.4.1 Parametric Survival Models 10 
1.4.2 Semi-Parametric Survival Models 11 
1.4.3 Non-Parametric Survival Models 12 

1.5 Types of Covariates 13 
1.6 Cox Snell Residuals 14 
1.7 Research Objectives 15 
1.8 Scope of Thesis 16 

 

2 LITERATURE REVIEW 18 
2.1 Introduction 18 

2.1.1 Generalized Exponential Distribution (GED) 18 
2.1.2 Parametric Models with Interval-Censored Data 19 
2.1.3 Survival Models with Time-Dependent (TD)    

Covariates 26 
2.1.4 Residuals for Survival Distributions 28 
2.1.5 Summary 30 

 

3 ASSESSING THE GOODNESS OF FIT OF THE      

GENERALIZED EXPONENTIAL DISTRIBUTION IN THE 

PRESENCE OF INTERVAL CENSORED DATA AND 

FIXED COVARIATE 31 
3.1 Introduction 31 



© C
OPYRIG

HT U
PM

 

xi 

3.1.1 Generalized Exponential Distribution with Fixed 

Covariate and Interval Censored Data 32 
3.1.2 Likelihood Equation and Estimation 33 

3.2 Simulation Study 36 
3.3 Results and Discussions 38 
3.4 Assessing Model Fit (Cox-Snell Residuals) 44 
3.5 Modified Cox-Snell Residuals 44 
3.6 Simulation Study 45 

3.6.1 Simulation Results 46 
3.7 Summary 52 

 

4 GENERALIZED EXPONENTIAL DISTRIBUTION WITH 

INTERVAL-CENSORING DATA AND TIME 

DEPENDENT COVARIATES 54 
4.1 Introduction 54 

4.1.1 Generalized Exponential Distribution with Time 

Dependent Covariate Interval Censored Data 54 
4.1.2 Likelihood Equations and Estimation 56 

4.2 Simulation Study 57 
4.3 Results and Discussions 59 
4.4 Summary 65 

 

5 CONFIDENCE INTERVAL ESTIMATION FOR     

GENERALIZED EXPONENTIAL DISTRIBUTION WITH 

INTERVAL CENSORED DATA AND TIME DEPENDENT 

COVARIATE 66 
5.1 Introduction 66 

5.1.1 Wald and Jackknife Confidence Interval 

Estimates 66 
5.1.2 Coverage Probability Study 68 
5.1.3 Coverage Probability Results and Discussion 70 

5.2 Summary 84 

 

6 APPLICATION WITH REAL DATA 86 
6.1 Introduction 86 
6.2 Real Data Application 86 

6.2.1 Data Analysis 86 
6.2.2 Model Adequacy 87 

6.3 Real Data Application With Time Dependent Covariate 91 
6.3.1 Data Analysis With Time Dependent Covariate 92 
6.3.2 Summary 96 

 

7 CONCLUSION 97 
7.1 Introduction 97 

7.1.1 Summary and Conclusion 97 
7.1.2 Contribution to Existing Literature 98 
7.1.3 Recommendations for Future Research 99 

 

 

 



© C
OPYRIG

HT U
PM

 

xii 

REFERENCES 101 
APPENDICES 113 
BIODATA OF STUDENT 135 
LIST OF PUBLICATIONS 136 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

xiii 

LIST OF TABLES 
 

 

Table           Page 

 

3.1  Bias values of the parameter estimates with covariate for method (1) 39 

3.2  SE values of the parameter estimates with covariate for method (1) 39 

3.3  RMSE values of the parameter estimates with covariate for method 

(1) 40 

3.4  Bias values of the parameter estimates with covariate for method (2) 40 

3.5  SE values of the parameter estimates with covariate for method (2) 41 

3.6  RMSE values of the parameter estimates with covariate for method 

(2) 41 

3.7  Range of intercept for various residuals 47 

3.8  Range of slope for various residuals 48 

3.9  Range of R for various residuals 49 

3.10  Range of 𝑅2 for various residuals 50 

4.1  Bias values of the parameter estimates with (TD) 61 

4.2  SE values of the parameter estimates with (TD) 61 

4.3  RMSE values of the parameter estimates with (TD) 62 

4.4  Bias values of the parameter estimates with (TID) 62 

4.5  SE values of the parameter estimates with (TID) 63 

4.6  RMSE values of the parameter estimates with (TID) 63 

4.7  Comparison between RMSE values of the TD with FC 65 

5.1  Estimation Error Probability of Wald Method at α=0.05 71 

5.2  Estimation Error Probability of Wald Method at α=0.1 72 

5.3  Estimation Error Probability of Jackknife Method at α=0.05 73 

5.4  Estimation Error Probability of Jackknife Method at α=0.1 74 

5.5  Performance of Wald and Jackknife methods at 𝜶 = 0.05 and 

AP=10 76 



© C
OPYRIG

HT U
PM

 

xiv 

5.6  Performance of Wald and Jackknife methods at 𝜶 = 0.05 and 

AP=20% 76 

5.7  Performance of Wald and Jackknife methods at 𝜶 = 0.05 and 

AP=30% 77 

5.8  Performance of Wald and Jackknife methods at α = 0.05 and 

AP=40% 77 

5.9  Performance of Wald and Jackknife methods at α = 0.05 and 

AP=50% 78 

5.10  Performance of Wald and Jackknife methods at α = 0.10 and 

AP=10% 78 

5.11  Performance of Wald and Jackknife methods at α = 0.10 and 

AP=20% 79 

5.12  Performance of Wald and Jackknife methods at α = 0.10 and 

AP=30% 79 

5.13  Performance of Wald and Jackknife methods at α = 0.10 and 

AP=40% 80 

5.14  Performance of Wald and Jackknife methods at α = 0.10 and 

AP=50% 80 

6.1  Range Values of the Modified Cox-Snell Residuals Methods 88 

6.2  Descriptive Statistics of Survival Time 89 

6.3  Descriptive Statistics of Genders 89 

6.4  MLE and Confidence Interval of GED Fixed Covariate Using 

Diabetic Nephropathy Data 90 

6.5  Descriptive Statistics of Survival Time 93 

6.6  Descriptive Statistics of Symptom 93 

6.7 MLE and Wald Confidence Interval of GED TD Covariate Using        

Diabetic Nephropathy Data 94 

1  Diabetic Nephropathy (DN) dataset with interval-censored data and 

covariate 115 

 

2  Modified Diabetic Nephropathy (DN) dataset with interval-censored 

data and time dependent covariates 130 

 

 

 



© C
OPYRIG

HT U
PM

 

xv 

LIST OF FIGURES 

 

 

Figure           Page 

 

3.1  Comparison the SE values of method(1) and method(2) 42 

3.2  Comparison the RMSE values of method(1) and method(2) 43 

3.3  Comparison of residuals for estimated values of intercept 51 

3.4  Comparison of residuals for estimated values of slope 52 

4.1  Different types of data for GED model and TD 59 

4.2  Comparison the RMSE values of TD and TID 64 

5.1  An example of a 100 replications 95% CI 67 

5.2  Estimated Error Probabilities of Wald and Jackknife Methods at 𝛼 = 
0.05 81 

5.3  Estimated Error Probabilities of Wald and Jackknife Methods at  

𝛼 = 0.05 82 

5.4  Estimated Error Probabilities of Wald and Jackknife Methods at 𝛼 = 

0.10 83 

5.5  Estimated Error Probabilities of Wald and Jackknife Methods at 𝛼 = 

0.10 84 

6.1  Plot of estimated survival probabilities from the GED and KM 

estimator 87 

6.2  Plot of log[−log(𝑆(𝐶𝑆𝑖))] against log(𝐶𝑆𝑖) 88 

6.3  Estimated hazard for DN data 89 

6.4  Histogram of Survival Time 90 

6.5  Histogram of Survival Time Based on Male Data 91 

6.6  Histogram of Survival Time Based on Female Data 91 

6.7  Plot of estimated survival probabilities from the GED and KM 

estimator 92 

6.8  Estimated hazard for DN data 93 

6.9  Histogram of Survival Time 94 

6.10  Histogram of Survival Time Based on Mild Symptom 95 



© C
OPYRIG

HT U
PM

 

xvi 

6.11  Histogram of Survival Time Based on Severe Symptom 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

xvii 

LIST OF ABBREVIATIONS 
 

 

AC 

AP 

ASY 

C 

CDF 

CI 

CP 

C𝑆𝑖 

DN 

FC 

GED 

GM 

HM 

IC 

KM 

LC 

MLE 

MC𝑆𝑖 

OE 

PDF 

RC 

RMSE 

SE 

TD 

TID 

Anticonservative 

Attendance Probabilities 

Asymmetrical 

Conservative 

Cumulative Distribution Function 

Confidence Interval 

Censoring Proportion 

Cox Snell Residuals 

Diabetic Nephropathy 

Fixed Covariate 

Generalized Exponential Distribution 

Geometric Mean 

Harmonic Mean 

Interval Censoring 

Kaplan-Meier 

Left Censoring 

Maximum Likelihood Estimate 

Modified Cox Snell Residuals 

Observed Exactly 

Probability Density Function 

Right Censoring 

Root Mean Square Error 

Standard Error 

Time Dependent 

Time Independent 

 



© C
OPYRIG

HT U
PM

 

1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Survival Analysis 

Survival analysis is defined as a group of statistical approaches determined by a well-

defined time variable 𝑇 until the appearance of some particular event or end-point for 

the individual in a homogeneous population. The response variable 𝑇 is a positive 

continuous random variable representing the survival time. Other terms such as 

lifetime and failure time are frequently used to refer to variable 𝑇. Time is typically 

measured in days, weeks, months, years or even fractions of a second from the time an 

individual enters the study until the event of interest. This includes, for example, 

relapse, disease occurrence, recovery, death, the collapse of a political system in a 

country or other events of interest Kleinbaum and Klein (2012). 

Survival analysis can also be applied to other fields such as engineering and 

biomedical sciences. In a study by Olivi (2016), survival analysis is applied to 

mechanical components installed in gas turbines. This is to estimate survival functions 

depending on the different environmental attributes of the sites where the gas turbines 

operate and obtain optimal time points for preventive maintenance. Moreover, 

Kalbfleisch and Lawless (1992) widened the application of survival analysis to 

approximate brake pad life for a specific car line. Furthermore, Kachman (1999) 
investigated the effect of survival on animal production and determined the factors that 

affect production and the challenges facing the breeder by using several programs such 

as Survival Kit. Nevertheless, clinical studies remain always dominant in survival 

analysis studies. 

In most medical and clinical trials, the main target is determining and estimating the 

survival distribution of the lifetime T by estimating the probability that a person 

survives from a well-specified time 𝑡 or beyond. For example, patients with fatal 

diseases such as leukemia, lung cancer and other dangerous diseases survive. 

Additionally, the statistical analysis and modeling of survival time data are usually 

done by applying various kinds of non-parametric, semi-parametric or parametric 

models. Suppose the researcher has all the information related to the appropriate 

distribution for the survival time T. In that case, the parametric method can estimate 

the survival and risk (hazard) function at a well-defined time 𝑡. On the contrary, if 

complete information is unavailable about the appropriate distribution or the study was 
distribution-free, the non-parametric methods will ensure the estimation of the survival 

function regarding the study’s observations. The Kaplan-Meier and Nelson Aalen 

estimators are the most often used non-parametric approaches. As for semi-parametric 

models, there is no detailed definition provided. However, we will refer to a semi-

parametric model if it is not fully parametric but has a finite- dimensional parameter of 

interest Kiani (2012). A brief discussion of the non-parametric, semi-parametric and 

parametric survival models is given in Section 1.4. 
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1.2 General Definitions in Survival Analysis 

In summarising survival data, there are three functions of central interest, namely the 

survival function, the hazard function, and the cumulative hazard function. These 
functions are therefore defined as follows: 

1.2.1 The Survival Function 

If 𝑇 is a positive (𝑇 ≥  0) continuous random variable representing survival, lifetime 

or failure times the survival function, 𝑆(𝑡), defined as follows, then 

 

𝑆(𝑡) = Pr(𝑇 ≥  𝑡) 

=  1 − 𝐹(𝑡)  

= ∫ 𝑓(𝑥)𝑑(𝑥),

∞

𝑡

                                                (1.1) 

 

 

where 𝑆(𝑡) is a survival function that can be described as the probability that an indivi- 

uals survives 𝑇 longer than or equal to the specified time 𝑡, while 𝐹(𝑡) is the cumulative  

distribution function (CDF). The survival function is fundamental to a survival analys- 

is because obtaining survival probabilities for different values of  𝑡 provides crucial 

summary information from survival data Kleinbaum and Klein (2012). As 𝑡 ranges 

from 0 to ∞, the survival function has the following properties: 

 

1. for 𝑡 =  0 

 

𝑆(0) = ∫ 𝑓(𝑥)𝑑(𝑥) = 1.

∞

0

 

 

 

2. for 𝑡 = ∞ 

 

𝑆(∞) = lim
𝑡→∞

∫ 𝑓(𝑥)𝑑(𝑥) = 0.

∞

𝑡

 

 

 

3. 𝑆(𝑡) is a decreasing continuous function. 
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1.2.2 The Hazard Function 

The hazard function ℎ(𝑡) is the probability that an individual dies at time 𝑡, conditional 

n he or she has survived to that time. The hazard function, therefore, represents the 

instantaneous death rate for an individual surviving to time 𝑡, which is mathematically 

defined as follows: 

 

ℎ(𝑡) = lim
∆𝑡→0

Pr( 𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡 ∣ 𝑇 ≥ 𝑡 )

𝛥𝑡
 

 

        = lim
𝛥𝑡→0

Pr(𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡, 𝑇 ≥ 𝑡)

Pr(𝑇 ≥ 𝑡)𝛥𝑡
 

 

= lim
𝛥𝑡→0

Pr(𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡)

Pr(𝑇 ≥ 𝑡)𝛥𝑡
 

 

                          ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
                                                                        (1.2) 

 

 

where 𝑓(𝑡) is a non negative probability density function (pdf) that might be 
considered as an approximation to the probability that the event of interest will occur 

by the time t, represented as follows: 

 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
 

 

= −
𝑑𝑆(𝑡)

𝑑𝑡
                                                               (1.3) 

 

 

where 𝐹(𝑡) = 1 − 𝑆(𝑡) represents the probability that a randomly selected subject 

from the population will fail before time 𝑡. This function is also called the cumulative 

incidence function since it summarises the cumulative probability of death occurring 

before time 𝑡, Collett (2015). 

Additionally, the relationship between the survival 𝑆(𝑡) and the hazard function ℎ(𝑡) 
can be derived using equations (1.2) and (1.3) as follows: 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 

 

       =

−𝑑𝑆(𝑡)
𝑑𝑡
𝑆(𝑡)
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=
−𝑑𝑙𝑜𝑔𝑆(𝑡)

𝑑𝑡
, 𝑡 ≥ 0.                                                  (1.4) 

 

 

Therefore, 

 

          𝑆(𝑡) = exp (−∫ℎ(𝑥)𝑑(𝑥)), 𝑡 ≥  0.

𝑡

0

                                (1.5) 

 

 

1.2.3 The Cumulative Hazard Function 

The cumulative hazard function, 𝐻(𝑡), can be defined as follows: 

 

𝐻(𝑡) = ∫ℎ(𝑥)𝑑(𝑥), 𝑡 ≥  0.

𝑡

0

                                                 (1.6) 

 

 
The relationship between the survival function and cumulative hazard function can be 

written as follows: 

 

𝐻(𝑡) = ∫
𝑓(𝑥)

𝑆(𝑥)

𝑡

0

 𝑑𝑥 =  ∫
−𝑆′(𝑥)

𝑆(𝑥)

𝑡

0

 𝑑𝑥 

 

= [−log 𝑆(𝑥)]|0
𝑡   

 

𝐻(𝑡) = − log 𝑆(𝑡).                                                                  (1.7) 
 

Therefore, 

 

𝑆(𝑡)

=  𝑒𝑥𝑝(−𝐻(𝑡)).                                                                 (1.8) 
 

 

1.3 Some Censoring Schemes 

In long-term medical studies, exact survival time is only known for those individuals 
who show the event of interest during the follow-up period. Therefore, a researcher 

must determine the start and end point of the study. Consequently, the observer may 

notice the emergence of an interesting event for some individuals during the follow-up 

period. Thus, the survival times 𝑡𝑖 for these individuals are known or observed exactly 

(OE). On the contrary, there will be individuals whose exact survival times are never 

observed for reasons such as exit from a place where they are being monitored. Other 

examples include transferring the patient to another part of the country that can no 

longer be traced as well as terminating the study before all recruited subjects have 
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shown the event of interest or other reasons. This leads to the researcher having partial 

(uncomplete) information about the subjects’ survival times but not privy to the exact 

survival times. The times for these individuals are categorized as censored survival 

times 𝑐𝑖. In the clinical studies, there are three main types of censoring comprising left 

censoring, interval censoring and right censoring. These censoring mechanisms are 

discussed in detail in the following section. 

1.3.1 Left Censoring 

Left censoring (LC) is one of the common censoring mechanisms that take place in 

clinical and medical cases. This type of censoring indicates that the event of interest 

has already occurred or has been experienced by an individual even before they are 

registered in the study. In other words, the actual survival time of an individual will be 

less than that observed. An example of this type of censoring is when some of the 

patient’s cancer cells may have progressed even before they were recorded in the 
study. Therefore, the exact time of metastasis is unknown, although it occurred before 

the start of the study. Mathematically, in the event of left censoring, the exact survival 

time is available when 𝑡𝑖 ≥ 𝑐𝑖. As for the survival times, the 𝑖𝑡ℎ individual will be a 

left-censored when 𝑡𝑖 < 𝑐𝑖 and 𝑡𝑖 ∈ (0, 𝑙𝑖], where 𝑙𝑖 is the left-censored survival times. 

1.3.2 Right Censoring 

The observation is said to be right-censored if the exact survival time of observation is 

unknown, but it is larger than or equal to censoring time 𝑡𝑖 ≥ 𝑐𝑖. In real-life settings, 

right censoring is more widespread. The right censoring occurs due to the following 
factors: The subject is lost to follow- up within the study period. Here, the subject 

withdraws the treatment variable on purpose; the subject is forced to withdraw from 

the treatment owing to circumstances beyond their control, and the subject withdraws 

from the study for another reason (i.e., death, if death is not the event of interest) 

Turkson et al. (2021). With regard to the right censoring, it is divided into three 

categories: Type I censoring, Type II censoring and Type III censoring (random 

censoring) Lawless (2003). 

In most cases, Type I censoring is associated with a predetermined observation period 

defined in keeping with the research design. Only a few observations will experience a 

particular event of interest during the study time, and some will make it to the end. 

Therefore, it is necessary to determine the start and end point of the study according to 

the required research. The sole information available to the researcher for individuals 

who survive the entire observation period is that the actual survival time is located to 

the right of the study period’s end-point along the time axis, mathematically denoted 

by 𝑡𝑖 > 𝑐𝑖, where 𝑡𝑖 is the event time while 𝑐𝑖 is a fixed censored time. 

The circumstance in which a specific number of occurrences is targeted for a particular 

study is called Type II right censoring. In this type of censoring, research would 

automatically terminate when the desired number of events is observed. Here, all those 
individuals whose survival times are longer than the time of termination will be right-
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censored. Type II right censoring does not have a set end time; instead, it is related to a 

time that is decided by the date when a certain number of occurrences are observed. 

Because of this limitation, Type II right censoring is far less common than other types 

of right censoring in surveys and clinical trials. 

Random censoring occurs randomly at any time during a study period. This could be 

due to individuals dropping out of the study because they wish to discontinue treatment 

or lose to the study at a random point due to migration or death related to other 

possibilities regardless of the event being observed. This type of censoring differs from 

Type I because the censored time is not fixed but behaves like a random variable. 

Some participants may join the study after predetermined start date and then be right-
censored at the end of the study time. The censored survival time for random censoring 

is calculated as the time interval between the entry into the study to the time when 

random censoring occurs, Liu (2012). 

1.3.3 Interval Censoring 

Interval-censoring (IC) occurs in survival analysis when the time until an event of 

interest is unknown precisely (and instead, only is known to fall into a particular 

interval). In medical settings, death is not the only occurrence that requires 

observation. Here, disease progression has piqued medical practitioners’ attention or 
concern. One common example occurs in medical or health studies that entail periodic 

follow-up. For example, a person may miss one or more scheduled observation times 

to clinically examine possible changes in illness state and then return with a different 

status. Alternatively, individuals may visit clinical centers at times convenient to them 

rather than at predetermined observation times. In both cases, the data changes in the 

state are classified as interval censoring data Zhang and Sun (2010). 

Another application of interval-censored data is in the field of acquired immune 

deficiency syndrome (AIDS), in terms of the time it takes for human 

immunodeficiency virus (HIV) infected people. In these circumstances, determining 

the onset of AIDS is normally based on blood testing, which can be done periodically 

and not continually. As a result, only interval- censored data is useful for AIDS 

diagnosis periods. A comparable situation is for studies on HIV infection times. If a 

patient is HIV positive at the start of a study, the HIV infection period is usually 

specified by reviewing the analysis of his/her medical history. Therefore, we can only 

obtain an interval for the HIV infection time based on the last HIV negative test date 
and the first HIV positive test date Chen et al. (2012). In other words, interval-censored 

data arises when a survival time (exact event time) 𝑇 cannot be observed but can be 

specified to lie within the interval (𝑡𝐿𝑖 , 𝑡𝑅𝑖] obtained from a sequence of examination 

times, where 𝑡𝐿𝑖 ≤ 𝑇 ≤ 𝑡𝑅𝑖 . Here, 𝑡𝐿𝑖 and 𝑡𝑅𝑖 are defined as the left and right end-

points, respectively. 

In the clinical and medical studies, the most common types of interval censoring 

mechanisms are case-I, case-II, case-k, mixed case and doubly IC data as well as panel 

count data following Schick and Yu (2000) and Sun (2006). 
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Case I interval-censored data or current status data, arises when each individual is 

subjected to only inspected once say at actual inspection time (𝑎𝑐𝑖1), producing either a 

left- or a right censored observation. Thus, if 𝑡𝑖 is the event time, then 𝑡𝑖 could be less 

than or larger than 𝑎𝑐𝑖1, Gómez et al. (2009). This type of IC data could be represented 
by: 

 

{𝑎𝑐𝑖1, 𝛿𝐼𝑖1 = (𝑡𝑖 ≤ 𝑎𝑐𝑖1), 𝛿𝐼𝑖2 = (𝑡𝑖 > 𝑎𝑐𝑖1), 𝑖 = 1,2,… , 𝑛} 

 

then 

                                 

    (𝑡𝐿𝑖 𝑡𝑅𝑖] = {
(0, 𝑎𝑐𝑖1 ];     𝛿𝐼𝑖1 = 1

(𝑎𝑐𝑖1, ∞);     𝛿𝐼𝑖2 = 1.
                                                (1.9)        

 

 

where 𝛿𝐼𝑖 is an indicator variable. 

 

 

Case II interval-censored data, also called general interval-censored data, arises when 

the 𝑖𝑡ℎ individual is inspected twice say at 𝑎𝑐𝑖1 and 𝑎𝑐𝑖2 with 𝑎𝑐𝑖1 < 𝑎𝑐𝑖2. As a result, 

the event time 𝑡𝑖 may have occurred before the initial inspection time (0, 𝑎𝑐𝑖1], in 

between the two specified inspection times (𝑎𝑐𝑖1 & 𝑎𝑐𝑖2] or after the last inspection 

time (𝑎𝑐𝑖2,∞], Groeneboom and Wellner (1992); Huang and Wellner (1997); Schick 

and Yu (2000); Sun et al. (2005); and Gómez et al. (2009). This type of IC data could 

be represented by: 
 

{𝑎𝑐𝑖1, 𝑎𝑐𝑖2, 𝛿𝐼𝑖1 = (𝑡𝑖 ≤ 𝑎𝑐𝑖1), 𝛿𝐼𝑖2 = (𝑎𝑐𝑖1 < 𝑡𝑖 ≤ 𝑎𝑐𝑖2), 𝛿𝐼𝑖2 = (𝑡𝑖 > 𝑎𝑐𝑖2), 𝑖 = 1,2, , 𝑛} 

 

 

where 𝑎𝑐𝑖1 and 𝑎𝑐𝑖2 are actual inspection times and 𝑎𝑐𝑖1 ≤ 𝑎𝑐𝑖2, then 

 

(𝑡𝐿𝑖 𝑡𝑅𝑖] =

{
 

 
(0, 𝑎𝑐𝑖1 ];     𝛿𝐼𝑖1 = 1

(𝑎𝑐𝑖1, 𝑎𝑐𝑖2];      𝛿𝐼𝑖2 = 1

(𝑎𝑐𝑖2 ,∞);     𝛿𝐼𝑖3 = 1.
 

                                              (1.10) 

 
 

Case-k IC data commonly arise in longitudinal studies when there are 𝑘 actual 

inspection times for 𝑖𝑡ℎ individual, 𝑎𝑐𝑖1 ≤ 𝑎𝑐𝑖2 ≤ ... ≤ 𝑎𝑐𝑖𝑘 , where 𝑘 is a constant 

number, Schick and Yu (2000) and Gómez et al. (2009). In this case, the event times 𝑡𝑖 
could have occurred before the first inspection time, in between any two following 

inspection times or after the last inspection times. This type of IC data could be 

represented by: 

 

{𝑎𝑐𝑖𝑗 , 𝑘, 𝛿𝐼𝑖𝑗 = (𝑎𝑐𝑖(𝑗−1) < 𝑡𝑖 ≤ 𝑎𝑐𝑖𝑗), 𝛿𝐼𝑖(𝑘+1) = (𝑡𝑖 > 𝑎𝑐𝑖𝑘), 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2, … , 𝑘} 

 

 

where 𝑎𝑐𝑖0 = 0, then  
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(𝑡𝐿𝑖 𝑡𝑅𝑖] =

{
 
 

 
   (0, 𝑎𝑐𝑖1 ];     𝛿𝐼𝑖1 = 1                                            

(𝑎𝑐𝑖(𝑗−1), 𝑎𝑐𝑖𝑗];     𝛿𝐼𝑖𝑗 = 1  𝑎𝑛𝑑  1 < 𝑗 ≤ 𝑘,

(𝑎𝑐𝑖𝑘 ,∞);      𝛿𝐼𝑖(𝑘+1) = 1  𝑎𝑛𝑑  j > k.            
 

                                     (1.11) 

 

 

Case I and case II IC are special cases of the case-k IC Wellner (1995). 

Mixed case IC data is another type of interval-censored data similar to case-k interval 

censored data, with the exception that the inspection times, 𝑘, are random (𝑘𝑖) rather 

than fixed, where 𝑎𝑐𝑖1 ≤ 𝑎𝑐𝑖2 ≤ .... ≤ 𝑎𝑐𝑖𝑘𝑖 , Schick and Yu (2000); Lawless and 

Babineau (2006); and Kiani and Arasan (2013). This type of IC data could be 
represented by: 

 

{𝑎𝑐𝑖𝑗 , 𝑘𝑖 , 𝛿𝐼𝑖𝑗 = (𝑎𝑐𝑖(𝑗−1) < 𝑡𝑖 ≤ 𝑎𝑐𝑖𝑗), 𝛿𝐼𝑖(𝑘𝑖+1)
= (𝑡𝑖 > 𝑎𝑐𝑖𝑘𝑖), 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2, … , 𝑘𝑖} 

 

 

where 𝑎𝑐𝑖0 = 0, then 

 

(𝑡𝐿𝑖 𝑡𝑅𝑖] =

{
 
 

 
   (0, 𝑎𝑐𝑖1 ];     𝛿𝐼𝑖1 = 1                                            

(𝑎𝑐𝑖(𝑗−1), 𝑎𝑐𝑖𝑗];     𝛿𝐼𝑖𝑗 = 1  𝑎𝑛𝑑  1 < 𝑗 ≤ 𝑘𝑖 ,

(𝑎𝑐𝑖𝑘𝑖 ,∞);     𝛿𝐼𝑖(𝑘𝑖+1)
= 1  𝑎𝑛𝑑  j > 𝑘𝑖 .            
 

                                     (1.12) 

 

 

In this study, equation (1.12) is the general form of equations (1.9), (1.10) and (1.11) in 

expressing interval censoring data. Mixed case IC data is quite prevalent in clinical and 

medical trials because the number of actual inspection times is different from one 

patient to other. 

Doubly interval-censored data (DIC) refers to the survival time of interest, which is the 

elapsed time between two related events, the initial and the end events. The 

observations on the occurrences of both events could be interval-censoring. This kind 

of data often arises in fields such as biometry studies and reliability research. The 

articles that addressed the doubly interval-censored data arising from survival studies 

include, Gruttola and Lagakos (1989); Sun (2003); and Kiani and Arasan (2018). 

Partly interval-censored data arise when the exact failure times are observed with 

respect to some subjects. Still, for the remaining subjects, the failure time of interest is 

not observable but is only known to be bracketed between two examination times 

Huang (1999). An example of this type of partly interval-censored data is presented by 

the Framingham Heart Disease study. In this study, times of the first occurrence of the 
subcategory angina pectoris in coronary heart disease patients are of interest. For some 

patients, the event time is recorded precisely, but for the remaining patients, time is 

recorded only between two clinical examinations see, Feinleib et al. (1975) and Odell 

et al. (1992). 
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1.3.4 Independent Random Censoring 

A key assumption in the analysis of censored survival data is that an individual’s actual 

survival time, 𝑡𝑖, is independent of any process that causes that individual’s survival 

time to be censored at time ci, where 𝑐𝑖 ≤ 𝑡𝑖. This implies the censoring times 𝑐𝑖 are 

random and independent of the survival or failure times 𝑡𝑖 Lawless (2011). In other 

words, the random censoring mechanism in a survival study is either non-informative 

or includes no information on all observations’ survival/failure times. Considering that 

the individuals in this study have the same probability of being censored, some 

individuals may have a less or higher failure risk than others. 

With regard to independent censoring mechanism, it is equivalent to non-informative 

censoring, but the reverse may not always be true, Betensky (2000); Oller et al. (2004); 

and Sun (2006). Here, dependent censoring and informative censoring are always the 

same. 

Subsequently, for right censoring (RC) data, let the survival/failure time 𝑇 be 

independent continuous random variable with prevalent probability density function 

(pdf) 𝑓(𝑡) and survival function 𝑆(𝑡).  Also, let the censoring time 𝐶 be continuous 

random variable with prevalent pdf 𝑔(𝑡) and survival function 𝐺(𝑡). We all know that 

the censoring times are 𝑐𝑖, non-informative of the survival/failure times 𝑡𝑖. Thus, the 

distribution of 𝐺(𝑡) does not depend upon any parameters in 𝐺(𝑡). 

Furthermore, if censoring process produces censoring time ci for the 𝑖𝑡ℎ individual and 

survival time 𝑡𝑖 of this individual, then the observed survival/failure time would be 𝑜𝑡𝑖 
= min (𝑡𝑖, 𝑐𝑖). Here, if 𝑡𝑖 ≤ 𝑐𝑖, the indicator variable is 𝛿𝑅𝑖 = 1 and 𝑜𝑡𝑖 = 𝑐𝑖. However, if 

𝑡𝑖 > 𝑐𝑖, the indicator variable is 𝛿𝑅𝑖 = 0 and 𝑜𝑡𝑖 = 𝑡𝑖. The probability density function 

(pdf) of independent (non-informative) random censoring for RC data scheme can be 

represented as follows: 

 

Pr (𝑜𝑡𝑖 = 𝑡 | 𝛿𝑅𝑖  = 1)  =  Pr (𝑇𝑖  = 𝑡, 𝑡𝑖 ≤ 𝑐𝑖)  =  Pr (𝑇𝑖 = 𝑡)𝑝𝑟( 𝑡𝑖 ≤ 𝑐𝑖)  =  𝑓 (𝑡)𝐺(𝑡),   
 

 

𝑃𝑟(𝑜𝑡𝑖 = 𝑡 | 𝛿𝑅𝑖  = 0) =  𝑃𝑟(𝐶𝑖 =  𝑡, 𝑡𝑖 > 𝑐𝑖) =  𝑃𝑟(𝐶𝑖 = 𝑡)𝑃𝑟(𝑡𝑖 > 𝑐𝑖) 𝑔(𝑡)𝑆(𝑡),   (1.13)   
 

 

By using the result in equation (1.13), the joint likelihood of (𝑡𝑖, 𝛿𝑖) for 𝑛 of random 

samples with 𝑖 =  1,2,… , 𝑛, can be represented as follows: 

 

𝐿(𝑡𝑖) =∏{𝑓(𝑡𝑖)𝐺(𝑡𝑖)

𝑛

𝑖=1

}𝛿𝑖  {𝑔(𝑡𝑖) 𝑆(𝑡𝑖)}
1−𝛿𝑖    

 

𝐿(𝑡𝑖) = ∏ 𝑓(𝑡𝑖)
𝛿𝑖𝑆(𝑡𝑖

𝑛
𝑖=1 )1−𝛿𝑖  ∏ 𝑔(𝑡𝑖)

1−𝛿𝑖𝐺(𝑡𝑖
𝑛
𝑖=1 )𝛿𝑖           (1.14) 
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Since 𝑔(𝑡𝑖) and 𝐺(𝑡𝑖) do not involve any of the parameters in 𝑓(𝑡𝑖), they can be 

neglected and the likelihood function will be shown as follows: 

 

𝐿(𝑡𝑖) = ∏ 𝑓(𝑡𝑖)
𝛿𝑖𝑆(𝑡𝑖

𝑛
𝑖=1 )1−𝛿𝑖        (1.15) 

 

 

For interval censoring data IC, let 𝑓(𝑡) and 𝑆(𝑡) represent probability density function 

(pdf). Moreover, survival function of survival/failure time 𝑇 and (𝑡𝐿 , 𝑡𝑅) represents 

joint survivor function of left and right censoring time, where 𝑇 ∈ (𝑡𝐿 , 𝑡𝑅). If censoring 

process produces 𝑡𝐿𝑖 and 𝑡𝑅𝑖 as a left and right censoring times and 𝑡𝑖 be the survival 

time of the individuals, where 𝑡𝑖 ∈ (𝑡𝐿𝑖 , 𝑡𝑅𝑖), Kiani (2012), then independent (non-

informative) random censoring for interval censoring data scheme could be represented 

by: 

 

Pr( 𝑡𝐿𝑖 = 𝐿𝑖 , 𝑡𝑅𝑖 = 𝑅𝑖 ∣
∣ 𝑡𝑖  = t ) = Pr(𝐿𝑖 < 𝑡𝑖 ≤ 𝑅𝑖).      (1.16) 

 

 

1.4 Survival Models 

In survival study, estimating the survival or hazard function is critical to provide an 

overview of an individual’s failure/hazard rate in accordance with the event of interest 

being studied. In addition, it is usual in clinical research to have situations like 

covariates or risk factors, such as age or blood pressure level, which may affect patient 
diagnosis and are recorded to explore the effect of these variables on an individual’s 

survival times Clark et al. (2003) and Bradburn et al. (2003). This can be achieved 

using three options for modeling the survival function: parametric such as (Generalized 

Exponential distribution), semi-parametric such as (Cox regression), and non-

parametric such as (Kaplan-Meier). 

1.4.1 Parametric Survival Models 

Parametric survival models determine the lifetime distribution up to a parameter of a 
limited (and usually small) dimension. Even though Cox’s semi-parametric model is 

the most commonly used regression tool for survival data, fully parametric models 

have some advantages Nardi and Schemper (2003). The main advantage is the 

availability of straightforward methods of estimation and inference based on the 

likelihood function, constructing the confidence intervals and performing hypothesis 

testing to assess the significance of parameter estimates. When the sample size 

decreases, relative efficiencies may change in favor of parametric models. In addition, 

the fully parametric models involve stronger assumptions compared to semi- or 

nonparametric models Lawless (2014). Although they may have advantages over 

Cox’s model, parametric models are rarely employed in the analysis of clinical studies 

of survival Nardi and Schemper (2003). 

The most common parametric distributions of survival time 𝑇 are exponential, 

Weibull, gamma, generalized gamma, generalized Weibull, log-logistic, log-normal, 

Gompertz and Generalized Exponential distribution (GED). Moreover, different types 
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of censoring mechanisms and covariates have motivated researchers to create novel 

parametric models or extend these models to accommodate these different components. 

Since our research focuses on modeling clinical survival data, we choose to deal with 

three GED parameters. Initially, GED was first discussed by Mudholkar and Srivastava 

(1993) as an alternative to the commonly used gamma and Weibull distributions. The 

three parameters of GED are introduced by the Gupta and Kundu (1999), where they 
compared the theoretical characteristics of this family to the well-studied 

characteristics of the Weibull and the Gamma distributions. 

The GED has many different theoretical characteristics and can be used effectively to 

analyze several skewed lifetime data. It also easily handles inference based on the 
censored data instead of studying Weibull and the Gamma distributions. Recently, 

many authors have studied different characteristics and statistical methodologies of 

GED with interval-censored data, for instance, Chen and Lio (2010) and Alharbi et al. 

(2022). 

1.4.2 Semi-Parametric Survival Models 

In medical and clinical trials, it is frequently required to explore how the risk factors or 

covariates interact to determine patient survival. To achieve this objective, Bradburn et 

al. (2003) and Selingerova et al. (2021) used statistical models (semi-parametric and 
fully parametric models) to measure survival while taking into account multiple factors 

at the same time. This also includes measuring the degree of influence of the respective 

factors. In this section, we will deal with the semi-parametric model. There are several 

approaches for semi-parametric models, for example, Cox proportional hazard (CPH) 

model. It is the most commonly used multivariate approach for analyzing survival time 

data, Cox (1972). It is also describes the relationship between the event incidence in 

terms of the association of covariates with failure time and for studying the effect of 

these covariates on the hazard function while adjusting for other variables. The hazard 

function of the CPH model is given as follows: 

 

 ℎ(𝑡, 𝑥) = ℎ0(𝑡)𝑒
(𝛽′𝑋),                                             (1.17) 

 

 

where 𝑋 is the vector of the 𝑝 covariates, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑝), 𝛽 is the vector of 𝑝 

parameters,  𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝) and ℎ0(𝑡) is the baseline hazard function. 

Additionally, the survival function for this model can be expressed as follows: 

 

𝑆(𝑡, 𝑥) = 𝑆0(𝑡)𝑒
(𝛽1𝑥1+𝛽2𝑥2+ .…+𝛽𝑝𝑥𝑝) ,                 (1.18) 

 

 

where 𝑆0(𝑡) is the baseline survival function. The vector of parameters 𝛽 can be 

estimated by using maximum likelihood technique (MLE). Additionally, the baseline 

hazard function ℎ0(𝑡) also need to be estimated using several methods, for example the 

marginal likelihood method as suggested by Kalbfleisch and Prentice (1973), partial 

likelihood proposed by Cox (1972) and profile likelihood proposed by Breslow (1974, 

1975).  
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The Cox proportional hazards (CPH) model in (1.19), is extended to include covariates 

incorporated which changes and time that significantly affect the hazard function as in 

Pierre and Hans (1995); Collett (2003); and Murray et al. (2016). The hazard function 

of the CPH with Time Dependent (TD) covariates will be introduced as follows: 

 

 ℎ(𝑡, 𝑥) = ℎ0(𝑡)𝑒
∑ 𝛽′𝑋(𝑡)
𝑝
𝑗=1 ,           (1.19) 

 

 

where 𝑗 =  1,2,…𝑝 is the number of TD covariates in the extended CPH model. 
 

 

1.4.3 Non-Parametric Survival Models 

In this section, we discuss survival data analysis without parametric assumptions about 
the form of the distribution. It is said to be nonparametric or distribution-free since 

they do not require specific assumptions about the underlying distribution of the 

survival times. The nonparametric methods are widely used in statistics. It is often 

attracts researchers as it has more flexibility than parametric and semi-parametric 

models. The most frequent non-parametric technique is the Kaplan-Meier estimate. 

The Kaplan-Meier estimator, often known as the ”Product- Limit” (PL) estimator, is a 

popular non-parametric method for estimating the survival function 𝑆(𝑡) for right 

censoring (RC) data. This estimator was proposed first time by Kaplan and Meier 

(1958), where it uses both uncensored and right-censored data. The Kaplan-Meier 

(KM) estimator is derived from the following definitions. Let (𝑛𝑗) be the number of 

individuals who are alive before time 𝑡(𝑗) = 𝑡1, 𝑡2, … , 𝑡𝑟, including those who are about 

to die at this time, where 𝑗 =  1,2,… , 𝑟 , and (𝑑𝑗) be the number who die at 𝑡(𝑗). Then, 

the estimated survivor function at any time, 𝑡, in the jth constructed time interval from 

𝑡(𝑗) to 𝑡(𝑗+1) where 𝑡(𝑟+1) is defined to be ∞, will be the estimated probability of 

surviving beyond 𝑡(𝑗). This is the probability of surviving through the interval from 

𝑡(𝑗) to 𝑡(𝑗+1) and all preceding intervals. In addition to the lifetimes 𝑡1, 𝑡2, … , 𝑡𝑟 , there 

are also censoring times for individuals whose lifetimes are not observed. Then, the 

Kaplan-Meier (KM) estimator of the survivor function is given as follows: 

 

𝑆̂(𝑡) = ∏
𝑛𝑗−𝑑𝑗

𝑛𝑗
𝑡𝑗≤𝑡

 .                                      (1.20) 

 

    

We can also write equation (1.20) in a simple form as follows: 

 

𝑆̂(𝑡𝑗) = 𝑆̂(𝑡(𝑗−1))
(1 −

𝑑𝑗

𝑛𝑗
)              (1.21) 

 

    

When 
𝑑𝑗

𝑛𝑗
 is the hazard function ℎ(𝑡𝑗) at time 𝑡𝑗  based on the equations in (1.20) and 

(1.21),  there exists some assumptions in estimating Kaplan Meier given as follows: 

 

 When 𝑡 =  0, 𝑆ˆ(0) =  1. 
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 Suppose no censored observations exist after the maximum recorded failure 

time 𝑡𝑟. Then, the number of individuals who are alive (number at risk) (𝑛𝑘) 

will be equal to the number who are dead (𝑑𝑘), in which 𝑛𝑘  =  𝑑𝑘. Here, the 

Kaplan-Meier estimator will be zero Lawless (2011). 

 Suppose censored observations exist after the maximum recorded failure 

time 𝑡𝑟. In that case, the number of individuals who are alive (number at risk) 

will be greater than the number who are die, in which 𝑛𝑘 > 𝑑𝑘. Here, the 

Kaplan-Meier estimator will never be zero. 

 

 

Regarding the interval censored data, the nonparametric maximum likelihood 

estimation (MLE) of a distribution function for case-I interval censored data was first 

introduced by Ayer et al. (1955) and Van (1956). Then, Peto (1973) and Turnbull 

(1976) studied the estimations using (MLE) for case-II interval censored data. 

Furthermore, Sun (2006) studied in detail the nonparametric maximum likelihood 
estimation (MLE) for case-I and case-II interval censored data. For case-II IC, suppose 

𝑡𝑖 ∈ (𝑡𝐿𝑖 , 𝑡𝑅𝑖], where, 𝑖 =  1,2, … , 𝑛 with survival function 𝑆(𝑡). Also let 𝑠𝑗 = 0 <

𝑠(0) < 𝑠(1) < 𝑠(2), … , 𝑠(𝑚−1) < 𝑠𝑚 = ∞, 𝑗 =  1,2, . . . ,𝑚, called the unique ordered 

elements of the set {0, 𝑡𝐿𝑖  , 𝑡𝑅𝑖  ,∞, 𝑖 =  1,2, . . . , 𝑛}. Then, the likelihood function for 

case-II IC data is written as follows: 

 

𝐿(𝑡𝑖) =∏{𝑆(𝑡𝐿𝑖) − 𝑆(𝑡𝑅𝑖)}

𝑛

𝑖=1

 

 

=∏∑𝛼𝑖𝑗𝑝𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 

 

 
where 

 

𝛼𝑖𝑗 = 𝐼(𝑆𝑗 ∈ (𝑡𝐿𝑖 , 𝑡𝑅𝑖]) and 𝑝𝑗 = 𝑆(𝑠𝑗−1) − 𝑆(𝑠𝑗). 

 

 

As for the rest of the interval censoring cases, Groeneboom and Wellner (1992); 

Huang and Wellner (1995); and Yu et al. (1996) studied nonparametric MLE of the 

case I and case II IC data. Wellner (1995) and Huang and Wellner (1997) discussed the 

nonparametric MLE of the case-k IC data while van der Vaart and Wellner (2000) and 

Schick and Yu (2000) studied nonparametric MLE of the mixed case IC data. 

1.5 Types of Covariates 

Fixed covariates, stays constant throughout the study period. An example of this type 

of covariate is the race and gender of individuals in the study. Usually, fixed covariates 

are measured at the beginning time point of the study, although these covariates can 

also be measured at the middle or end of the study. 
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Contrary to the fixed covariate, the Time-dependent (TD) covariate values change over 

time. These types of covariates are measured on a regular basis for an individual over 

the study period. In medical and clinical trials or observational studies, there are many 

examples of TD covariates, such as the age of subjects, tumour sizes, blood pressure 

and cholesterol level. The impact of TD covariates will be evaluated on the survival 

and hazard rate of the individuals in the study. The changes in the level of covariates 
and constant monitoring for individuals will provide a better indication of future life 

expectancy than the value at the time of origin, Collett (2015). 

In a survival study, TD covariates are categorized into two types as either internal or 

external covariates. The internal time dependent (ITD) covariates can be measured 
frequently through a specified period, where the patient is alive during this period. 

Examples of this covariate include a blood pressure level, white and red blood cell 

count and serum cholesterol level, Collett (2015) and Kalbfleisch and Prentice (2011). 

This covariate is observable always as long as the patient is under monitoring. 

On the other hand, external time-dependent (ETD) covariates are covariates that do not 

require the survival of a patient to exist. One type of ETD is the variable that changes 

so that we can know its value at any time in the future. The clearest example of this 

type is the age of a patient, where the age of that patient can be known at any future 

time relying on the time origin without requiring the presence of this patient in the 

study, Collett (2015). Another type of ETD may affect the patient’s survival time exists 

independently. An example of this type is the respiratory survival studies, where the 

presence of air pollutants may affect the life span of individuals with lung cancer or 

heart disease where the change in the air quality is independent of any patient in the 

study Kalbfleisch and Prentice (2011). Moreover, Arasan and Lunn (2008); Kiani et al. 

(2012); Kiani and Arasan (2013); and Manoharan et al. (2016) extended their 

parametric models to include TD covariates with different types of censoring. 

1.6 Cox Snell Residuals 

Residuals are a common method for evaluating the adequacy of a model. In survival 

study, it is not as easy to determine a residual when modelling survival data compared 

to a general linear model. As a result, a set of different residuals has been suggested. 

Cox-Snell (𝐶𝑆𝑖) residuals are widely used in the analysis of survival data as a measure 

of goodness-of-fit of the models. It was first discussed by Cox and Snell (1968). It is 
also a type of standardized residuals evaluated both formally and graphically using a 

test of goodness of fit. The general formula of Cox-Snell residuals for the 𝑖𝑡ℎ 

individual, 𝑖 =  1,2, . . . , 𝑛, 𝐶𝑆𝑖 is given as follows: 

 

𝐶𝑆𝑖 = −𝑙𝑜𝑔𝑆̂𝑖(𝑡𝑖),                                                         (1.22) 
 

 

where 𝑆̂𝑖(𝑡𝑖) is the estimated value of the survival function of the 𝑖𝑡ℎ individual at 𝑡𝑖 
By following Collett (2015), we can clearly notice that the 𝐶𝑆𝑖 residuals is a special 

case from the estimated cumulative hazard function, written as follows: 
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𝐻̂𝑖(𝑡𝑖) = −𝑙𝑜𝑔𝑆̂𝑖(𝑡𝑖),                                                     (1.23) 
 

 

where 𝐻̂𝑖(𝑡𝑖) is the estimated value of the cumulative hazard function of the 𝑖𝑡ℎ 

individual at 𝑡𝑖. If the model fitted to the observed data is satisfactory, then the 

estimated value of the survival function 𝑆̂𝑖(𝑡𝑖)  for the 𝑖𝑡ℎ individual at 𝑡𝑖 will be close 

to the survival function’s true value 𝑆𝑖(𝑡𝑖). This implies that if the correct model has 

been fitted, 𝑆̂𝑖(𝑡𝑖) values will have properties comparable to 𝑆𝑖(𝑡𝑖). Then, the negative 

logarithms of the estimated survivor functions, −𝑙𝑜𝑔𝑆̂𝑖(𝑡𝑖), 𝑖 =  1,2, . . . , 𝑛, will behave 

as 𝑛 observations from a unit exponential distribution. The properties of 𝐶𝑆𝑖 residuals 

are quite different from those residuals utilized in linear regression analysis. In 

particular, Cox-Snell residuals cannot be negative and will not be symmetrically 

distributed around zero. 

One critique of 𝐶𝑆𝑖 residuals is that Cox-Snell residuals do not account for censored 

observations. Therefore, the adjusted 𝐶𝑆𝑖 residuals that will deal with this problem 

were devised by Crowley and Hu (1977). Moreover, Naslina et al. (2020, 2021) and 

Lai and Arasan (2020) extended their parametric models to include 𝐶𝑆𝑖 residuals and 

modified Cox Snell residuals (𝑀𝐶𝑆𝑖) residuals with different types of censoring and 

covariates. 

1.7 Research Objectives 

The goal of this research is to analyze the Generalized Exponential model when data is 

uncensored and interval censored in the presence of fixed and time-dependent 

covariates. We mainly focused on studying the maximum likelihood estimates with 
and without imputation. Then we conducted a model adequacy study via the Cox-Snell 

and several modified Cox-Snell residuals based on geometric and harmonic means. 

Following that we also thoroughly investigated two confidence interval estimation 

procedures, the Wald and jackknife for the parameters of this model. 

Two main models will be explored, 

 

 Generalized Exponential model with interval censored data and fixed time 

covariate (FC), for example, race and gender. 

 Generalized Exponential model with interval censored data and time-

dependent covariate (TD), for example, age, blood pressure, and cholesterol 

level. 

 

 

The main objectives of this research are as follows: 

 

 To evaluate the performance of the maximum likelihood estimation with 

and without imputation for the Generalized Exponential distribution in the 

presence of interval-censored data and fixed covariates via simulation study 

at various censoring proportions and sample sizes. 
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 Then, conduct a model adequacy study for this model using several 

modifications of the Cox-Snell residuals based on the geometric mean and 

harmonic mean at different sample sizes and censoring proportions. 

 To extend the Generalized Exponential distribution to incorporate time-

dependent covariates in the presence of uncensored and interval-censored 

data at the various attendance probabilities (AP) and sample sizes. 

 To investigate the performance of the Wald and jackknife confidence 

interval estimates by conducting a coverage probability study at various 

attendance probabilities (AP), sample sizes and nominal error probabilities 

for the parameters of the time-dependent covariates model. 

 Demonstrate the application of some of the proposed methods to real data 

from diabetic nephropathy (DN) study using two models. The first model 

will be fit to uncensored and interval-censored data with fixed covariate and 

the second model will be fit to a modified version of the data with time-

dependent covariate. 

 

 

1.8 Scope of Thesis 

This thesis is organized into seven chapters. Chapter 1 provides a brief introduction to 

survival data, basic functions in survival analysis, types of censoring, fixed covariates 

and time-dependent covariates. This chapter equally discusses parametric, semi-
parametric and nonparametric survival models that is commonly applied with survival 

data. The objective of this research is also discussed in this chapter. 

Chapter 2 provides a literature review highlighting on parametric models in the 

presence of interval-censored data and different types of covariates. A brief review on 
parametric, semi-parametric and nonparametric models are discussed to trace the 

development of these models in the presence of interval-censored data and different 

types of covariates. 

Chapter 3 begins with the extension of Generalized Exponential distribution to 
incorporate interval-censored data with fixed covariates. Then, the performance of this 

model is studied by comparing two methods, traditional estimation method and random 

imputation method at different sample sizes and censoring proportions through a 

simulation study. Then, the assess the goodness of fit for GED model is studied by 

comparing the performances of the Cox-Snell and modified Cox-Snell residuals based 

on the empirical geometric and harmonic means via simulation study at various 

censoring proportions and sample sizes. 

Chapter 4 focuses on extending of Generalized Exponential distribution to incorporate 

interval-censored data with time-dependent covariates. Then, the performance of this 

model is studied by comparing the time-dependent covariates with time independent 

covariates at different sample sizes and attendance probabilities through a simulation 

study. Following that, the performance of the GED model is studied by fitting data 
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from a time-dependent covariates model wrongly to a time-independent covariates 

model. 

Chapter 5 applies the suitability of the Wald and jackknife confidence intervals are 

compared with the parameters of the GED model with a time-dependent covariate 

through a coverage probability study. 

Chapter 6 applies the methods that were slightly more accurate and efficient in the 

simulation study to real interval-censored data from Diabetic Nephropathy (DN) study 

with fixed and time-dependent covariates. 

The final chapter, Chapter 7 provides summary and discussion on the overall research. 

Further, some ideas on future research are equally discussed. 
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