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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

 

QUANTUM CIRCUIT COMPLEXITY IN RIEMANNIAN GEOMETRY OF 3-

QUBIT QUANTUM FOURIER TRANSFORM 

 

By 

 

CHEW KANG YING 

 

November 2022 

 

 

Chair  : Nurisya Mohd Shah, PhD 

Institute : Mathematical Research 

 

 

Quantum computation is a physical concept of using the quantum algorithm in quantum 

computer to solve a problem. With quantum computation, it showed great promises in 

solving problems faster due to the utilization of qubits instead of conventional bits. In 

addition, the complexity of a quantum algorithm will determine the difficulty in 

performing computation for that algorithm to solve complex problem. This thesis will 

describe quantum gates as element of 𝐒𝐔(2n) Lie group in operator representation.  Its 

respective 𝔰𝔲(2𝑛) Lie algebra will be constructed, and is next represented in Pauli basis 

such that the properties of the quantum gates can be studied. The generation of 𝐒𝐔(𝟖) 
Lie group from its respective generator in 𝔰𝔲(8)  will also be demonstrated. The 

representation of 𝔰𝔲(8) in Pauli basis also will be shown to be similar to change of basis. 

Frequency of structure constant for 𝔰𝔲(8) will also be computed, analyzed and compared 

with 𝔰𝔲(2)  and 𝔰𝔲(4) . Since 𝐒𝐔(2n)  Lie group spanned a differential manifold, 

quantum circuits complexity problem can be cast into geometry problem and can be 

studied using the Riemannian geometry. Alongside with the concept of superoperator, 

this thesis will be able to choose a Riemannian metric for 𝐒𝐔(2n) manifold with penalty 

parameter 𝑠  and 𝑞 . Following up, general Levi-Civita connection and the associated 

geodesic equation for quantum algorithm will be constructed. Finally, the Riemannian 

metric and differential form of geodesic equation for 3-qubit Quantum Fourier 

Transform circuit will be generated. This work aspired to provide an organize structures 

to compute and solve geodesic equation for quantum algorithm of the quantum circuit 

complexity optimization. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

 

KERUMITAN LITAR QUANTUM DALAM GEOMETRI RIEMANNIAN 

3-QUBIT JELMAAN FOURIER KUANTUM 

 

Oleh 

 

CHEW KANG YING 

 

November 2022 

 

 

Pengerusi : Nurisya Mohd Shah, PhD 

Institut  : Penyelidikan Matematik 

 

 

Pengiraan kuantum adalah konsep fizikal yang menggunakan algoritma kuantum dalam 

kuantum komputer  untuk menyelesaikan masalah. Bersama pengiraan kuantum, ia 

memberi harapan dalam penyelesaian masalah yang lebih cepat disebabkan oleh 

penggunaan qubit dan bukannya bit yang lazim. Tambahan pula, kerumitan sesebuah 

algoritma kuantum akan menentukan kesulitan dalam melaksanakan pengiraan bagi 

algoritma tersebut untuk menyelesaikan sesuatu masalah yang rumit. Tesis ini akan 

menerangkan get quantum sebagai elemen kumpulan Lie 𝐒𝐔(2n)  dalam perwakilan 

operator. Aljabar Lie 𝔰𝔲(2𝑛) masing-masing juga akan dibina dan seterusnya diwakili 

dalam asas Pauli supaya sifat get kuantum dapat dikaji. Penjanaan 𝐒𝐔(8) oleh penjana 

masing-masing dari 𝔰𝔲(8) juga akan didemonstrasikan. Perwakilan 𝔰𝔲(8) dalam asas 

Pauli juga akan dipaparkan seiras dengan asas pertukaran. Kekerapan pemalar struktur 

untuk 𝔰𝔲(8)  juga akan dikira, dianalisis dan dibandingkan dengan 𝔰𝔲(2)  dan 𝔰𝔲(4) . 

Memandangkan kumpulan Lie 𝐒𝐔(2n)  membentangkan manifold bezaan, masalah 

kerumitan litar kuantum boleh dikaji dalam geometri Riemmanan sebagai masalah 

geometri. Bersama dengan konsep superoperator, tesis ini akan memilih metrik 

Riemannan untuk manifold 𝐒𝐔(2n)  dengan parameter dendaan 𝑠  dan 𝑞 . Seterusnya, 

kaitan Levi-Civita am dan persamaan geodesi bagi algorithma kuantum yang akan 

dibina. Akhirnya, metrik Riemannan dan persamaan geodesi bentuk bezaan untuk litar 

jelmaan Fourier kuantum tiga-qubit akan dijana. Kerja ini berhasrat untuk menyediakan 

struktur yang teratur untuk mengira dan menyelesaikan persamaan geodesi bagi 

algoritma kuantum untuk pengoptimuman kerumitan litar kuantum.  
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CHAPTER 1

INTRODUCTION

1.1 Research background

Classical circuit computation and quantum circuit computation

Quantum circuit computation is the process of performing calculation utilizing the

collectives properties of quantum states involving superposition and entanglement.

Similarly to classical computer which used to solve tedious problems, quantum

computer potentially could provide problem-solving in exponentially lesser time

due to quantum properties. Quantum computation utilizes qubits instead of classical

bits. Bits is the portmanteau for binary digits, which each digit only consists of

two possible number which are 1 and 0. There are differences in qubits and bits.

Classical bits in classical computer is determined to be either 0 (off) or 1 (on) of

the states of a transistor, while quantum bits (qubits) can be a superposition states

from 0 states to 1 states which can be represented in one axis of a Bloch sphere.

Subsequently, increase of n number of classical bits, the string of bits could stores

up to 2n data but at any instance the string of bits can only represent one of the 2n

possible state of data. On the other hand, a single qubit can be represented by linear

combination of two orthonormal basis state vector which denoted by |0〉 and |1〉:

|ψ〉= α |0〉+β |1〉 , where |α|2 + |β |2 = 1. (1.1)

Thus n number of qubits can be in superposition in 2n different states simultane-

ously, interfere with each other in forms of wave functions. This implies the qubits

string could contain exponentially more data than the classical bits string. In classical

computer, classical bits is represented by individual transistors which act as switches

controlling the voltage in the circuits, while in quantum computer, quantum bits is

represented by any two-level quantum system. Some of the examples are individ-

ual electron states, spin up or spin down, and photon polarization states, vertical or

horizontal polarization. In classical computer, computational functions are imple-

mented using logic gates, mainly for adjoint function (AND gate), disjoint function

(OR gate) and negation (NOT gate). The evolution of the systems must preserves

the properties of stochastic matrices, which the probability distribution of each state

add up to one. In quantum computer the computational functions are implemented

with quantum gates, The evolution of quantum systems must preserves the proper-

ties of unitary matrices, which the sum of squares of probability distribution of each

state add up to one. With that, it implies that the coefficient of the states (probability

distribution) for classical bits must be positive-definite real number, while for qubits

it can contain complex numbers. This additional parameter from the emergent of

phase of states due to i in complex numbers brings advantages to the quantum com-
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puter. Currently, there are three classes of quantum algorithm that could provide

major speed up for calculation over classical algorithm. These are quantum Fourier

transform based algorithms, quantum search algorithms, and quantum simulation.

(Nielsen and Chuang, 2002).

Classical algorithm and quantum algorithm

With the basic units of computation ready, the computation will require algorithm to

bring the input problems and provide output solutions. Classical algorithm is a set

of instructions performed step-by-step in order to solve a problem. The instructions

are performed by combination of logic gates both in series and parallel. Similarly,

quantum algorithm composed of set of instructions performed by combinations of

quantum gates both in series and parallel. Any classical algorithm can be run in

quantum computer as representation of quantum algorithm due to unitary matrices

in quantum gates as being the generalized form for the stochastic matrices in

classical logic gates. The length of a classical algorithm is determined by the

number of logic gates applied in series in solving a problem. Similarly, the length

of a quantum algorithm is determined by the number of quantum gates applied in

series in solving a problem. Every step performed will incur implementation time

thus, the time required to complete solving the problem is proportional to the length

of the algorithm itself. This arise to be a field of study itself, called time complexity

which studies the efficiency of an algorithm and estimation of time taken for an

algorithm to complete its run in forms of scaling in n number of inputs. In classical

computation, there exists deterministic algorithm as well as probabilistic algorithm.

In quantum computation, it does exist deterministic algorithm which it performs

much similar with the classical counter parts in terms of time taken. However, most

of the quantum algorithm that provide major speed up are probabilistic algorithm.

It utilizes the superposition between the states and alter the probability distribution

between states by quantum gates. To obtain the result, the answer will be measured

with certain probability determined by the probability amplitude of the state.

Computational complexity

Computational complexity represent the classification of computational prob-

lem solving by the resource usage. Quantum algorithm are difficult to have

deterministic outputs thus the class of decision problems solvable in polynomial

time by quantum algorithm with high probability of correctness is the bounded-error

quantum polynomial time (BQP). In particular for our studies we are looking into

circuit complexity which taking account of the number of quantum gates applied

for an algorithm in a circuit. This is analogous to the class of bounded-error

probabilistic polynomial time in classical algorithm run in classical computer. For a

given algorithm, optimization of the method could reduce the time complexity thus

making a more efficient algorithm.

2
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Physical Implementation of Quantum Computation

In the year of 1980, Paul Benioff extended the concept of Turing machines into a

theoretical concept of Quantum computation (Benioff, 1980). Then the Yoshihisa

Yamamoto and his team in year 1988 came out with the proposal on first realiz-

able quantum computation model using single atoms with photon fields (Igeta and

Yamamoto, 1988). Physical realizable model of quantum computation came into

spotlights when Shor’s Algorithm is introduced which posed a challenge to our cur-

rent data encryption method (Shor, 1994). At the same time quantum computation

also bring along promises to match the rising demands of computation power in our

development of technologies. There are five requirements to realize a physical quan-

tum computation as stated in (DiVincenzo, 2000):

1. Well characterized qubits in a scalable physical system

2. To be able to initialize the qubits state to a reference state.

3. Having decoherence times relatively much longer than gate operation time.

4. A “universal” set of quantum gates

5. Capability to perform qubit-specific measurement.

Based on the requirements there are many groups of research strives to make

attempts in realizing a physical, scalable and consistent quantum computer. Each

approaches utilize different concepts and properties of natures to represent two-level

system (qubit). To highlight a few approaches, we have cold trapped ions (Cirac and

Zoller, 1995), nuclear magnetic resonance (Chuang et al., 1998), coupled quantum

dots (Loss and DiVincenzo, 1998), optical lattices with neutral atoms (Brennen

et al., 1999), quantum cluster state (Raussendorf and Briegel, 2001), photons

(O’Brien et al., 2003), solid lattice structure defect, electrons spin in semiconductors

(Kane, 2005), (Jelezko et al., 2004), anyons in topological quantum computatation

utilized in Microsoft quantum computer (Gibney, 2016), Josephson junction in

superconducting qubits utilized by IBM (Steffen et al., 2011), Google and Amazon

in their quantum computer with comprehensive gate-based quantum computation

technique (Kwon et al., 2021). A quick overall review of the development and

concepts of physical systems for quantum computation can be referred to this

work (Ladd et al., 2010). Thus it become increasingly more important to optimize

quantum algorithm to propose a theoretical limit of speeds up for physical realizable

model to gauge on their system.

1.2 Quantum Fourier Transform

Quantum Fourier Transform (QFT) is a popular quantum circuit used to solve

mathematically hard problem. One of the popular example would be the Shor

Algorithm that utilizes Quantum Fourier Transform as part of the algorithm

3
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for polynomial time solving prime factorization problem. In this work we take

this circuit as the choice to construct geodesic equation because quantum Fourier

transform is well known to be efficient quantum circuit in the context of complexity.

Figure 1.1: 3-qubit Quantum Fourier Transform

for which the Hadamard (H), S-gate and T-gate take the following matrix

forms

H =
1√
2

(
1 1

1 −1

)
S =

(
1 0

0 i

)
T =

(
1 0

0 e
πi
4

)
,

Both S and T gates are elements from phase shift gates, namely

P(ϕ) =

(
1 0

0 eiϕ

)
,

such that S = P(π
2 ) and T = P(π

4 ). In quantum Fourier transform, together S

and T gates are applied as controlled gates which involved two respective qubits.

For 3-qubit quantum Fourier transform, the evolution from the initial state can be

expressed as follows,

(I ⊗ I ⊗H)(I ⊗CS)(CT )(I ⊗H ⊗ I)(CS⊗ I)(H ⊗ I ⊗ I) |000〉 (1.2)

=
1√
8




1 1 1 1 1 1 1 1

1 e
iπ
4 i ie

iπ
4 −1 −e

iπ
4 −i −ie

iπ
4

1 i −1 −i 1 i −1 −i

1 ie
iπ
4 −i e

iπ
4 −1 −ie

iπ
4 i −e

iπ
4

1 −1 1 −1 1 −1 1 −1

1 −e
iπ
4 i −ie

iπ
4 −1 e

iπ
4 −i ie

iπ
4

1 −i −1 i 1 −i −1 i

1 −ie
iπ
4 −i −e

iπ
4 −1 ie

iπ
4 i e

iπ
4







1

0

0

0

0

0

0

0




=
1√
8




1

1

1

1

1

1

1

1




,

(1.3)

=
1√
8
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉). (1.4)

4



© C
OPYRIG

HT U
PM

CS is denoted as the control-S gate and CT is denoted as the control-T gate which are

CS =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e
iπ
2


 ; CT =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 e
iπ
4 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 e
iπ
4




.

The control-T gate only acts on first and third qubit. The representation of the gate

is in 23 × 23 due to unable to decompose the identity gate applied for second qubit

using tensor product. This is one among the permutation of qubit representation, we

can always perform a swap operation between qubits and be able to decompose it

using tensor product. For this work we chose this representation.

1.3 Problem statement

Quantum computation utilizes successive application of quantum gates to initial

quantum state of qubit to reach the desired computation results. Quantum gates

for n-qubits system are elements of simple unitary group SU(2n), which also

belongs to Lie group. Thus its Lie group and Lie algebra properties can be studied.

Furthermore Lie group is able to span its manifold which also enable us to study the

properties of the quantum gate evolution under differential geometry perspective.

For 3-qubit quantum circuit problem, SU(8) Lie group is to be used. It’s Lie algebra,

su(8), can be represented in generalized Gell-Mann matrices. For quantum circuit

problem, it would be more convenient to study su(8) in tensor product of Pauli

matrices forming the linearly independent generator (Pauli basis). This project

worked on to check on the ability of su(8) to be expressed in Pauli basis and the

respective sets of SU(8) Lie Group each basis generated.

Studies of quantum complexity can help to create more efficient quantum algorithm.

This project proposed a means of optimization of the complexity for quantum algo-

rithm by restructuring the problem into differential geometry problem. Along with

the properties of SU(8) Lie group and su(8) Lie algebra, we are able to span the man-

ifold. Complexity for implementing single qubit gates, two qubit gates and three or

more-qubit gates are vastly different, thus by introducing penalty parameter s and

q, we can deform the manifold and construct the penalized Riemmanian metric for

three qubit Quantum Fourier Transform.

5
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With the construction of Riemannian metric and Levi-Civita connection, we will

be working on computing the geodesic equation for three qubit Quantum Fourier

Transform without the exact solution. Our choice of for Quantum Fourier Transform

is because major portion of quantum algorithm that exists utilizes Quantum Fourier

Transform as base or part of its algorithm, this piqued our interest to study its

geodesic via our method. This project proposed an organized structure for future

work to optimization for quantum algorithm.

1.4 Objective of research

The objectives of this work are

1. to verify the generator of Lie group or Lie algebra of SU(8) that can be ex-

pressed in tensor product of Pauli matrices.

2. to construct the penalized Riemannian metric for three qubits Quantum Fourier

Transform circuit.

3. to generate a geodesic equation for three qubits Quantum Fourier Transform

circuit.

1.5 Research Scope

There are three quantum computation model, quantum circuit models, adiabatic

quantum computation, and topological quantum computation. The scope of this

research focused only on quantum circuit model. In quantum circuit model, each

qubit started with an initial state and evolves with quantum gates. In our research,

we focus on studying the properties of quantum gates utilizing groups, algebra and

Riemannian geometry tools. In Riemmanian geometry we emphasize on its metric,

Levi-Civita connection and geodesics.

6
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1.6 Conventions

Notations

This subsection is intended for quick reference only. The individual notations will

be properly introduced in chapter 3 accompanied along with its theory.

1. The spaces of real and complex numbers are denoted by R and C, respectively.

Generally we shall denote them by F.

2. Imaginary unit i =
√
−1.

3. Vector spaces, groups and Lie groups are denoted by capital letter

G,H,U,V,W, . . .
Elements in a space or group such as U are denoted by u.

4. Respective Lie algebra of a Lie group are denoted by Fraktur font, such as for

Lie group G, the respective Lie algebra will be denoted as g.

5. The Hermitian adjoint of an operator A will be denoted by A†; if a jk ∈ C are

the matrix elements of A then āk j, are the elements of A†.

6. The “bra-ket” notation, we follow the usual physics convention when writing

the inner product in the bra and ket notation. The quantity 〈 f |g〉 is conjugate

linear in the first entry and linear in the second.

7. The Kronecker delta function δ jk is defined as

δ jk =

{
1 if j = k

0 if j 6= k

8. Following the usual convention, we denote a Lie group in general by G and

its Lie algebra by g, i.e., using the corresponding small Gothic letter. For

example, SU(n) is denoted as simple unitary group, while su(n) denoted as its

Lie algebra.

9. In most cases, we denote operators, polynomials, and physical observables

which relate to standard quantum mechanics using capital letters, e.g. U rep-

resenting the Unitary operator.

Layout

The numbering of definitions, theorems, equations and remarks etc., follows sequen-

tially within each Chapter. For example, Chapter 3 starts with Definition 3.1 fol-

lowed by Definition 3.2, etc.

7
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1.7 Organization of thesis

The thesis is subdivided into six chapters, Bibliography, and Appendix. Chapter

2 will begin with some review of literature on quantum computational complexity,

quantum Fourier transform and past history of work towards optimizing quantum

algorithm using different mathematical tools such as Riemannian geometry, com-

plexity theory and optimal control theory. These include application of solutions and

physical realizable models of scalable quantum computer. Chapter 3 provides rel-

evant theories and definitions. There are quick references for the main parts of the

thesis to clear out doubts when readers go through the proof. Together including in

this chapter will be the quick overview of methodology used for this work. In Chap-

ter 4, it consist of detail construction of Lie algebra of 3-qubit quantum circuit from

its Lie group SU(23), representation of the Lie algebra in Pauli basis as well as its

properties. In Chapter 5, readers will continue with the geometry side of the work,

construction of Riemannian metric, Levi-Civita connection and ultimately geodesic

equation for 3-qubit quantum circuit. An example will also be constructed using

3-qubit Quantum Fourier Transform. Furthermore, the link between algebra and ge-

ometry forms will be enlightened to enable the continuation of idea for readers to go

through the original work. Chapter 6 will be conclusion on the works that have been

done and suggestion for future work. These come with problem encountered to give

insight for reader to further extend the work. Appendix includes some additional

derivations and proofs for interested readers to look out.
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