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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment

of the requirement for the degree of Doctor of Philosophy

DEGENERATIONS OF LOW-DIMENSIONAL COMPLEX LEIBNIZ
ALGEBRAS

By

NURUL SHAZWANI BINTI MOHAMED

February 2023

Chairman: Sharifah Kartini Binti Said Husain, PhD
Institute: Mathematical Research

Non-commutative analog of Lie algebras are Leibniz algebras. One of the impor-

tant course of study is the degenerations of Leibniz algebras. Degenerations (or

formerly known as contractions) were effectively applied to a wide range of phys-

ical and mathematical points of view. This thesis focuses on the degenerations of

low-dimensional Leibniz algebras over the field of complex numbers particularly in

the algebraic description of the varieties of three-dimensional complex Leibniz alge-

bras and five-dimensional complex filiform Leibniz algebras arising from naturally

gradaed non-Lie Leibniz algebras. The first part of this thesis describe the basic con-

cepts and definitions of structural theory of Leibniz algebras and its degenerations.

From the classification list, calculation of invariance arguments are collected. As a

result, degenerations of algebras have been constructed by using algebraic invariants.

The second part of this thesis concentrates on finding some essential degenerations

of an arbitrary pair of the algebras of the same dimensions. Existence of degenera-

tion matrices, gt is needed in order to prove the degenerations. For non degeneration

case, it is enough to provide certain reasons to reject the degenerations. The last part

of this thesis gives the orbit closure, rigid algebras and irreducible components of an

affine algebraic variety of three-dimensional complex Leibniz algebras.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

PENGECUTAN ALGEBRA LEIBNIZ BERDIMENSI RENDAH
TERHADAP NOMBOR KOMPLEKS

Oleh

NURUL SHAZWANI BINTI MOHAMED

Februari 2023

Pengerusi: Sharifah Kartini Binti Said Husain, PhD
Institut: Penyelidikan Matematik

Analog bukan hukum kalis tukar tertib bagi algebra Lie ialah algebra Leibniz. Salah

satu cabang pengajian yang penting dalam kajian ialah pengecutan algebra Leib-

niz. Konsep pengecutan telah digunakan secara efektif pada pelbagai sudut pan-

dangan fizikal dan juga matematik. Tesis ini memberi tumpuan kepada pengecu-

tan algebra Leibniz berdimensi rendah terhadap nombor kompleks khususnya pada

perihal algebra jenis algebra Leibniz terhadap nombor kompleks berdimensi tiga

dan algebra Leibniz filiform nombor kompleks berdimensi lima yang muncul dari-

pada algebra bukan Lie yang digredkan secara semula jadi. Bahagian pertama

tesis ini menerangkan konsep asas dan definisi teori struktur algebra Leibniz dan

pengecutannya. Daripada senarai klasifikasi, pengiraan ketakberubahan dikumpul.

Akibatnya, pengecutan algebra telah dibina dengan menggunakan kaedah ketak-

berubahan algebra. Bahagian kedua tesis ini menumpukan pada mencari beberapa

pengecutaan penting bagi pasangan algebra dalam dimensi yang sama. Kewujudan

matriks pengecutan, gt diperlukan untuk membuktikan setiap pengecutan. Untuk kes

bukan pengecutan, ianya cukup untuk memberi alasan tertentu untuk menolak kon-

sep pengecutan. Bahagian terakhir tesis ini memberikan tutupan orbit, algebra tegar

dan unsur tak terturunkan bagi pelbagai algebra afin khususnya bagi algebra Leibniz

terhadap nombor kompleks berdimensi tiga.
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CHAPTER 1

INTRODUCTION

1.1 Basic Concepts

In this chapter we introduce some definitions and basic concepts of the theory of

Leibniz algebras as well as being at ease with abstract algebra. The foundation of

this theory including the definitions in Section 1.1 until Section 1.4 can be found

in Leibniz algebras book by Ayupov et al. (2019). We begin with the definitions of

vector space, algebra, Lie algebra, Leibniz algebra and group action.

Definition 1.1.1 Let V be a set on which two operations, vector addition and scalar
multiplication are defined. For every u, v and w in V and every scalar c,d ∈ R, if the
listed axioms below are satisfied then V is called a vector space.

1. u+ v is in V .

2. u+ v = v+u.

3. u+(v+w) = (u+v)+w.

4. V has a zero vector such that for every u in V , u+0 = u = 0+u.

5. For every u in V , there is a vector in V denoted by −u such that u+(−u) =
0 =−u+u.

6. cu is in V .

7. c(u+ v) = cu+ cv.

8. (c+d)u = cu+du.

9. c(du) = (cd)u.

10. 1(u) = u.

Example 1.1.1 Let V be m × n matrices over a field K, written as Mm×n(K)
equipped with two maps

f (A,B) = A+B and g(k,A) = kA.

such that A,B,A+B,kA is in V . By using all conditions in Definition 1.1.1, it is
indeed a vector space.

1
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Definition 1.1.2 f is called a bilinear function such that f : V ×V → V where
x1,x2,y1,y2 ∈V and α,α1,α2,β ,β1,β2 ∈ K satisfies the following:

1. f (α1x1 +α2x2,β ) = α1 f (x1,β )+α2 f (x2,β ),

2. f (α,β1y1 +β2y2) = β1 f (α,y1)+β2(α,y2).

Example 1.1.2 Let f : (A+V )× (A+V )→ (A+V ). We define (a+ u) · (b+ v) =
a ·b+θ(a,b). We check the first condition in Definition 1.1.2 with respect to the first
argument as follows:

f (α(a+u)+β (b+ v),c+w) = f (αa+αu+βb+βv,c+w),

= f ((αa+βb)+(αu+βv),c+w).

The same way can be checked for the second condition and applied both conditions
with respect to the second arguments. Therefore, f is a bilinear map.

Definition 1.1.3 A is called an algebra over the field K if A is a vector space over
K, such that f : A×A → A and

1. f (αx+βy,z) = α f (x,z)+β f (y,z),

2. f (x,αy+β z) = α f (x,y)+β f (x,z),

where x,y,z ∈ A and α,β ∈ K.

The dimension of an algebra A is its dimension as a vector space. An algebra A is

finite dimensional if A is a finite dimensional vector space.

Example 1.1.3 Let V = M2(K) be the vector space of 2×2 matrices over a field K.
Introduce a binary operation on M2(K) as follows:

λ
((

a1 a2

a3 a4

)
,

(
b1 b2

b3 b4

))
=

(
a1b1 +a2b3 a1b2 +a2b4

a3b1 +a4b3 a3b2 +a4b4

)
.

It is easy to see that M2(K,λ ) is an algebra where dimK(M2(K)) = 22 = 4.

There is a well known class of algebras which is Lie algebras. The notion of Lie

algebra arose in the study of Lie groups and now became an object of self-theory.

2
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Definition 1.1.4 Lie algebra over a field K is an algebra L over K with a bilinear
binary operation that satisfies:

1. Antisymmetry: [x,y] =−[y,x] for all x,y ∈ L,

2. Jacobi identity: [[x,y],z]+ [[y,z],x]+ [[z,x],y] = 0 for all x,y,z ∈ L.

Example 1.1.4 Let A be an associative algebra and x,y ∈ A. Define bilinear
operation [x,y] = xy− yx. Then, L = (A, [·, ·]) is a Lie algebra. Particularly, if A
be n×n matrices with the entries from K, denoted by Mn(K) is a Lie algebra over a
field K where dimK(Mn(K)) = n2.

Definition 1.1.5 An algebra L over a field F is called a Leibniz algebra, if its
bilinear operation [·, ·] satisfies the following Leibniz identity:

[x, [y,z]] = [[x,y],z]− [[x,z],y],

for all x,y,z ∈ L.

Example 1.1.5 Let V be a vector space. Introduce the bilinear operation [·, ·] on V
for the basis vectors e1,e2, ..,en. Then Ln = (V, [·, ·]) is a Leibniz algebra. For other
vectors [·, ·] is extended by linearity:

1. L2 : [e1,e1] = e2.

2. L3 : [e1,e3] =−2e1, [e2,e2] = e1, [e3,e2] = e2, [e2,e3] =−e2.

3. L4 : [e1,e1] = e2, [e2,e1] = e3, [e3,e1] = e4.

4. L5 : [e1,e1] = e3, [ei,e1] = ei+1, 2 ≤ i ≤ 4, [e1,e2] = e4 + λe5, [e2,e2] =
e4 − e5, [e3,e2] = e5.

Now we briefly summarize basic facts about some classes of algebras which are

closely related to Lie algebras which is Leibniz algebras. Leibniz algebras are non-

commutative variation of Lie algebras. Generalization of Leibniz Algebras can be

obtained by applying antisymmetry properties [x,y] = −[y,x] from Definition 1.1.4

into the Leibniz identity [x, [y,z]] = [[x,y],z]− [[x,z],y], (refer Definition 1.1.5) that

will give us [[x,y],z]− [x, [y,z]]− [[x,z],y] = 0. Then the Jacoby identity [[x,y],z]+
[[y,z],x]+ [[z,x],y] = 0 will be obtained. Clearly, a Lie algebra is a Leibniz algebra.

The set of all bilinear maps V ⊗V → V form a vector space Hom(V ⊗V,V ) of

dimensional n3, which can be considered together with its natural structure of an

affine algebraic variety over K and denoted by Algn(K) ∼= Kn3
. An n-dimensional

3
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algebra L over K can be considered as an element λ (L) of Algn(K) via the bilinear

mapping λ : L⊗L → L defining a binary algebraic operation on L. A linear bijection

GL(V ) acts on Algn(K) by

(g∗λ )(x,y) = g(λ (g−1(x),g−1(y))). (1.1)

It is called “transport of structure”. Let {e1,e2, ...,en} be a basis of the vector space

V . Then x,y ∈V can be written as follows:

x = α1e1 +α2e2 + ...+αnen

and

y = β1e1 +β2e2 + ...+βnen.

Therefore,

λ (x,y) =
n

∑
i, j=1

αiβ jλ (ei,e j) =
n

∑
i, j,k=1

αiβ jγk
i jek.

The coefficients γk
i j, where i, j,k = 1,2, ...,n of the linear combinations

λ (ei,e j) =
n

∑
k=1

γk
i jek, (1.2)

are said to be the structure constants of the algebra L on the basis {e1,e2, ...,en}.

Therefore, if a basis of the underlying vector space V is fixed then all possible algebra

structures over V can be identified by points {γk
i j} of n3− dimensional affine space

Kn3
.

Definition 1.1.6 Let G be a group and X be a nonempty set. An action of a group G
on a set X is a function σ : G×X → X that satisfies the following conditions:

1. σ(e,x) = x, for all x ∈ X , where e is the identity element of G.

2. σ(g,σ(h,x)) = σ(gh,x), for all g,h ∈ G and x ∈ X.

Let K be a field. K[X ] = { f : X → K} be the set of all functions f on X . It is an

algebra over K with respect to point-wise addition, multiplication and multiplication

by scalars. If G is an algebraic group acting on an algebraic variety X , then there is

an additional condition that σ is a morphism. Let G be a group which acts on the set

X . The orbit of x under the action of G is given as follows:

OG(x) = {g · x|g ∈ G}.

4
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1.2 Topology, Zariski Topology on Affine Space and Irreducible

A topological space is a set endowed with a structure, called a topology which allows

defining all kinds of continuity.

Let X be a set and P(X) = {A | A ⊂ X}. For example, X = {a,b}. P(X) =
{{a},{b},{a,b}, /0}. Let τ be a subset of X . Then, τ is a topology if τ ⊂ P(X)
and the following properties are satisfied:

1. /0 and X are both in τ .

2. If A,B ∈ τ , then A∪B ∈ τ .

3. If Ai ∈ τ then
⋂

i∈I Ai ∈ τ , or τ is closed with finite intersection.

The elements of τ are called open sets. (X ,τ) is called a topological space. A subset

A of (X ,τ) is said to be closed in X if its complement X \A is an open subset of

(X ,τ). /0 and X are always both open and closed.

Example 1.2.1 Let X = {1,2,3,4,5} and P(X) = {{1},{2},{3},{4},{5},{1,2},
{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{1,2,3},{1,2,4},
{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{3,4,5},{1,2,3,4},
{1,2,3,5},{2,3,4,5},{1,2,3,4,5},{ /0}}.

Then, τ = { /0,{1,2},{2,3},{2},{1,2,3},X} is a topology.
Elements of τ is indeed an open set e.g. {1,2}.
Meanwhile, {3,4,5} is a closed set because {3,4,5}= X \{1,2}.

Definition 1.2.1 An algebraic group is an affine variety G equipped with morphisms
of varieties μ : G×G → G, ı : G → G that give G the structure of a group.

Let K be a fixed algebraically closed field. We define affine space over K denoted

by An, to be the set of all n-tuples of elements of K. An element P ∈ An is called a

point, and if P = (a1, ...,an) with ai ∈ K, then the ai are called the coordinates of P.

Let A = K[x1, ...,xn] be the polynomial ring in n variables over K. We will interpret

the elements of A as functions from the affine n-space to K, by defining f (P) =
f (a1, ...,an) where f ∈ A and P ∈ An. Thus, if f ∈ A is a polynomial, the set of zeros

of f can be determined by:

Z( f ) = {P ∈ An | f (P) = 0}. (1.3)

5
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More generally, if T is any subset of A, we define the zero set of T to be the common

zeros of all the elements of T :

Z(T ) = {P ∈ An | f (P) = 0,∀ f ∈ T}. (1.4)

The zeros of a polynomial K[x] are all the x-values that make the polynomial equal

Figure 1.1: Common Zeros of Polynomial

to zero. If we have two or more polynomials, the common zeros of polynomial can

be determined by finding the intersection of zeros of polynomials. It can be seen in

Figure 1.1 above.

Example 1.2.2 Consider n = 3, K[x,y,z] where f1 = x, f2 = y.
Choose a point γ = (γ1,γ2,γ3) ∈ A3. The zeros of f1, Z( f1) = {γ ∈ A3 | f1(γ) =
0} = γ1 and the zeros of f2, Z( f2) = {γ ∈ A3 | f2(γ) = 0} = γ2. It gives that our
point γ = (0,0,γ3).

Therefore, the common zeros of polynomials f1 and f2, Z( f1, f2) = Z( f1 ∩ f2) =
{(0,0,γ3) | γ3 ∈ K}. The graph of the polynomial functions can be illustrated in
Figure 1.2.

6
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Figure 1.2: Graph of Polynomial Functions K[x,y,z] where f1 = x, f2 = y

Clearly if ℘ is the ideal of A generated by T , then Z(T ) = Z(℘). Since A is a

Noetherian ring, any ideal ℘ has a finite set of generators f1, ..., fr. Thus, Z(T ) can

be regarded as the common zeros of the finite set of polynomials f1, ..., fr.

Definition 1.2.2 A subset Y of An is an algebraic set if there exists a subset T ⊂ A
such that Y = Z(T ).

The following proposition can be found in Ayupov et al. (2019).

Proposition 1.2.3 The union of two algebraic sets is an algebraic set. The intersec-
tion of any family of algebraic sets is an algebraic set. The empty and the whole
space are algebraic sets.

We define the Zariski topology on An by considering the complements of the open

subsets. This is indeed a topology if the intersection of two open sets is open sets,

and the union of any family of open sets is open sets. Additionally, empty set and

whole sets are both open sets.

Definition 1.2.4 A nonempty subset Y of a topological space X is irreducible if it
cannot be expressed as the union Y = Y1 ∪Y2 of two proper subsets, each one is
closed in Y . The empty set is not considered to be irreducible.

Proposition 1.2.5 If Y is an irreducible subset of X, then its closure in X is also
irreducible.

7
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Definition 1.2.6 An affine algebraic variety is an irreducible closed subset of An

(with the induced topology).

Remark 1.2.7 Every set is always contained in its closure i.e. A ⊆ Ā.

Let (X ,τ) be a topological space and A be the subset of X . The closure of A is

denoted by Ā is the intersection of all closed sets containing A. That is, Ā = {x ∈ X :

∀N(x),N(x)∩A = /0}. Or it can be clearly seen in Figure 1.3.

Figure 1.3: Closure of A

Example 1.2.3 Let X = {a,b,c,d} and P(x) = {{a},{b},{c},{d},{a,b},{a,c},
{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}, /0} with
topology

τ = { /0,{a},{b,c},{a,b,c},X}
and A = {b,d} be a subset of X.

1. Open sets are /0,{a},{b,c},{a,b,c},X.

2. Closed sets are X ,{b,c,d},{a,d},{d}, /0.

3. Closed set containing A are X ,{b,c,d}.

4. Ā = {b,c,d}∩X = {b,c,d}.

1.3 Introduction on Leibniz algebra

The theory of Lie algebras is one of the most developed extensions in modern

algebra. It has been deeply explored and reviewed by many mathematicians. Due to

active investigations on the properties of Lie algebras, a more general object called
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Leibniz algebras also has been investigated. In this thesis, we consider Leibniz

algebras over the field of complex number. Theorem 1.3.1 states that any n-finite

dimensional Leibniz algebra can be written as semidirect sum of solvable Leibniz

and semisimple Lie algebra. The proof of the following theorem were given by

Barnes (2012).

Theorem 1.3.1 (Levi’s theorem for Leibniz algebras) For a finite-dimensional
Leibniz algebra L over a field of characteristic zero there exists a subalgebra S which
is a semisimple Lie algebra, such that L = S

⊕
R where R is the radical of L.

This thesis focused on the study of Leibniz algebras which was introduced by

a French Mathematician, Loday (1993) for “non-antisymmetric” analogue of Lie

algebras. If the properties of antisymmetric is applied to the Leibniz identity,

then it is equivalent to the Jacobi identity. Hence, any Lie algebra is Leibniz

algebra. Leibniz algebras also appear to be related in natural way to several topics

such as differential geometry, homological algebra, classical algebraic topology,

noncommutative geometry, quantum physics and many more.

A Leibniz algebra L on n-dimensional vector space V over a field K can be written

as a pair L = (V,λ ), where λ is a Leibniz algebra law on V . Let us denote the set

of Leibniz algebra laws by LBn. Let {e1,e2,e3, ...,en} be a basis of V . The structure

constants of λ ∈ LBn, γk
i j ∈ K can be identified by the law:

n

∑
l=1

(
γ l

jkγm
il − γ l

i jγ
m
lk + γ l

ikγm
l j

)
= 0, (1.5)

where i, j,k,m = 1,2, ...,n. Then LBn appears as an algebraic variety embedded in

the linear space of bilinear mapping on V , isomorphic to Kn3
.

Definition 1.3.2 Two laws λ1 and λ2 from LBn are said to be isomorphic if there is
g ∈ GLn(K) such that

λ2(x,y) = (g∗λ1)(x,y) = g−1(λ1(g(x),g(y)))

for all x,y ∈V.

Within the context of this study, the following is a particular definition of orbit

function.

Definition 1.3.3 A function f : LBn → K is said to be invariant (or orbit) function if

f (g∗λ ) = f (λ )

9
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for all g ∈ GLn(K) and λ ∈ LBn.

Let O(λ ) be the set of laws isomorphic to λ . It is called the orbit of λ with respect

to action of GLn(K). The closure of the orbit with respect to the Zariski topology is

denoted by O(λ ).

The lower central series and derived series of a Leibniz algebra L are defined

as follows:

L1 = L, Lk+1 = [Lk,L], k ∈ N.

L[1] = L, L[s+1] = [L[s],L[s]], s ∈ N.

Definition 1.3.4 A Leibniz algebra L is said to be nilpotent and solvable if there
exists an integer i ∈ N such that

L1 ⊃ L2 ⊃ . . .⊃ Li = 0.

L[1] ⊃ L[2] ⊃ . . .⊃ L[i] = 0.

respectively. Any nilpotent algebra is solvable algebra.

If A and B are subspaces of Leibniz algebra L, we define

[A,B] = span{[a,b]|a ∈ A,b ∈ B}

and

A+B = {a+b|a ∈ A,b ∈ B}.
If z ∈ [A,B], then there exist x1, ...,xr ∈ A and y1, ...,yr ∈ B such that z = ∑r

i=1[xi,yi].

Example 1.3.1 The table of multiplication of algebra L given as follows:
[e1,e1] = e3, [e2,e1] = e4, [e3,e1] = e5.

L1 = L = span{e1,e2,e3,e4,e5},
L2 = [L,L] = span{[a,b]|a,b ∈ L}= {e3,e4,e5},
L3 = [L2,L] = span{e5},
L4 = [L3,L] = 0.

Therefore, L is nilpotent algebra.

Example 1.3.2 Consider g = SL2(C) with trace = 0. The basis given

e =
[

0 1

0 0

]
, f =

[
0 0

1 0

]
,h =

[
1 0

0 −1

]

10
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has the relations [h,e] = 2e, [h, f ] = −2 f , [e, f ] = h and L[1] = L[2] = L[3] = ... =

L[k] = span{e, f ,h}. Therefore g is non solvable Lie algebra.

Definition 1.3.5 An n-dimensional Leibniz algebra L is said to be filiform if

dimLi = n− i,

where 2 ≤ i ≤ n.

It is clear that filiform Leibniz algebra is always nilpotent. However, nilpotent

Leibniz algebras is not necessarily to be filiform. We can illustrate the inclusion

of various type of Leibniz algebras in the following Figure 1.4.

Figure 1.4: The Inclusion of Various Type of Leibniz Algebras

Definition 1.3.6 A linear transformation d : L → L is said to be a derivation if
d[x,y] = [d(x),y]+ [x,d(y)] for any x,y ∈ L.

The set of all derivations of an algebra L is denoted by Der(L). A subspace L0 of a

Leibniz algebra L is said to be subalgebra if for x,y ∈ L0 implies [x,y] ∈ L0.

Definition 1.3.7 The subspace ℜ(L),ℑ(L) of an algebra L is defined by

ℜ(L) = {x ∈ L | [L,x] = 0}

and
ℑ(L) = {x ∈ L | [x,L] = 0}

11
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is said to be the right annihilator and left annihilator of L, respectively.

In other words, the right and left annihilator of a Leibniz algebra L can be defined as

all element in L which product is zero.

Definition 1.3.8 The center of a Leibniz algebra L defined by

Z(L) = {x ∈ L | [L,x] = [x,L] = 0}.

Right annihilator, ℜ(L) has a left ideal meanwhile, left annihilator ℑ(L) has a right

ideal and center Z(L) has two sided ideals. All such ideals are ideals of Leibniz

algebra L. Any ideal is a subalgebra and the subalgebra is subspace and have its own

dimension.

Definition 1.3.9 The maximal commutative subalgebra of a Leibniz algebra L
denoted by Com(L) if [x,y] = [y,x] for all x,y ∈ L.

Definition 1.3.10 The maximal abelian subalgebra of L denoted by nA(L) if [x,y] =
0 for all x,y ∈ L and nA(L) is the maximal with respect to inclusion.

Definition 1.3.11 The maximal Lie subalgebra of L denoted by Lie(L) is defined by
[x,y] =−[y,x] for all x,y ∈ L and Lie(L) is the maximal satisfying the condition.

Definition 1.3.12 The k-th degree of L defined by Lk = [Lk−1,L] for all k ∈ N.

1.4 Degeneration Concepts

Let L = (V,λ ) be an n-dimensional algebra with an underlying n-dimensional vector

space V over a field K and a bilinear map λ : V ×V → V . Consider a continuous

function gt : (0,1]→ GL(V ). Specifically, gt is a non-singular linear operator on V
for all t ∈ (0,1]. A parameterized family of new isomorphic to L algebra structures

on V is determined via the binary operation λ as follows:

λt(x,y) = (gt ∗λ )(x,y) = g−1
t λ (gt(x),gt(y)), (1.6)

where x,y ∈V .
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Definition 1.4.1 If the limit limt→+0 λt = λ0 exists for any x,y ∈ V , then the
algebraic structure λ0 is said to be a degeneration of the algebra L.

We recall the following simple properties of the degeneration. The degenerations can

be treated in basis level. Let {e1,e2, ...en} be a basis of an n-dimensional algebra

L. If the limit limt→+0 λt(ei,e j) = λ0(ei,e j) exists, then the algebra (V,λ0) is a

degeneration of L.

Note 1 If λ not isomorphic to μ , then the assertion λ → μ is called a proper
degeneration.

Note 2 A degeneration is called trivial if λ ∼= μ , that is, if μ ∈ O(λ ).

Note 3 Degeneration is transitive, that is if λ → μ and μ → ν then λ → ν .

The definition of the degeneration is given as follows.

Definition 1.4.2 An algebra λ is said to degenerate to another algebra μ , if μ is
represented by a structure which lies in the Zariski closure of the GL(V)-orbit of the
structure which represents λ , i.e. μ ∈ O(λ ). We denote this by λ → μ .

Note that in this case we have O(μ)⊂ O(λ ). Hence, definition of degeneration does

not depend on the choice of λ and μ . It is easy to see that any algebra degenerates

to the algebra with zero multiplication. From now on we use this fact without

mentioning it. We write λ → μ if μ /∈ O(λ ). The set of all Leibniz algebra structures

on an n-dimensional vector space V over a field K is denoted by LBn(K) and can be

included in the above mentioned n3-dimensional affine space. The LBn(K) is closed

subset of Algn(K). Thus, LBn(K) is an algebraic set.

A subset of an algebraic set is said to be irreducible if it cannot be written as a

union of two non trivial Zariski closed subsets. A maximal irreducible closed subsets

of an algebraic set is called irreducible component of the algebraic set. A Leibniz

algebra μ is said to be rigid if its orbit O(μ) is an irreducible component of LBn(K)
i.e., O(μ) is an open subset of the irreducible component. There are only finitely

many irreducible components in each dimension. It is interesting but difficult to

study the structure of LBn(K). In particular, one is interested to find the irreducible

components of LBn(K).

13
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1.5 Problem Statement

One of the tools to determine the degenerations is by using some invariance

arguments. A few results on degenerations of three-dimensional complex Leibniz

algebras has been given by Rakhimov(2012) and Ismailov(2019). However,

they used an old list of classification of algebras. To gain a right description

of degenerations of three-dimensional complex Leibniz algebras, we need to

consider the updated classification list by Rikhsiboev(2012), Casas et.al(2012) and

Ayupov(1999).

In this work, we consider degenerations of three-dimensional complex Leibniz

algebras and five-dimensional complex filiform Leibniz algebras arising from

naturally graded non-Lie Leibniz algebras. Results on degenerations of four-

dimensional complex Leibniz algebras was solved by Amir et al. (2022).

It is interesting to find the possible degenerations between the algebras of low-

dimensional complex Leibniz algebras. However, constructing the degeneration

matrices in order to prove the degenerations are really difficult. In the past work, no

clear procedure on finding the degeneration matrices given. To find the dimension

of the algebraic variety, it is enough by considering its rigidity as the orbit closure of

rigid algebras gives irreducible components of the variety.

1.6 Research Objectives

The objectives of this research are:

1. to compute the invariance arguments for three-dimensional complex Leibniz

algebras and five-dimensional complex filiform Leibniz algebras arising from

naturally graded non-Lie filiform Leibniz algebras.

2. to construct the degenerations and non degenerations between the algebras for

three and five dimensional complex Leibniz algebras.

3. to determine the affine algebraic variety of three-dimensional complex Leibniz

algebras by finding the orbit closure, rigidity and its irreducible components.

1.7 Methodology

In this subsection, we give general method structure that have been used in this

research in order to verify and corroborate the results.
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1. To achieve the first objective, we construct the invariance arguments of Leibniz

algebras by using some well-known invariance used in the previous works.

One of the most powerful invariance is the derivation of algebras. Given

two algebras A and B. We consider the case where, if A → B and A is not

isomorhic to B, then the dimensions of Der(A) < dimensions of Der(B). We

collect the relations between those invariance arguments as necessary criteria

of degenerations in one theorem.

2. For the second objective, we need to construct families of matrices

parametrized by t. Let A and B be two algebras represented by λ and μ
from Algn(K) respectively. We fix a basis e1,e2, ...,en of V and γk

i j be the

structure constants of μ in this basis. If there exist c j
i (t) ∈ C and t ∈ C∗ such

that Et
i = ∑n

j=1 c j
i (t)e j where i = 1,2, ...,n form a basis of V and the structure

constants of λ in the basis Et
1, ...,E

t
n are such polynomials γk

i j(t) ∈ C[t] that

γk
i j(0) = γk

i j, then A −→ B. Thus Et
1, ...,E

t
n is called a parametrized basis for

A→B. Particularly in LB3(C), we consider Ei(t) where i= 1,2,3 in this form:

E1(t) = ϕ11(t)e1 +ϕ12(t)e2 +ϕ13(t)e3,

E2(t) = ϕ22(t)e2 +ϕ23(t)e3,

E3(t) = ϕ33(t)e3.

For another case where the pairs of any Leibniz algebras does not satisfy at

least one relation from the list, we prove that degeneration does not exist by

providing a reason.

3. For the third objective, in order to find algebraic variety, it is enough to

study the properties that deal with rigidity. Algebras whose orbits are open

in LBn(K) are called rigid. The orbits of the rigid algebras give irreducible

components of the variety LBn(K). By the rigidity properties, we obtain the

irreducible components in low dimensional complex Leibniz algebras. If L is

a rigid algebra in LBn(K), then there exists an irreducible components, C of

LBn(K) such that O(L)∩C is non empty open subset of C. The closure of

O(L) is contained in C. Then, the dimension of the irreducible component C
of LBn(K) is given by dim C = n2− dim Aut(L).

1.8 Outline of Thesis

Chapter 1 gives a brief introduction about the motivation of this research. Vector

spaces, algebra, Lie algebra, Leibniz algebra, basic definitions and degeneration

concepts were introduced in this chapter together with the research problems,

research objectives and methodology.

Chapter 2 focuses on the previous works done by many researchers. This chapter

reviews the mathematical background that is related to this research.
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Chapter 3 consists of computation of invariance arguments. The value of

degeneration invariance are collected in table and have been applied to three-

dimensional complex Leibniz algebras. This chapter also discusses the possible

degenerations of three-dimensional complex Leibniz algebras. We consider some

essential degenerations and prove that the possible degenerations are in fact

degenerations. Some propositions on degenerations are listed and the parametrized

basis for each degeneration also given. Rigid algebras and irreducible component of

the variety were concluded in a theorem.

Chapter 4 gives the invariance arguments of five-dimensional complex filiform

Leibniz algebras arising from naturally graded non-Lie Leibniz algebras. Some

degenerations of five-dimensional complex filiform Leibniz algebras were given

and proved by constructing the degeneration matrices. The non-degeneration cases

together with some reasons that contradicts the necessary condition of degenerations

have been listed into a table.

Finally in Chapter 5 contains the summary of all the contributions that has been made

in this thesis together with the future work that can be extended from this research.
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