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Electrochemical energy storage (EES) technologies including batteries and supercapacitors 
(SCs) are essential in addressing the need for sustainable energy issues caused by the 
depletion of fossil fuels. Despite extensive study and substantial progress of both SCs and 
batteries have been carried out, individual device performance still requires further 
development to fulfil current commercial expectations. Batteries have high specific energy 
despite having low specific power. On the other hand, SCs with low specific energy prevent 
them from being widely used in commercial applications. Thus, this scenario sparked a new 
line of inquiry, by integrating the battery and SCs into a single device known as a
supercapattery. This device is predicted to have outstanding performance and a long cycle 
life due to the combination of capacitive and battery-grade materials. However, 
supercapattery technology is still developing since the current focus is on the development 
of high-performance novel electrode materials to design supercapattery devices. Metal-
organic frameworks (MOFs) have attracted a lot of attention in the field of energy storage 
due to their unique properties, including large specific surface areas, adjustable pore sizes 
and stable porous structures. Therefore, the synthesis of novel MOFs and fabrication of them 
as electrode materials in supercapattery devices are essential goals in current research. Three 
novel  Mn(II) MOFs bonded to 1,2,4-triazoles (Htrz) ligand namely UPMOF-4
(MnCl2.4H2O with Htrz), UPMOF-5 (anhydrous MnBr2 with Htrz) and UPMOF-6
(Mn(NO3)2.4H2O with Htrz) were successfully synthesised solvothermally with molar ratios 
of 1:2 (UPMOF-4 and UPMOF-5), 1:1.5 (UPMOF-6) at 125°C (UPMOF-4), 120°C 
(UPMOF-5) and 110°C (UPMOF-6). These new MOFs were characterised using powder X-
ray diffraction (PXRD), thermogravimetric analysis (TGA), field emission scanning electron 
microscopy (FESEM), N2 physisorption analysis and the structural determination was 
performed by single-crystal X-ray diffraction analysis (SCXRD). The peaks at low angles of 
10° in the PXRD pattern of MOFs indicated the formation of a large unit cell of the 
frameworks. Thermal analysis revealed that UPMOF-4, UPMOF-5 and UPMOF-6 had high 
thermal stability up to 490°C, 570°C and 435°C, respectively. The N2 adsorption-desorption 
measurements indicated the UPMOF-4, UPMOF-5 and UPMOF-6 had BET surface areas of 
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1758 m2/g, 1724 m2/g and 895 m2/g, respectively. The three novel MOFs were crystallised 
in a monoclinic system with different space groups, i.e. I2/a (UPMOF-4) and P21 (UPMOF-
5 and UPMOF-6). Topologically, the three-dimensional (3D) structure of UPMOF-4 owns a 
pcu network topology while UPMOF-5 and UPMOF-6 with two-dimensional (2D) 
structures displayed hxl type topology. The novel MOFs were then utilised as positive 
electrodes for electrochemical studies as supercapattery devices for the first time. In a three-
electrode assembly in 1 M KOH, all three MOFs manifested a decent performance by 
showing a battery-graded nature with specific capacities of 203.1 C/g (UPMOF-4), 160.2 
C/g (UPMOF-5) and 121.1 C/g (UPMOF-6). The novel MOFs were sandwiched with 
activated carbon (negative electrode) to fabricate supercapattery devices. UPMOF-4 showed 
a good specific capacity of 174.4 C/g with promising capacity retention of 90.1% even after 
2500 cycles, whereas UPMOF-5 and UPMOF-6 depicted specific capacities of 132.4 C/g 
and 96.28 C/g with capacity retention of 88.9% and 79.9%, respectively after 2500 cycles. 
The density functional theory (DFT) calculation of these three MOFs revealed that UPMOF-
4 has the lowest HOMO-LUMO energy gap (Egap) of 0.211 eV followed by UPMOF-6
(0.777 eV) and UPMOF-5 (1.198 eV). Therefore, the good electrochemical performance of 
UPMOF-4 imputed to the structural stability, highly porous nature and low Egap. This work 
indicated that all these MOFs could be emerging electrode materials for supercapattery 
devices.
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Institut     : Nanosains dan Nanoteknologi 

Teknologi tenaga elektrokimia (EES) termasuk bateri dan superkapasitor(SC), adalah 
penting dalam menangani isu keperluan tenaga mampan yang disebabkan oleh kemerosotan 
bahan api fosil. Walaupun kajian meluas dan kemajuan besar kedua-dua SC dan bateri telah 
dijalankan, prestasi peranti individu masih memerlukan pembangunan lanjut untuk 
memenuhi keperluan komersil semasa.. Bateri mempunyai tenaga spesifik yang tinggi 
walaupun mempunyai kuasa spesifik yang rendah. Sebaliknya, SC dengan tenaga spesifik 
yang rendah menghalangnya daripada digunakan secara meluas dalam aplikasi komersial. 
Oleh itu, senario ini mencetuskan idea/penyelidikan baharu yang, mencadangkan penyatuan 
bateri dan SC ke dalam satu peranti yang dikenali sebagai superkapateri. Peranti ini
diramalkan mempunyai prestasi yang cemerlang dan kitaran hayat yang panjang disebabkan 
oleh gabungan bahan kapasitif dan bahan gred bateri. Walau bagaimanapun, tumpuan yang 
terkini adalah pada pembangunan bahan elektrod baharu yang boleh berfungsi dengan baik 
dalam teknologi ini. Kerangka logam-organik (MOF) telah menarik perhatian dalam bidang 
penyimpanan tenaga kerana sifat uniknya seperti permukaan yang luas dan besar, saiz liang 
boleh dilaraskan dan struktur berliang yang stabil. Oleh itu, sintesis MOF baharu dan 
pengunaanya sebagai bahan elektrod dalam peranti superkapateri adalah matlamat penting 
dalam penyelidikan ini. Tiga  novel Mn(II) MOF terikat dengan ligan 1,2,4-triazoles (Htrz) 
iaitu UPMOF-4 (MnCl2.4H2O dengan Htrz), UPMOF-5 (MnBr2 dengan Htrz) dan UPMOF-
6 (Mn(NO3)2.4H2O dengan Htrz) berjaya disintesis secara solvoterma dengan nisbah molar 
1:2 (UPMOF-4 dan UPMOF-5), 1:1.5 (UPMOF-6) pada suhu 125°C (UPMOF-4), 120°C ( 
UPMOF-5) dan 110°C (UPMOF-6). MOF baharu ini dicirikan menggunakan analisis 
pembelauan sinar-X (PXRD), analisis termogravimetri (TGA), mikroskop elektron 
pengimbasan pancaran medan (FESEM), analisis penjerapan fizikal N2 dan penentuan
struktur dilakukan dengan analisis belauan sinar-X hablur tunggal (SCXRD). Puncak pada 
sudut rendah 10° dalam analisis PXRD menunjukkan pembentukan kerangka dengan sel 
unit besar. Analisis terma mendedahkan bahawa UPMOF-4, UPMOF-5 dan UPMOF-6
mempunyai kestabilan haba masing-masing yang tinggi sehingga 490°C, 570°C dan 435°C. 
Pengukuran penjerapan-penyahjerapan N2 menunjukkan UPMOF-4, UPMOF-5 dan 
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UPMOF-6 mempunyai luas permukaan BET masing-masing 1758 m2/g, 1724 m2/g dan 895 
m2/g. Tiga MOF baharu ini telah dihablurkan dalam sistem monoklinik dengan kumpulan 
ruang yang berbeza iaitu I2/a (UPMOF-4) dan P21 (UPMOF-5 dan UPMOF-6). Struktur 
tiga dimensi (3D) UPMOF-4 memiliki topologi rangkaian pcu manakala UPMOF-5 dan 
UPMOF-6 dengan struktur dua dimensi (2D) memaparkan topologi jenis hxl. MOF baharu 
ini seterusnya  digunakan sebagai elektrod positif untuk kajian elektrokimia sebagai peranti 
superkapateri buat kali pertama. Di dalam sistem tiga elektrod menggunakan 1 M KOH 
sebagai elektrolit, ketiga-tiga MOF menunjukkan prestasi yang baik dengan menunjukkan 
sifat gred bateri dengan kapasitan spesifik 203.1 C/g (UPMOF-4), 160.2 C/g (UPMOF-5) 
dan 121.1 C/g (UPMOF-6). MOF baharu juga diapit dengan karbon aktif (elektrod negatif) 
untuk menghasilkan peranti superkapateri. UPMOF-4 menunjukkan kapasitan spesifik yang 
baik iaitu 174.4 C/g dengan pengekalan nilai kapasitan sebanyak 90.1% walaupun selepas 
2500 kitaran, manakala UPMOF-5 dan UPMOF-6 mempunyai kapasitan spesifik 132.4 C/g 
dan 96.28 C/g dengan pengekalan kapasitan masing-masing sebanyak 88.9% dan 79.9%, 
selepas 2500 kitaran. Pengiraan teori fungsi ketumpatan (DFT) bagi ketiga-tiga MOF ini 
mendedahkan bahawa UPMOF-4 mempunyai nilai jurang tenaga HOMO-LUMO (Egap)
terendah sebanyak 0.211 eV diikuti oleh UPMOF-6 (0.777 eV) dan UPMOF-5 (1.198 eV). 
Oleh itu, UPMOF-4 dengan prestasi elektrokimia yang baik ini boleh dikaitkan dengan 
kestabilan struktur, sifat berliang tinggi dan nilai Egap rendah. Penyelidikan ini menunjukkan 
bahawa semua MOF ini boleh menjadi bahan elektrod baharu untuk peranti superkapateri.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Metal-organic frameworks (MOFs) are a rapidly emerging unique type of crystalline porous 
materials in reticular chemistry that describe the linking of molecular building blocks by 
strong bonds to develop extended crystalline structures (Yaghi, 2019). In relation to this, 
MOFs or porous coordination polymers are self-assembled from the inorganic metal cluster 
and organic bridging ligands via strong covalent bonds (Figure 1.1).

Figure 1.1: Synthesis and factors affecting the formation of MOFs (Sharanyakanth and 
Radhakrishnan, 2020).

The structures of MOFs are also influenced by several factors related to synthetic and 
process parameters (Figure 1.1), including changes in pH, temperature, choice of solvent, 
metal ion and organic linker (Sharanyakanth and Radhakrishnan, 2020). MOFs are typically 
synthesised in mild settings using either a standard approach (above room temperature) or a 
non-conventional method (below or at room temperature). Microwave, electrochemical, 
mechanochemical, ultrasonic, and high-throughput syntheses are some of the additional 
methods used to make MOFs.

In MOF chemistry, the functionality of ligands plays a key role in order to access a broad 
range of promising applications in which the newly synthesised MOFs can provide a 
platform to integrate various chemical functionalities in many useful applications  (Chen and 
Wu, 2018). A predominant feature of MOFs is that their framework structure, pore 
environment, and functionality can be fined controlled by the choice of metal and organic 
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linkers. In particular, organic linkers are the essential units of coordination polymers 
regardless of their synthetic routes or strategies.

The flexibility and versatility of organic ligands have also been recognised as the key value 
of coordination polymers. In this context, the N-donor linkers namely azoles, five-
membered aromatic nitrogen heterocycles are increasingly used to design and synthesise 
new families of coordination polymers (Zhang et al. (2012). Generally, these ligands 
including imidazole, pyrazole, triazole and tetrazole (Figure 1.2) are promising because 
easy to be synthesised, mostly soluble in common organic solvents and readily bind to 3d-
metals (Bai et al., 2011). Among these, the most-versatile azole ligands are triazoles, (Bai et 
al., 2011) the aromatic heterocyclic five-membered ring with three nitrogen atoms that 
exhibit in symmetric and asymmetric structures namely 1,2,4-triazole and 1,2,3-triazole.

Figure 1.2: N-donor heterocyclic azole linkers.

The triazole ring is a useful organic heterocyclic molecule made up of two carbon atoms and 
three nitrogen atoms in a diunsaturated five-membered ring structure. The relative positions 
of the three nitrogen atoms differ between two sets of isomers. Each of them has two 
tautomers (Figure 1.3) that differed by which hydrogen bonded to the nitrogen (Nasri et al.,
2021). This linker has been comprehensively studied due to the multiple binding capacities 
that allow for more-rigid coordination much like metal carboxylate cluster chemistry (Bai et 
al., 2011). In coordination chemistry, the derivatives of 1,2,4-triazoles are extensively 
studied (Aromí et al., 2011). Thus, the synthesis of metal-1,2,4-triazole frameworks has 
attracted great attention over the last few years due to the possibility of obtaining a wide 
variety of aesthetically appealing MOF structures that could also be of great interest in 
porous materials fields for some applications (Gangu et al., 2016).
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Figure 1.3: The tautomers of 1,2,3-triazole and 1,2,4-triazole (Nasri et al., 2021).

Electrochemical energy storage (EES) technologies are mostly categorised as batteries and 
supercapacitors (SCs) and are based on electrochemical processes or electrostatic 
interactions to store energy. Despite extensive studies and substantial advances in the 
development of both technologies (SCs and batteries), the performance of individual devices 
continues to fall short of commercial expectations (Gu and Yushin, 2014, Numan et al.,
2021).  Therefore, SCs and batteries are merged to assemble the device that can give high 
specific energy and high specific power, respectively. A two-terminal device known as a 
"supercapattery" can be created by joining a capacitive electrode and a battery electrode 
(Chen, 2016). Supercapattery is predicted to have a long cycle life and remarkable energy 
storage performance due to the combination of capacitive and battery-grade materials 
(Numan et al., 2021). On the other hand, MOFs have extended frameworks, with potential 
porosity, and display high specific surface areas. Due to their features, MOFs are receiving 
great attention to be used as electrodes in energy storage devices, (Li et al., 2019b, 
Mohanadas et al., 2021) and a few successful works using MOFs in the assembly of 
supercapattery devices have been recently reported.

In view of this, the investigation of the metal-1,2,4-triazole framework in the field of 
electrochemistry is quite recent but expanding. Although few reports have mentioned 
triazoles are electrochemically inactive (Fischer et al., 2020) but incorporating them with 
electro-active metal may enhance the electrochemical properties (Norková et al., 2011).
Moreover, it is well known that modulating the structure of linkers will crucially enhance 
the charge transfer inside of the framework (Behera et al., 2009) and fabricating the MOFs 
with conductive properties will immensely improve electron conduction, due to most of the
MOFs with insulating character (Allendorf et al., 2011, Behera et al., 2009, Jahan et al.,
2010, Zhang et al., 2019) limit them from being used as electrode materials or 
electrocatalysts. Thus, this research focused on the synthesis of novel Mn-MOFs by
incorporating 1,2,4 triazole as a linker to examine their electrochemical performance.
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1.2 Problem Statement

The depletion of natural fossil fuels intensifies the search for renewable and sustainable 
energy conversion and storage technologies. The figures for the use of fossil fuels to meet 
human requirements are at an all-time high, combined with environmental concerns; 
therefore, reliance on fossil fuels is predicted to fall in the following years. As a result, 
scientists working on renewable energy resources are eager to develop a new approach to 
reduce our reliance on fossil fuels while yet meeting the demands of the modern world. 
There are two primary rivals, supercapacitors and batteries that require special attention 
from researchers in order to alleviate the worrying situation (Faisal et al., 2021). SC also 
known as ultracapacitors have high specific power, fast charge-discharge long service life 
compared to batteries including environmental protection (Zhi et al., 2013). The 
supercapacitors are mainly divided into electrical double-layer capacitors (EDLCs) and 
pseudocapacitors (PCs) depending on their operating mechanism in energy storage (Zhang
et al., 2021).

In comparison to other energy storage technologies, batteries have an unusually high 
specific energy which qualifies them for commercial application in a variety of electronic 
devices (Faisal et al., 2021). However, because of the battery's poor specific power 
hindered it usage in high-speed electronic devices. SCs, unlike batteries, are recognised for 
their high specific power, which allows them to be used in rapid-response systems. 
However, there is a problem with this technology's poor specific energy (Yuan et al., 2012).
Recently, a new approach has been developed to overcome the limitations of both systems. 
This new technology is developed by combining the advantages of both technologies into a 
single device, which is referred to as a supercapattery (Iqbal et al., 2020a). The 
supercapattery is a combination of an SC and a battery that can be used in a variety of 
electrical devices. The two energy storage techniques that occur in supercapattery are 
dependent on the electrode material utilised. Mostly, carbonaceous materials are employed 
as electrodes in EDLC-type SCs and store charges in the electrolyte via the surface of the 
electrode material to produce an electrical double-layer structure and no chemical reaction 
takes place during charging and discharging (Jiang and Liu, 2019).

In battery-grade materials, the energy is collected at the active surfaces of electrodes, where 
reversible, rapid redox reactions occur, and the electrode materials are made up of 
conducting polymers and a wide range of transition metal complexes. The supercapattery, 
which combines two storage methods in one device, is created by using one electrode from 
each technology.(Faisal et al., 2021, Iqbal et al., 2020a). Supercapattery has attracted a lot 
of interest due to its special abilities to produce high specific power from the supercapacitor 
side and high specific energy from the counterpart. This technology has a specific power 
and specific energy than batteries, a longer cycle life, and is more stable. (Faisal et al.,
2021).

Generally, MOFs, metal oxides and conductive polymers are suitable materials for 
electrodes because of their exclusive redox-active (Calbo et al., 2019) properties and 
available oxidation state (Athouël et al., 2008). These interesting features lead us to 
favourably choose Mn as the metal centre for this synthesis work.  In essence, the position 
of Mn as a transition metal in the periodic table with five unpaired electrons leads to the 
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most oxidation states including the highest oxidation state +7 in the whole periodic table 
(Muñoz-Páez, 1994). This novel property of Mn makes it significantly redox-active which 
could achieve superior electrochemical performance, especially in faradic redox reactions 
of electrochemical energy storage devices. For instance, manganese oxide-based electrode 
materials have been intensely studied on their electrochemical performance due to Mn has 
of the most noteworthy number of different oxides, most of which have unique tunnel 
structures that empowers bulk redox reactions (Hu et al., 2018). Interestingly, the five 
stable oxidation states of Mn provide plenty of chances for redox reactions including the 
ion exchange between the manganese oxide and electrolytes (Wang et al., 2012). According 
to the standard calculation method (Mathieu Toupin, 2004), the manganese oxide (MnO2)
showed a high theoretical capacitance of 1370 F/g within a wider potential window of 1 V 
(Zhi et al., 2013). These evidently support that manganese-based electrodes are promising 
in electrochemical applications namely in supercapacitors. 

Thus, attracted by these extraordinary features of manganese and 1,2,4-triazole. Herein, we 
report the synthesis of novel Mn-1,2,4-triazole frameworks, crystal structures and their 
electrochemical behaviour in conventional three-electrode configuration and supercapattery 
device assembly. To the best of our knowledge, this will be the first Mn-MOFs derived 
from 1,2,4-triazole tested for electrochemical studies namely supercapattery.

1.3 Research Objectives

The overall goals of this research are to synthesise and structurally characterise new 
manganese-based metal-organic frameworks (MOFs) with 1,2,4-triazole linker and study 
their supercapattery performance. The following are the research's specific objectives:

1. To synthesise and characterise new Mn-MOFs containing 1,2-4-triazole linker 
using physicochemical, computational analysis and spectroscopic techniques 
namely, single crystal X-ray Diffraction (SCXRD) analysis, powder X-ray 
diffraction (PXRD) analysis, thermogravimetric analysis (TGA)  field emission 
scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) 
and N2 physisorption analysis.

2. To evaluate the electrochemical performance of new Mn-MOFs in three-electrode 
configuration and supercapattery device assembly.

3. To compare the electrochemical performance of newly synthesised Mn-MOFs with 
the aid of density functional theory (DFT) calculations and BET surface area.

1.4 Research Scopes

The scope of this study is divided into several sections; the first section focuses on the 
synthesis of new Mn-MOFs with 1,2,4-triazole linkers. Numerous parameters were 
investigated to optimise the synthesis conditions and obtain the high-quality crystals.. These 
parameters included the metal-ligand molar ratio, the reaction temperature, the duration of 
the reaction, and the type and volume of the reaction solvents.  The compounds were then 
characterised using powder X-ray diffraction (PXRD) to determine the crystal lattice. 
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Thermogravimetric analysis (TGA) was used to determine the compound's thermal stability, 
while field emission scanning electron microscopy (FESEM) was used to study the 
morphology of the synthesised MOFs. Finally, the Mn-MOFs' surface area and pore volume 
were determined using N2 physisorption analysis.  

The second section is concerned with the elucidation and structural investigation of the new 
Mn-MOFs. One such non-destructive analytical technique, known as single crystal X-ray 
diffraction (SCXRD), was used to obtain detailed information on crystalline substances' 
internal lattice, including unit cell dimensions and lengths of bonds, bond angles and the 
details of site-ordering in each crystal. The single crystal refinement data generated by X-ray 
analysis was interpreted and solved using OLEX2 crystallographic software to obtain the 
crystal structure. The hydrogen atoms were refined using independent and constrained 
refinement techniques. Due to their disordered distribution in the structures' voids, it was 
impossible to refine the lattice solvent molecules; therefore, the electron density at the voids 
was subtracted from the reflection data using the SQUEEZE procedure, which was 
implemented in the PLATON software package. Then, to examine the structural 
characteristics of the newly synthesised Mn-MOFs concerning their network structure (net) 
topology the TOPOS 4.0 Professional Software were used. Identifying the bridging nodes
between ligands and metals was necessary to determine the simplified net topology, which 
would provide a better understanding of the structural features of the complicated structures.
The MOFs were then utilised as electrodes to study their electrochemical behaviour in a 
conventional three-electrode configuration. Finally, the novel Mn-MOFs were assembled 
into supercapattery devices to evaluate their supercapattery performance. There were several 
limitations on this research particularly to obtain good quality crystals for the Mn-MOFs 
which are suitable for SCXRD analysis, sometimes it was influence by the humidity of 
environment which limits the formation of crystals.

1.5 Research hyphothesis

A few hypotheses have been made:

1. The conventional solvothermal route can minimise solubility problems of organic 
linkers namely 1,2,4-triazole and is able to generate larger Mn-MOF crystals which 
are suitable for SCXRD analysis.

2. Incorporating anions such as F , Cl , Br , I , NO3 and SO4 during the synthesis 
of Mn-MOFs can provide an interesting architecture of frameworks and anticipated 
to improve the electrochemical performance by encouraging charge accumulation 
and electron transfer between manganese and electrolytes.

3. As battery-type electrodes, Mn-MOFs can be used to assemble supercapattery 
devices, which are anticipated to have a promising electrochemical performance 
because Mn can provide some opportunities for redox reactions due to its five 
stable oxidation states.
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1.6 Organisation of thesis

This thesis consists of five chapters and the chapters are organised as follows. Chapter 1 of 
this research describes the introduction of this research which contains the background of 
the research, problem statement, objectives and scope of the study. Chapter 2 comprises of 
design and synthesis of MOFs, crucial aspects of MOFs, the chemistry of 1,2,4-triazoles and 
the utilisation of MOFs in electrochemical studies were described. The materials and 
experimental procedures for Mn-MOFs synthesis and electrochemical studies are elaborated 
in Chapter 3. Chapter 4 demonstrates the facile synthesis, structural elucidation, and 
electrochemical performances of three novel Mn-MOFs namely UPMOF-4, UPMOF-5 and 
UPMOF-6 as electrodes in supercapattery device assembly. Finally, the conclusion and 
recommendations for future works are described in Chapter 5.
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