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Intrusion Detection System (IDS) is facing complex requirements to overcome modern

attack activities from damaging the computer systems. Gaining unauthorized access to

files, attempting to damage the network and data, and any other serious security threat 

must be prevented by the Intrusion Detection System. Anomaly detection is one of

intrusion detection techniques. This technique identifies an activity which deviates from

the normal behaviours. Nonetheless, current anomaly detection techniques are unable to

detect all types of attacks accurately and correctly. Therefore, anomaly detection is often 

associated with high false alarm with only moderate accuracy of detection rates.

In recent years, data mining approach for intrusion detection have been proposed and used 

such as neural networks, clustering, genetic algorithms, decision trees, and support vector 

machines. These approaches have resulted in high accuracy and good detection rates but 

with moderate false alarm on novel attacks. The recent works has been proposed by Tsai et 
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al. (2010) called a Triangle Area Based Nearest Neighbor (TANN) to obtain high accuracy 

and detection rate with low false alarms. Unfortunately this approach has not shown a 

remarkable improvement. In addition, some attacks and normal connections are even failed 

to be detected correctly. Therefore, there is a need for an approach that could detect and 

identify such attacks accurately in an interconnected network. 

 

In this thesis, an improved hybrid mining approach is proposed through combination of K-

Means clustering and classification techniques. K-Means clustering is an anomaly 

detection technique that is naturally capable for dealing with huge data in high speed 

network. K-Means clustering divides data into corresponding group called clusters, 

whereby all data in the same cluster are similar to each other. The proposed hybrid 

approach will be clustering all data into the corresponding group before applying a 

classifier for classification purposes. We choose k=3 in order to cluster data into three 

clusters called C1, C2 and C3. Probe, U2R and R2L attack data grouped into C1, while C2 

is used to group DoS attack data. In order to separates normal data from an attack, C3 is 

used. Next, a number of classifiers like Naïve Bayes, OneR, and Random Forest separately 

applied to these data to group all data into the right categories. 

 

An experiment is carried out to evaluate the performance of the proposed approach and the 

current techniques in terms of accuracy, detection rate, and false alarm rate using 

Knowledge Discovery in Databases (KDD) called KDD Cup ‟99 intrusion detection 

dataset. The data covers four types of main attacks, which are Denial-of-Services (DoS), 

User to Root (U2R), Remote to Local (R2L), and Probe. Results show that the proposed 
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approach performed better in term of accuracy, detection rates, and able to significantly 

reduce the false alarm rates.  
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PEREKAYASAAN PENDEKATAN PERLOMBONGAN PEMBELAJARAN BAGI 

PENGESANAN ANOMALI 

 

Oleh 

WARUSIA MOHAMED YASSIN 

Mei 2011 

 

Pengerusi:     Puan Hajah Zaiton Muda 

Fakulti:          Sains Komputer dan Teknologi Maklumat   

 

Sistem Pengesanan Pencerobohan (IDS) menghadapi cabaran yang kompleks dalam 

mengatasi aktiviti pencerobohan dan teknik serangan terkini daripada merosakkan sistem 

komputer. Perolehan capaian ke atas fail-fail, percubaan untuk merosakkan rangkaian data, 

serta lain-lain ancaman keselamatan yang serius perlulah dikesan oleh Sistem Pengesanan 

Pencerobohan. Teknik pengesanan anomali merupakan salah satu teknik pengesanan 

pencerobohan. Teknik ini mengenal pasti aktiviti-aktiviti yang tersasar daripada kelakuan 

normal. Walau bagaimanapun, teknik pengesanan anomali semasa tidak mampu mengesan 

kesemua jenis pencorobohan dengan betul dan tepat. Oleh itu, pengesanan anomali sering 

dikaitkan dengan amaran palsu yang tinggi serta ketepatan kadar pengesanan sederhana. 

 

Kebelakangan ini, pendekatan perlombongan data seperti rangkaian neural, penggugusan, 

algoritma genetik, pepohon keputusan dan mesin vektor sokongan untuk pengesanan 

pencerobohan telah dicadangkan dan digunakan. Pendekatan ini memberikan hasil 
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ketepatan yang tinggi dan kadar pengesanan yang baik tetapi dengan amaran palsu yang 

agak sederhana ke atas serangan-serangan baharu. Tambahan itu, beberapa serangan dan 

penyambungan yang normal juga masih gagal dikesan dengan betul. Hasil kerja yang baru 

diperkenalkan oleh Tsai et al. (2010) iaitu “Triangle Area Based Nearest Neighbor” 

(TANN) untuk mengatasi masalah kadar pengesanan dan amaran palsu. Malangnya 

pendekatan ini tidak menunjukkan sebarang penigkatan. Oleh yang demikian, terdapat satu 

keperluan kepada pendekatan yang boleh mengesan dan mengenal pasti serangan-serangan 

secara tepat dalam sesebuah jaringan rangkaian.  

 

Dalam tesis ini, sebuah pendekatan perlombongan hibrid yang direkayasa telah 

dicadangkan melalui penggabungan teknik penggugusan K-Means dan pengklasifikasian. 

Penggugusan K-Means adalah sejenis pengesanan anomali yang secara semulajadinya 

berupaya menguruskan kumpulan data yang banyak dalam rangkaian yang berkelajuan 

tinggi. Penggugusan K-Means membahagikan data ke dalam beberapa kumpulan yang 

dipanggil kelompok, yang mana data di dalam sesebuah kelompok mempunyai ciri yang 

sama antara satu dengan lain. Pendekatan hibrid yang dicadangkan akan mengasingkan 

kesemua data mengikut kelompok sebelum mengaplikasikan sebuah pengelas bagi tujuan 

klasifikasi. Oleh yang demikian, kami memilih k=3 untuk mengumpul kesemua data 

kedalam tiga kelompok iaitu C1, C2 dan C3. C1 digunakan untuk mengumpul data User to 

Root (U2R), Remote to Local (R2L) dan Probe, manakala C2 dugunakan untuk 

mengumpul data Denial-of-Services (DoS). Untuk memisahkan data Normal dari data-data 

serangan, C3 digunakan. Seterusnya, pengelas seperti Naive Bayes, OneR dan Random 

Forest digunakan secara berasingan ke atas data tersebut bagi pengkelasan ke dalam 

kategori yang betul.  
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Sebuah eksperimen telah dijalankan bagi menilai prestasi kaedah yang dicadangkan 

berbanding dengan teknik sedia ada dari segi ketepatan, kadar pengesanan dan kadar 

amaran palsu menggunakan set data “Knowledge Discovery in Databases (KDD)” KDD 

Cup '99. Data-data ini terbahagi kepada empat kelas serangan utama iaitu Denial-of-

Services (DoS), User to Root (U2R), Remote to Local (R2L) dan Probe. Keputusan 

ekserimen menunjukkan bahawa pendekatan yang dicadangkan memberikan peningkatan 

prestasi dari segi ketepatan, kadar pengesanan dan keupayaan mengurangkan kadar amaran 

palsu ke tahap yang lebih rendah. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

In present days, information security has become one of the important keys in our daily 

life. Little do we realize that computer users who are either connected through physical 

networks or in wireless environment are unaware of the fact that they are vulnerable to the 

risk of threats. Along with continuous expansion and growth in high-speed development of 

the Internet, sensitive and valuable information are scattered almost everywhere in the 

network, thus making the network environment to become complex than before. Although 

Internet provides real-time services and convenience to the users, there are issues in 

security of information, in which some bared to invasion threat. To date, servers are 

continuously being attacked and paralyzed, which costs huge monetary loss as well as 

business availability. 

 

On 7th February 2000, Yahoo! suffered from DDOS attack and was paralyzed for three 

hours, affecting an approximate of one million users (Levine et al., 2000). One day after 

the incident, few other online service providers such as Amazon, Buy.com, CNN, and 

eBay also suffered from the same attacks with a combined calculated loss close to USD1.1 

million. Figure 1.1 is a statistic from the Malaysia Computer Emergency Response Team 

(MyCERT) sourced from http://www.mycert.org.my, showing an increase number of 

attack reports growth on monthly basis throughout the year 2011.  

http://www.mycert.org.my/


@
COPYRIG

HT U
PM

2 

 

 

 

 
 

Figure 1.1: Statistic of reported incident in 2010 

 

 

Figure 1.2 shows the statistic of reported incident based on general incident classification 

in 2010, sourced from http://www.mycert.org.my. 

 

 
 

Figure 1.2: Graph of reported incident in 2010 

 

Internet-based attacks have also become a new weapon in war. Back in the 1
st
 September 

2010, Indonesian hackers were reported to be drawing plan for mass defacement on 

http://www.mycert.org.my/


@
COPYRIG

HT U
PM

3 

 

 

Malaysia (http://security.org.my/). The fact is that attackers are able to easily adapt and 

exploit new attack strategies without restriction with the help from Internet facilities at 

their convenience. With such unpredictable pattern of attacks, our defense calls for an 

urgent need to efficiently identify attacks and to classify them based on the degree of 

threats that they pose.   

 

One of the components in security that suit the „defense in depth‟ model is called the 

Intrusion Detection System (IDS) (Stephen et al., 2008). An IDS is capable of sending 

early alarm upon risk exposure caused by any attack. This is to alert the system 

administrators to execute corresponding response measurements, thus to reduce the 

possibility of bigger losses.   

 

A growing interest in investigation of anomaly detection sparks from the ability of the 

approach to detect unknown attacks and to evaluate unforeseen vulnerability. Nonetheless, 

current anomaly detection technique suffers from high false alarm rate. Similarly, machine 

learning, being one of the most promising advancements in solving intricate data 

classification problems with accuracy also suffers from the same drawback. In view of this, 

this research proposes a new hybrid mining approach to improve current anomaly detection 

capabilities in IDS that would be an essential component of a security arsenal to fit the 

„defense in depth‟ architecture in securing an information infrastructure.  

 

 

 

 

http://security.org.my/
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1.2 Problem statement 

 

The ultimate goal of anomaly detection in the development of IDS is to achieve the best 

possible accuracy and detection rate, as well as to reduce the rate of false alarm for every 

task at hand. Recently, there has been rigorous effort in improving the existing anomaly 

detection techniques due to significantly high false alarm as well as moderate accuracy and 

detection rate. In addition, there is lacking in performance of single classifier, which has 

resulted in high tendency for wrong classification during detecting unknown attacks (Tsai 

et al., 2010 and John et al., 2000). Unresolved issues such as predicting an intrusion as 

normal instances and normal instances as attacks or intrusion become inevitable limit in 

building effective anomaly detection.  

 

In short, a number of hybrid techniques have been proposed in intrusion detection fields 

which has been successfully identifying several novel intrusions correctly such as feature 

selection with SVM ( Amiri et al., 2011), BIRCH Clustering with SVM (Horng et al., 

2011), Triangle Area Based Nearest Neighbor (Tsai et al., 2010), ANN with Fuzzy 

Clustering (Gang et al., 2010), AIN with NN (Cao et al., 2010), Decision Tree with SVM 

(Su-Yun et al., 2009), Genetic Algorithm with SVM (Shon et al., 2007) and SOM with 

ANN ( Liu et al., 2007); but there are still room to improve the accuracy and detection rate 

as well as the false alarm rate.  

 

A potential drawback of all proposed approaches is the rate of false alarms with moderate 

accuracy and detection rate.  To overcome these drawbacks, we proposed a combination of 
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K-Means clustering and classification techniques for intrusion detection which based on 

hybrid learning approach.  

 

1.3 Objectives of research 

 

The main objective of this research is to increase the accuracy and detection rate at lower 

false alarm rates by proposing an improved method. The proposed hybrid method is a 

combination of K-Means clustering and classification techniques. The K-Means clustering 

are required to cluster each and every data according to their group behavior. Next, the 

classifier techniques are applied to these clusters in order to classify the data into five 

categories including U2R, R2L, Probe, DoS and Normal.   

 

1.4 Scope of research 

 

We scope of this research to hybrid mining approach, which are use to analyze and find 

patterns in order to seperate an intrusion and normal instances correclty. There are two 

types of techniques chosen in this research, which is K-Means clustering and classification. 

The hybrid algorithms will be tested against KDD Cup ‟99 dataset, a common benchmark 

intrusion detection dataset used to evaluate intrusion detection techniques. KDD Cup „99 

has various attacks presented in the testing and validation data, making task more realistic 

and challenging in order to assess and validate the proposed approach based on percentage 

of accuracy, detection, and false alarm rate.  
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1.5 Organization of this thesis 

 

This thesis is organized in accordance with the standard structure of thesis dissertations for 

Universiti Putra Malaysia. The thesis is inherently divided into five chapters as follows: 

 

Chapter 1 – Introduction. This chapter introduces the degree of importance on information 

security and the general impact as globally. Awareness on current security issues forms the 

problem statement and the research objective.  

 

Chapter 2 – Literature Reviews. This chapter reviews related studies on the fundamental 

knowledge of the subject matter such as Intrusion Detection Systems, signature-based 

detection, anomaly-based detection, hybrid learning techniques, data mining and other 

related techniques.  

 

Chapter 3 – Research Methodology. This chapter presents an overview of research steps, 

which comprise of problem identification, dataset preparation, design of the proposed 

method, implementation of proposed method, and finally experiment and analysis. 

 

Chapter 4 – Proposed Hybrid Mining Approach. This chapter introduces a combination of 

hybrid mining approach by applying classifier and K-Means clustering to anomalous 

instances using anomaly detection method. The approach is proposed to enhance the 

performance of overall single classifier in term of accuracy, detection and false alarm rate.   
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Chapter 5 – Result and Discussion. This chapter discusses the data source, medium of 

performance evaluation, as well as the experimental process flow that are adopted during 

the experiments. In addition, this chapter also provides a comparison between the proposed 

and the existing approaches.  

 

Chapter 6 – Conclusion and Future Work. This chapter concludes the research with some 

recommendations for future work and development.  
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