

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS OF LIGHT COLOUR MEDIUM CHAIN TRIGLYCERIDES FROM PALM KERNEL OIL PRODUCTS

RADZUAN BIN JAMALUDIN

FSAS 1999 38

SYNTHESIS OF LIGHT COLOUR MEDIUM CHAIN TRIGLYCERIDES FROM PALM KERNEL OIL PRODUCTS

By

RADZUAN BIN JAMALUDIN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies, Universiti Putra Malaysia

July 1999

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following individuals, and organisations that has helped me in the completion of this thesis:

Associate Professor Dr. Mawardi Rahmani, Associate Professor Dr. Salihan Siais, and Dr. Mansor Ahmad, Universiti Putra Malaysia my supervisors for their guidance, comments and constant encouragement.

Datuk Dr. Yusof Basiron, Director General of PORIM, Dr. Ir. Ma Ah Ngan, Director of Chemistry and Technology Division, Prof. Dr. Badri Muhammad, former Director of Chemistry and Technology Division, Dr. Salmiah Ahmad, Head of AOTC and Dr. Ooi Tian Lye, Principal Research Officer, AOTC for their encouragement and support.

All graduate students, management and support staff of Jabatan Kimia, Fakulti Sains dan Pengajian Alam Sekitar, Universiti Putra Malaysia for their cooperation and technical assistance.

The oleochemicals producers for their kindness in supplying medium chain fatty acid (MCFAs) for the study. The oleochemicals companies are Henkel, Nat-Oleo, Southern Acid, Pan-Century and Palm-Oleo.

Special thanks and gratitude is extended to my family for their supports.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
LIST OF TABLES	
LIST OF FIGURES	xii
ABSTRACT	
ABSTRAK	xviii

CHAPTER

ľ	TRODUCTION
0	leochemicals Industry In Malaysia
T	he Objectives Of The Present Research
L	ITERATURE REVIEW
0	leochemicals From Palm Oil And Palm Kernel Oil
	Palm Oil And Palm Kernel Oil As Raw Materials
	Chemistry Of Fat Splitting
	Distillation And Fractionation Of Fatty Acids
	Uses Of Fatty Acids In Oleochemicals
	Uses Of Fatty Ester In Oleochemicals
	Uses Of Fatty Alcohol In Oleochemicals
	Uses Of Fatty Nitrogen Compounds In Oleochemicals
	Uses Of Glycerol In Oleochemicals
Μ	ledium Chain Triglycerides
	Properties Of Medium Chain Triglycerides
	Charateristics Of Medium Chain Triglycerides
	Production Of Medium Chain Triglycerides
	Uses Of Medium Chain Triglycerides
Μ	IATERIALS AND METHODS
Μ	laterials
C	haracterisation
	Determination Of Medium Chain Triglycerides (%) By
	Using HPLC In The Esterification Products
	Colour Determination Of The Reaction Products
	Determination Of Acidity For The Reactants And The
	Reaction Products
Μ	lethods
St	udiesOn Effects Of Temperatures, Reaction Times, Amount
0	f Catalyst, Types And Amount Of Absorbents In The
E	sterification

	General Procedure And Apparatus For The Esterification	
	Studies	
	Study On The Effect Without Catalyst Heated At 180°C	
	For 3 Hours With The Total Weight Of 50g On The	
	Esterification	
	Study On The Effect Without Catalyst Heated At 180°C	
	For 3 Hours With The Total Weight At 25g On The	
	Esterification	
	Study On The Effect Of 0.2% w/w Sulphuric Acid	
	Heated At 180°C For 3 Hours With Total Weight Of 50g	
	On The Esterification	
	Study On The Effect Of Various Amount Of Sulphuric	
	Acid With 5.0% w/w Of Silica Gel With Total Weight	
	Of 25g	
	Study On The Effect Of 0.2% w/w Sulphuric Acid With	
	2.0% w/w Of Silica Gel With Total Weight Of 25g On	
	The Esterification	
	Study On The Effects Of Various Amounts (% w/w) Of	
	Bleaching Earth As Absorbent With 0.2% w/w Sulphuric	
	Acid At 130°c For 2 Hours With Total Weight Of 25g	
	Study On The Effect Of 0.2% w/w Sulphuric Acid With	
	2.0% w/w Bleaching Earth At 130oC For 3 Hours With	
	The Total Weight Of 25g	
	Study On The Esterification With Yellow Colour MCFAs	
Study	On The Reaction Rate Of Esterification At Different	
-	ratures	
-	Study On The Reaction Rate Without Catalyst At	
	Different Temperatures For 3 Hours	
	Study On The Reaction Rate With 0.2% w/w Sulphuric	
	Acid As Catalyst At Different Temperatures For 3 Hours	
	Study On The Reaction Rate With 0.2% w/w Sulphuric	
	Acid And 2.0% w/w Bleaching Earth As Absorbent At	
	Different Temperatures For 3 Hours	
	Study On The Reaction Rate With 2.0 w/w	
	Heterogeneous Catalyst With 0.6% Active Site At	
	Different Temperatures For 3 Hours	
	Study On The Reaction Rate With 7.0% ww	
	Heterogeneous Catalyst With 2.0% Active Site At	
	Different Temperatures For 3 Hours	
	The Study On Esterification Using 7.0% w/w With 2.0%	
	w/w Active Site Used For Five Times At 180°C For 5	
	Hours	
	The Study On Esterification Using 7.0% w/w With 2.0%	
	w/w Active Site Used For Thirteen Times At 180°C For	
	5 Hours	
	Study On The Effect Of Time In The Esterification	
	Reaction	4
	Study On The Effect Of Total Weight (500g) On The	
	Esterification	4

RE	SULTS AND DISCUSSION
	Effects Of Temperatures, Reaction Times, Amount Of
	alyst, Types And Amount Of Absorbents In The
	erification
	The Effect Of Esterification Without Catalyst Heated At
	180°C For 3 Hours With Total Weight At 50g On The
	Esterification
	The Effect Without Catalys Heated At 180°C For 3 Hours
	With Total Weight At 25g On The Esterification
	The Effect Of 0.2% w/w Sulphuric Acid At 180°C For
	3 Hours With Total Weight At 50g On The Esterification
	The Effect Of Various % w/w Sulphuric Acid With 5.0%
	w/w Of Silica Gel With Total Weight Of 25g On The
	Esterification
	The Effect Of 0.2% w/w Sulphuric Acid With 2.0%
	w/w Silica Gel With Total Weight Of 25g On The
	Esterification
	The Effects Of Various Amounts (w/w) Of Bleaching
	Earth With 0.2% w/w Sulphuric Acid At 130°C For 2
	Hours With Total Weight Of 25g
	The Effect Of 0.2% w/w Sulphuric Acid With 2.0%
	w/w Bleaching Earth At 130°C For 3 Hours With Total
	Weight Of 25g On The Esterification
	The Effects With Yellow Colour MCFAs
	ect On Different Temperatures On The Optimisation Of The
Est	erification Of MCFAs And Glycerol
	Effect Of Different Temperatures Without Catalyst On The Esterification
	Effect Of Different Temperatures With 0.2% w/w Sulphuric On The Esterification
	Effect Of Different Temperatures With 0.2% w/w
	Sulphuric Acid And 2.0% Bleaching As Absorbent On
	The Esterification
	Effect Of 2.0% w/w Heterogeneous Catalyst With 0.6%
	Active Site At Different Temperatures On The
	Esterification
	The Effect Of 7.0% w/w Heterogeneous Catalyst With
	2.0% Active Site On The Esterification
	The Effect Of Repeated Use Of 7.0% w/w Heterogeneous
	Catalyst With 2.0% Active Site On The Esterification
	Effect Of 7.0% w/w Heterogeneous Catalyst With 2.0%
	Active Site Thirteen Times Used Repeatedly On The
	Esterification
	Effects Of Time On The Esterification With 0.2% w/w
	Sulphuric Acid And 2.0% w/w Bleaching Earth

		Reactions Rates Of Esterification At Different	
		Temperatures With References To Acid Value	93
		Reaction Rate Of Esterification At Different Conditions	
		With Reference To Acid Value	96
		Reaction Rate At Different Conditions With Reference	
		To The Percentage Of MCTs	99
		Reaction Rate Of Reaction With 2.0% Active Site	
		Heterogeneous Catalyst Repeated 5 Times And 13 Times	102
		The Reaction Rate On The Esterification With Effects Of	104
		Time	104
		The Reaction Rate Of Esterification With Total Weight	100
		Of Reactant Of 500g	106
		Determination Of The Reaction Rate Order	107
	Larger	Scale Esterification Of MCFAs And Glycerol	110
		Effect Of 500g Total Weight On The Esterification Of	
		MCFAs And Glycerol	110
		Scale-Up (1.0 Kg) Study On The Esterification Of	
		MCFAs And Glycerol	113
V	CONC	CLUSION	124
BIBIL	OGRAPI	HY	128
APPE	NDICES		133
		A (Graph Of Esterification Reactions) B (Conference Paper)	134 159
VITA			165

List Of Tables

Table		Page
1	Basic Oleochemicals Products And Their Derivatives	5
2	The Fatty Acids Composition Of Oleochemicals Derived From Palm Oil, Palm Kernel, Palm Stearin, Coconut Oil And Tallow	5
3	Composition Of Distilled Palm Kernel Fatty Acids	8
4	Composition Of Distilled Palm Fatty Acids	8
5	Fatty Acids Composition Of Fractionated Palm Kernel Fatty Acids	9
6	Typical MCTs Oil Specification Obtained From Synthesis	18
7	The Experimental Conditions On Effects Without Catalyst At 180°C For 3 Hours With The Total Weight Of 50g On The Esterification	30
8	The Experimental Conditions On The Effects Without Catalyst At 180°C For 3 Hours With The Total Weight Of 25g	31
9	The Experimental Conditions On The Effects Of 0.2% w/w Sulphuric Acid Heated At 180°C For 3 Hours With The Total Weight of 50g	31
10	The Experimental Conditions On The Effects Of Various Amount Of Sulphuric Acid With 5.0% w/w Silica Gel At the Temperatures Ranging From 130°C To 180°C For 3 Fours With The Total Weight Of 25g	32
11	The Experimental Conditions On the Effects of 2.0% w/w Sulphuric Acid With 2.0% w/w Silica Gel On The Esterification Reaction	33
12	The Experimental Conditions On The Effects Of Various Amount Of Bleaching Earth With 0.2% w/w Sulphuric Acid At 130°C For 2 Hours With Total Weight Of 25g	33
13	The Experimental Conditions On The Effects Of 2.0% w/w Sulphuric Acid And 2.0% w/w Bleaching Earth At 130°C For 3 Hours With Total Weight Of 25g	34

14	The Experimental Condition On The Effect With Yellow Colour MCFAs On The Esterification	35
15	The Experimental Conditions For Reaction Rate Study Without Catalyst At Different Temperatures	.36
16	The Experimental Conditions For Reaction Rate Study With 0.2% w/w Sulphuric Acid As Catalyst At Different Temperatures	37
17	The Experimental Conditions For Reaction Rate Study With 0.2% w/w Sulphuric Acid And 2.0% w/w Bleaching Earth At Different Temperatures For 3 Hours	37
18	The Experimental Conditions For Reaction Rate Study With 2.0% w/w Heterogeneous Catalyst With 0.6% Active Site At Different Temperatures For 3 Hours	38
19	The Experimental Conditions For Reaction Rate Study With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site At Different Temperatures For 3 Hours	39
20	The Experimental Conditions Of Using Heterogeneous Catalyst Repeatedly For Five Times On The Esterification	39
21	The Experimental Conditions Of Using Heterogeneous Catalyst Repeatedly For Thirteen Times On The Esterification	40
22	The Experimental Conditions The Effects Of Time With 2.0% w/w Sulphuric Acid And 2.0% w/w Bleaching Earth On The Esterification	41
23	The Experimental Condition On The Effect Of Total Weight (500g) On The Esterification	42
24	The Experimental Condition On The Effect Of Total Weight (1.0kg) On The Esterification	43
25	The Expected Products From The Esterification Of MCFAs And Glycerol	46
26	The Results On The Effect Without Catalyst Heated At 180°C For 3 Hours With Total Weight At 50g	52
27	Results On The Effect Without Catalyst At 180°C For 3 Hours With Total Weight At 25g On The Esterification	54

,

28	Results On The Effect Of 0.2% w/w Sulphuric Acid At 180°C For 3 Hours With The Total Weight Of 50g On The Esterifiation	58
29	Results On The The Effect With Various % w/w Sulphuric Acid As Catalyst With 5.0% w/w Silica Gel With Total Weight Of Reactants Of 25g	60
30	Results On The Effect Of 0.2% w/w Sulphuric Acid With 2.0% w/w Of Silica Gel With Total Weight Of 25g On The Esterification	61
31	Results On The Effects Of Various Amounts (w/w) Of Bleaching Earth With 0.2% w/w Of Sulphuric Acid At 130°C For 2 Hours With Total Weight Of 25g	63
32	Results On The Effect Of 0.2% w/w Sulphuric Acid With 2.0% w/w Bleaching Earth At 130°C For 3 Hours With The Total Weight Of 25g	65
33	Results On The Effects With Yellow Colour MCFAs On The Esterification	67
34	Results On The Studies On The Reaction Rate Without Catalyst	70
35	Results On The Effect Of Different Temperatures With 0.2% w/w Sulphuric With The Total Weight Of 25g	73
36	Results On The Reaction Rate Of Esterification With 0.2% w/w Sulphuric Acid And 2.0% Bleaching With Total Weight Of 25g	77
37	Results On The Reaction Rate With 2.0% w/w Heterogeneous Catalyst With 0.6% Active Site With Total Weight Of 25g	80
38	Results On The Reaction Rate With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site With Total Weight Of Reactants At 25g	81
39	Results On The Reaction Rate With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site Repeatedly Used For 5 Times With Total Weight Of 25g	83
40	Results On The Reaction Rate with 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site Repeatedly Used For 13 Times With Total Weight Of 100g	87

41	Results On The Studies On Various Times With 2.0% w/w Sulphuric Acid and 2.0% w/w Bleaching Earth With Total Weight Of Reactants At 50g and 100g	91
42	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) Without Catalyst At Different Temperatures	94
43	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 0.2% w/w Sulphuric Acid At Different Temperatures	94
44	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 0.2% w/w Sulphuric Acid And 2.0% w/w Bleaching Earth At Different Temperatures	95
45	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 0.2% w/w Heterogeneous Catalyst With 0.6% Active Site At Different Temperatures	96
46	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site At Different Temperatures	96
47	The Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 120°C With Different Conditions	97
48	The Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 130°C With Different Conditions	97
49	The Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 140°C With Different Conditions	98
50	The Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 150°C With Different Conditions	98
51	The Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 180°C With Different Conditions	99
52	The Conversion Rate With Reference To Percentages Of MCTs At 120°C With Different Conditions	100
53	The Conversion Rate With Reference To Percentages Of MCTs At 130°C With Different Conditions	100
54	The Conversion Rate With Reference To Percentages Of MCTs At 140°C With Different Conditions	101
55	The Conversion Rate With Reference To Percentages Of Mcts At 150°C With Different Conditions	101

56	The Conversion Rate With Reference To Percentages Of MCTs At 180°C With Different Conditions	102
57	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site Repeated For Five Times At 180°C For 5 Hours	102
58	The Conversion Rate With Reference To Percentages Of MCTs (%) With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site Repeated For 5 Times At 180°C For 5 Hours	103
59	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site Repeated For 13 Times At 180°C For 7 Hours	103
60	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) Of MCT-K34, MCT-K35 And MCT-K36	105
61	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) Of MCT-K35 And MCT-K36	105
62	The Reaction Rate With Reference To Percentages Of MCTs (%) For MCT-K35 and MCT-K36	106
63	The Reaction Rate With Reference To Acid Value (% As Lauric Acid) With Total Weight Of 500g	106
64	The Conversion Rate With Reference To Percentages Of MCTs With Total Weight 500g	10 7
65	The Reaction Order Of MCFAs And Glycerol With Respect To MCFAs In The Esterification Reaction At Various Conditions And Temperatures	109
66	Results On The Reaction Rate With 2.0% w/w Sulphuric Acid And 2.0% w/w Bleaching Earth At Larger Scale Of Total Weight Of 500g	110
67	Acid Value, Colour And HPLC Chromatograms Of MCT- SU-1	116
68	Acid Value, Colour And HPLC Chromatograms Of MCT- SU-2	119
69	Acid Value, Colour and HPLC Chromatograms Of MCT- SU-3	122

List Of Figures

Figure		Page
1	The Absorption Mechanism Of Triglycerides	17
2	The Absorption Mechanism Of Medium Chain Triglycerides	17
3	Charateristics Of Medium Chain Triglycerides (MCTs) That Justify Their Use In Food Products	23
4	Apparatus For The Esterification Of MCFAs And Glycerol	29
5	The HPLC Chromatograms Of Caproic Acid, Caprylic Acid and Capric Acid	47
6	The HPLC Chromtograms of MCFAs from Henkel, Nat-Oleo, Southern Acids, Pan-Century and Pan-Oleo	49
7	The HPLC Chromatograms Of Tricaproin, Tricapylin And Tricaprin	50
8	The HPLC Chromatograms Of Unichema MCT and Unichema MCTs With 10% Nat-Oleo MCFAs	51
9	The HPLC Chromatograms of MCT2, MCT3, MCT7, MCT8 And MCT9	53
10	The HPLC Chromatograms Of MCT10, MCT11 and MCT12	55
11	The HPLC Chromatograms Of MCT23 and MCT25	57
12	The HPLC Chromatograms of MCT30, MCT36, MCT34, MCT33 And MCT37	59
13	The HPLC Chromatogram Of MT29	62
14	The HPLC Chromatograms of MCT47, MCT48 and MCT46	64
15	The HPLC Chromatograms Of MCT49, MCT50 And MCT52	66
16	The HPLC Chromatograms Of MCT53, MCT54 And MCT55	68
17	The HPLC Chromatograms of MCT-K15, MCT-K12, MCT-K9, MCT-K6 And MCT-K3	71
18	The HPLC Chromatograms Of MCT-K14, MCT-K11, MCT-K8, MCT-K5 And MCT-K2	74

19	The HPLC Chromatograms Of MCT-K13, MCT-K10, MCT- K7, MCT-K4 And MCT-K1	76
20	The HPLC Chromatograms Of MCT-K16, MCT-K17, MCT-K18, MCT-K19 And MCT-K20	79
21	The HPLC Chromatgrams Of MCT-K28, MCT-K27, MCT-K25, MCT-K24 And MCT-K26	82
22	The HPLC chromatograms Of MCT-K30.1, MCT-K30.2, MCT-K30.3, MCT-K30.4 And MCT-K30.5	84
23	The HPLC Chromatograms of MCT-K33.1, MCT-K33.2, MCT-K33.3, MCT-K33.4 And MCT-K33.5	88
24	The HPLC Chromatograms Of MCT-K33.6, MCT-K33.7, MCT-K33.8, MCT-K33.9 And MCT-K33.10	89
25	The HPLC Chromatograms of MCT-K33.11, MCT-K33.12 And MCT-K33.13	90
26	The HPLC Chromatograms Of MCT-K34, MCT-K35 And MCT-K36	92
27	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) In The Absent Of Catalyst At Different Temperatures	135
28	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 0.2% w/w Sulphuric Acid At Different Temperatures	136
29	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 0.2% w/w Sulphuric Acid And 2.0% w/w Bleaching Earth At Different Temperatures	137
30	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 0.2% w/w Heterogeneous Catalyst With 0.6% Active Site At Different Temperatures	138
31	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site At Different Temperatures	139
32	The Graph Of Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 120°C With Different Conditions	140

33	The Graph Of Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 130°C With Different Conditions	141
34	The Graph Of Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 140°C With Different Conditions	142
35	The Graph Of Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 150°C With Different Conditions	143
36	The Graph Of Reaction Rates With Reference To Acid Value (% As Lauric Acid) At 180°C With Different Conditions	144
37	The Graph Of Conversion Rate With Reference To Percentages Of MCTs At 120°C With Different Conditions	145
38	The Graph Of Conversion Rate With Reference To Percentages Of MCTs At 130°C With Different Conditions	146
39	The Graph Of Conversion Rate With Reference To Percentages Of MCTs At 140°C With Different Conditions	147
40	The Graph Of Conversion Rate With Reference To Percentages Of MCTs At 150°C With Different Conditions	148
41	The Graph Of Conversion Rate With Reference To Percentages Of MCTs At 180°C With Different Conditions	149
42	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 7.0% W/W Heterogeneous Catalyst With 2.0% Active Site Repeated For Five Times At 180°C For 5 Hours	150
43	The Graph Of Conversion Rate With Reference To Percentages Of MCTs With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site Repeated For Five Times At 180°C For 5 Hours	151
44	Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site Repeated For The First Six Times At	
	180c For 7 Hours	152

45	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) With 7.0% w/w Heterogeneous Catalyst With 2.0% Active Site Repeated For The Next Seven Times At 180c For 7 Hours	153
46	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) Of MCT-K34, MCT-K35 And MCT-36	154
47	The Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) Of MCT-K35 And MCT-K36	155
48	Graph Of Conversion Rate With Reference To Percentages Of MCTs For MCT-K35 And MCT-K36	156
49	Graph Of Reaction Rate With Reference To Acid Value (% As Lauric Acid) With Total Reactant Of 500g	157
50	Graph Of Conversion Rate With Reference To Percentages Of MCTs In Scale-Up Study Of Total Weight 1.0kg	158

.

,

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science.

SYNTHESIS OF LIGHT COLOUR MEDIUM CHAIN TRIGLYCERIDES FROM PALM KERNEL OIL PRODUCTS.

By

RADZUAN BIN JAMALUDIN

July 1999

Chairman : Associate Professor Mawardi Rahmani, Ph.D

Faculty : Science and Environmental Studies

The synthesis of light colour medium chain triglycerides (MCTs) from medium chain fatty acids (MCFAs) and glycerol was investigated in this study. The production of light colour medium chain triglycerides is tedious and consists of several purification steps. This causes an increase in production cost and its economic viability. In this study, homogeneous catalyst, homogeneous catalysts with an absorbent and heterogeneous catalyst were used in an effort to establish methods to minimise cost. Catalyst was used in order to reduce the reaction temperature, time and produce higher percentage conversion of MCTs, whereas absorbent helps in producing light colour MCTs.

The results showed that the use of homogeneous catalyst reduced the temperature and time of the reaction with higher conversion rate of MCTs, but the product obtained was dark in colour. However, with the presence of absorbent, the colour of the product obtained improved tremendously to almost colourless.

Several steps of purification such as distillation and alkali treatment helps in obtaining a better quality MCTs.

A commercial heterogeneous catalyst used in this study required 180°C temperature and 5 to 7 hours reaction time. The colour of the MCTs produced was yellowish due to the heterogeneous catalytic activity. One of the advantages of using heterogeneous catalyst was it could be used repeatedly for several reactions, and in the current study the catalytic activity decreased slightly after using for six times. Due to the different phases of the heterogeneous catalyst and the reactants, the purification steps were much simpler and easier to produce better colour MCTs.

The reaction rate for the esterification of MCFAs and glycerol in this current study was second order with respect to the MCFAs reactant. The rate order was determined at different temperature and conditions. The temperatures studied were at 120°C, 130°C,140°C, 150°C and 180°C. The same conditions were used with homogeneous catalyst without or with absorbent and heterogeneous catalyst with 0.6% and 2.0% active side. The total reaction time for reaction rate studies was 3 hours, 5 hours and 7 hours.

In the scale-up studies, three experiments were carried out with the optimised conditions obtained from previous experiments. The yield of MCTs obtained ranged from 64.7% to 73.0%. After distillation and alkali washing treatment, the percentage of MCTs increased from 72.2% to 89.9%.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan Ijazah Master Sains.

SINTESIS TRIGLISERID RANTAI SEDERHANA BERWARNA CERAH DARI HASILAN MINYAK ISIRONG SAWIT

Oleh

RADZUAN BIN JAMALUDIN

Julai 1999

Pengerusi : Profesor Madya Mawardi Rahmani, Ph.D

Fakulti : Sains dan Pengajian Alam Sekitar

Sintesis trigliserid rantai sederhana (TRS) berwarna cerah dari asid lemak berantai sederhana (ALBS) dengan gliserol telah dijalankan dalam kajian ini. Penghasilan TRS berwarna cerah adalah sukar dan memerlukan beberapa langkah penulenan. Ini menyebabkan kos bertambah dan mengurangkan potensi ekonominya. Dalam kajian ini, mangkin homogen, mangkin homogen dengan penyerap dan mangkin heterogen telah digunakan bagi mengurangkan kos. Tujuan mangkin digunakan dalam sintesis ini ialah bagi merendahkan suhu tindak balas, masa dan memperolehi kadar peratusan penukaran kepada TRS yang lebih tinggi. Penyerap pula menolong menghasilkan TRS yang berwarna lebih cerah.

Keputusan yang diperolehi menunjukkan bahawa suhu dapat dikurangkan dengan menggunakan mangkin homogen dengan kadar penghasilan TRS yang tinggi tetapi hasil yang diperolehi berwarna gelap. Dengan kehadiran penyerap, hasil yang didapati adalah lebih baik dengan warna yang jernih. Langkah penulenan seperti penyulingan dan peneutralan alkali membantu mendapatkan TRS yang lebih baik.

Mangkin heterogen pula memerlukan tindakbalas dengan suhu 180°C dan masa tindak balas diantara 5 hingga 7 jam. Warna TRS yang diperolehi berwarna kekuningan disebabkan oleh aktiviti mangkin tersebut. Satu kelebihan mangkin heterogen ini ialah ia boleh digunakan berulang kali. Dalam kajian ini, ia boleh digunakan sehingga enam kali berturut-turut sebelum keaktifannya mula menurun. Proses penulinan adalah lebih mudah dan ringkas kerana mangkin heterogen berlainan fasa dengan TRS yang memudahkan pemisahan mangkin.

Kadar tindak balas pengesteran ALBS dengan gliserol dalam kajian ini adalah order kedua berpandukan kepada reaktan ALBS. Penentuan hukum kadar tersebut dilakukan pada suhu dan keadaan tindakbalas yang berlainan. Suhu yang digunakan ialah 120°C, 130°C,140°C, 150°C dan 180°C. Keadaan tindak balas pula ialah dengan mangkin homogen, mangkin homogen dengan penyerap dan mangkin heterogen dengan 0.6% dan 2.0% tapak aktif. Masa tindak balas ialah 3 jam, 5 jam dan 7 jam.

Kajian pada skala yang lebih besar telah dijalankan sebanyak 3 kali dengan menggunakan keadaan tindak balas optimum hasil dari kajian terdahulu. Peratusan TRS yang dihasilkan adalah diantara 64.7% hingga 73.0%. Selepas penyulingan dan rawatan alkali peratusan TRS bertambah kepada 72.2% hingga 89.9%.

CHAPTER I

INTRODUCTION

Oleochemicals Industry in Malaysia

Palm oil has become Malaysia most important economic agricultural product and its development has been remarkable. Starting as a semi-wild crop in West Africa, it has now developed into the second largest oil crops in the world after soybean. This is possible due to the highest yield per unit area at 3.60 tonnes/ ha, compared to soybean at 0.46 tones/ha (Jalani and Cheah, 1997).

Due to increase in land cultivation of palm oil and highest yield per planted area, Malaysia managed to export 7,211,909 tonnes of palm oil earning RM 9,232.1 million and 465,442 tonnes of palm kernel oil with RM 862.5 million earning in 1996 (PORLA, 1997).

Oleochemicals are chemicals derived from oils and fats and often classified into two categories, basic oleochemicals and derivatives. Basic oleochemicals are fatty acids, methyl esters, fatty alcohol and fatty amines with glycerol being an important by-product (Ong *et al.*, 1989).

Malaysia has 15 oleochemicals plants producing various types of oleochemicals with a total capacity of about 1 million tonnes per annum. This made Malaysia the third largest oleochemicals producer in the world and

contributes about 20% share of the total world supply (Kifli *et al.*, 1995). More than 90% of these basic oleochemicals are exported to industrialised countries where they are further processed into intermediates and finally consumer products. It would be of tremendous benefit to Malaysia if the consumer products were produced locally for value addition of the basic oleochemicals (Kang, 1997).

The Objectives Of the Present Research

Palm oil and palm kernel oil are used for the production of oleochemicals in Malaysia. Palm kernel oil (crude and processed) contributed 70% of the total production (Yusof, 1997). Palm kernel oil is similar to coconut oil, making them suitable alternative raw materials for various oleochemicals applications (Oba and Nakamura, 1997). Palm kernel oil (also known as lauric oils) contains short and medium chain fatty acids from carbon 6 (caproic acids) to carbon 18:2 (linolenic acids) with carbon 12 (lauric acids) as the major carbon chain length which constitute 45% - 50% in the palm kernel oil.

In the distillation and fractionation process of the fatty acids from palm kernel oil, the short and medium chain length of carbon 6 (caproic acids) to carbon 10 (capric acids) were distilled off in the fractionation column. The presence of short chains acids often cause of soapy off-flavour and colour reversion in soap. Normally they are discarded as by-products from the oleochemicals plants.

In the late forties, a method of using the short and medium chain fatty acids (MCFAs) of caproic acids to capric acids ($C_6 - C_{10}$) was discovered. Esterification

between MCFAs and glycerol with and without catalyst produced medium chain triglycerides (MCTs) (Babayan, 1968).

The main objective of this research is to study the production of low colour MCTs by esterification of MCFAs and glycerol. The study covers the used of homogeneous catalyst, homogeneous catalyst with absorbent and a commercial heterogeneous catalyst. The study were divided into 3 phases:

- Laboratory study on the optimisation conditions of the esterification by homogeneous catalyst, homogeneous catalyst with absorbent and heterogeneous catalyst.
- 2. Study on the effect of temperature on the reactions rate, and
- 3. Scale-up study on the esterification and purification of MCTs.

The scope of the study includes the evaluation of the medium chain triglycerides produced, reaction time, reaction temperature and purification steps.

CHAPTER II

LITERATURE REVIEW

Oleochemicals from Palm Oil and Palm Kernel Oil

Oleochemicals are chemicals derived from oils and fats and can be divided into two groups, basic oleochemicals and oleochemicals derivatives. The basic oleochemicals are fatty acids, methyl esters, fatty alcohol, fatty amines and glycerol as the valuable by-products (Ong *et al.*, 1989). The basic oleochemicals which can be converted into oleochemicals derivatives that have a large variety of end uses are shown in Table 1 (Salam *et al.*, 1998).

Palm Oil And Palm Kernel Oil As Raw Materials

In oleochemical industry, tallow and coconut oil have been the traditional raw materials used in the production of fatty acids with the chain length of $C_{16} - C_{18}$ and $C_{12} - C_{14}$, respectively. Oleochemicals or derivatives based on $C_{12} - C_{14}$ and $C_{16} - C_{18}$ chain length have a variety of uses.

Due to similarity in carbon chain length, the traditional raw materials are now being replaced by palm stearin; palm kernel and other palm oil products and comparison of their carbon chain length are own in Table 2. (Appalasami and Vries, 1991).

Raw materials		Oils and Fats			
Basic Oleochemicals	Fatty acids	Fatty esters	Fatty alcohols	Fatty amines	Glycerol
Uses of basic oleochemicals	Plasticiser/ Stabiliser	Lubricant	Prevent water evaporation	Antı-slıp	Humectants in several end uses
	Rubber products	Grease		Anti-block	
	Cosmetic	Platiciser for plastics Cosmetic		Water repellents Foam stabiliser Ore floatation Anti-rust	
Derivatives	Sodium and other metallic salts MCTs	Sulphonated methyl ester	Fatty alcohol sulphates Fatty ethoxylates	Quaternary ammonium compounds	Mono and di- glycerides Polyglycerol esters
Uses of Derivatives	Soaps Animal feeds Infant toods Cosmetics Plasticers/ Stabilisers Internal lube	Detergent	Washing and cleaning products	Conditioners Softeners Antimicrobials	Emulsifiers in food and non food applications

Table 1: Basic Oleochemicals Products and Their Derivatives

Table 2: The Fatty Acids Composition Of Oleochemicals Derived from Palm Oil,Palm Kernel, Palm Stearin, Coconut Oil and Tallow

Hatty acids	Palm oil	Palm kernel oil	Palm Stearin	Coconut oil	Tallow
Caproic acid		01-05	-	01-08	
Caprylic acid	-	34-59	-	30-60	-
Capric acid		33-44	-	60-100	-
Lauric acid	01-10	463-511	01-06	44 0 - 52 0	01 - 02
Myristic acid	09-15	143-168	11-19	130-110	01 - 80
Palmitic acid	418-468	65-89	47 2 -73 8	80-110	240-300
Stearic acid	4 2 - 5 1	16-25	44-56	01-30	140 - 250
Oleic acid	373-408	132-164	156-370	50-30	400-490
Linolenic acid	61-91	22-33	32-98	00 - 30	01-50
Others	00-10	traces - 09	01-10	00 - 10	00 - 10