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ABSTRACT With the rapid development of science and technology, all types of mixed media contain large
amounts of data. Traditional single multimedia data can no longer satisfy daily requirements. Therefore,
the cross-modal retrieval technology has become an urgent requirement. Consequently, there is a pressing
need for cross-modal retrieval technology. Its purpose is to mine the connection between different modal
samples, that is, to retrieve another modal sample with approximate semantics through one modal sample.
For example, users can retrieve multimedia data such as images or videos with text. However, there are
differences in the modal representation of different types of multimedia data, and measuring the correlation
between different modes is the main problem of cross-modal retrieval. Currently, the most popular deep
learning methods have achieved remarkable results in the field of data processing and graphics. Many
researchers have applied deep learning methods to cross-modal retrieval to solve the problem of similarity
measurement between different multimedia data. By summarizing the relevant paper methods of cross-modal
retrieval, this paper provides a definition of cross-modal retrieval problems, reviews the core ideas of the
current mainstream cross-modal retrieval methods in the form of three main methods, lists the commonly
used data sets and evaluation methods, and finally analyzes the problems and future research trends of
cross-modal retrieval.

INDEX TERMS Cross-modal retrieval, deep learning, review.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Cross-modal retrieval, alternatively termed multi-modal
retrieval, addresses the task of retrieving pertinent infor-
mation across diverse modalities, such as text and images.
With the substantial surge in online multimedia data and
escalating need for efficient information retrieval, cross-
modal retrieval has garnered significant interest in recent
years. However, the prevalent search technologies in the mar-
ket predominantly focus on single-mode internal retrieval,
such as keyword-based retrieval [1] and content-based
retrieval [2]. These methods exclusively conduct similarity

The associate editor coordinating the review of this manuscript and

approving it for publication was Fu Lee Wang .

searches within the same media type, such as text, images,
audio, and video retrieval. In contrast, cross-modal retrieval
requires the establishment of a cross-modal relationship
model. This enables users to employ a unified pattern for
information searches while retrieving pertinent data across
different modalities [3], thereby improving the accessibility
and comprehensiveness of search results. Figure 1 shows
the general framework for cross-modal retrieval. Its basic
purpose is to explore the relationship between different modal
samples, that is, to retrieve another modal sample with
approximate semantics through one modal sample. Thus,
the cross-modal retrieval challenge centers on quantifying
the content similarity across various modalities, commonly
referred to as the heterogeneity gap [4]. The emergence
of deep-learning technology, offers a promising avenue for
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FIGURE 1. The general framework of cross-modal retrieval.

addressing heterogeneity problems through representation
learning. yielding remarkable performance and exerting
a substantial influence in both academic and industrial
domains.

Cross-modal image and text retrieval involves visual and
natural language descriptions, emphasizing the interplay
between the image and text modalities. Its objective is to
retrieve images through text queries and vice versa, without
depending on additional auxiliary information. In cross-
modal retrieval, different modal data exhibit potential feature
heterogeneity and a high-level semantic correlation [5].
Text on web pages is usually represented by dictionary
vectors, whereas images are represented by visual features,
which are located in completely different feature spaces but
represent the same semantic topic. The primary challenge
in cross-modal retrieval is quantifying the similarity across
distinct modalities, as they have heterogeneous and nonho-
mologous features. The main research method is to model
the relationships between different modalities, learn common
latent space representations [6], and then measure the
similarity in the common latent space to achieve cross-modal
retrieval. Over the years, many researchers and scholars
have proposed effective methods for this issue, especially
for cross-modal retrieval of text and image modalities. There
have also been many review articles on cross-modal retrieval,
such as Wang et al., who published a review article titled
‘‘A Comprehensive Survey on Cross-modal Retrieval’’ in
2016 [7]. In their review, they divided cross-modal retrieval
into real-valued representation learning methods and binary
representation hash learning methods and provided a detailed
introduction to these methods. Peng et al. from Peking
University published an article titled ‘‘An Overview of Cross-
media Retrieval: Concepts, Methodologies, Benchmarks and
Challenges’’ in 2018 [3], which not only elaborates on
the concepts and methods of cross-media retrieval, but
also further introduces the cross-media retrieval dataset,
especially the new dataset created by their team called
Xmedia, which includes five categories of data modali-
ties, providing more convenience for future researchers in

cross-media retrieval. In 2020, Kaur et al. [8] published
a comprehensive review on ‘‘Comparative analysis on
cross-modal information retrieval’’ which comprehensively
elaborated on cross-modal retrieval from various aspects
such as research background, research methods, benchmark
datasets, etc. The figures and table information in this
article are worth learning for researchers and can serve as a
benchmark for beginners in the field of cross-modal retrieval.
Although these reviews have performed well in the field
of cross-modal retrieval, the sources of some proprietary
terms are not marked, making it difficult for beginners
to further understand and learn. In addition, in the past
three years, many new methods and technologies related to
cross-modal retrieval have been proposed, and have achieved
very good data (compared to the paper three years ago, the
retrieval accuracy has improved by approximatedly 10 per-
cent). Therefore, it is time to update the literature review,
supplement the latest technologies and methods in recent
years, and provide efficient assistance for new scholars in the
future.

The main objective of this review is to provide a
comprehensive analysis of cross-modal retrieval techniques,
including classic canonical correlation analysis (CCA)
methods, real-valued representation learning methods, and
emerging cross-modal retrieval hashing methods. We aim to
introduce the basic principles, models, and implementation
processes of these technologies in a detailed and clear manner
so that readers can gain a comprehensive understanding of
cross-modal retrieval. The main contributions of this study
are as follows:

• We have systematically elaborated on the benchmark
and latest methods for cross-modal retrieval between
images and texts, and classified different implementa-
tion methods and technologies, which will contribute to
the research on cross-modal retrieval.

• Some terms, benchmark research methods, benchmark
datasets, and data measurement methods related to
cross-modal retrieval have been annotated and linked
to facilitate future researchers in literature search and
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reference, leaving themwith considerable query time for
their future research.

• The current challenges and future development and
research directions of cross-modal retrieval between
images and text are introduced, providing assistance and
significance for future researchers.

B. ORGANIZATIONAL STRUCTURE OF THE ARTICLE
The first chapter of this article provides an introduction,
mainly explaining what cross-modal retrieval is, its research
methods, the main problems it currently faces, and the
current research status. In Chapter 2, based on the structure
of cross-modal retrieval models, we first introduced the
tools and methods for extracting image and text fea-
tures. Subsequently, combined with clear diagrams and
data tables, we comprehensively reviewed the comparison
and performance of traditional CCA methods and other
methods extended from CCA research methods, cross-
modal retrieval methods based on real-valued representation
learning method, and cross-modal retrieval hashing methods.
In Section III, we review the benchmark dataset and its
sources and measurement methods, which will be of great
help to future scholars. In Section IV, we provide an outlook
and elaboration of future research methods for cross-modal
retrieval. Finally, a summary of the study is presented.

II. CROSS-MODAL RETRIEVAL TECHNIQUES REVIEW
In this section, we provide an overview of cross-modal
retrieval based on the organizational structure shown in
Figure 2 and the key technologies popular in different periods.
Real-value representation learning directly learns features
extracted from different modalities; Binary representation
learning, on the other hand, involves mapping the features
extracted from different modalities to a Hamming binary
space, and then learning within this space. Real-value
representation learning methods focus more on semantic
matching between images and texts. The currently popular
deep learning based real-value representation cross-modal
image and text retrieval methods can be divided into two
categories: common space learning and cross-modal simi-
larity measurement. The former type of method focuses on
modeling features between different modalities, effectively
solving the problem of heterogeneous features in different
modal data through good feature extraction, thereby ensuring
retrieval accuracy. The latter type of method focuses on the
semantic correspondence between image and text modalities,
aiming to improve the accuracy of image text matching and
retrieval by reducing the semantic gap.

A. DATA FEATURE EXTRACTION
The first step in cross-modal retrieval is the extraction of
features from the images and texts. Convolutional Neural
Networks (CNNs) [22] have demonstrated remarkable effi-
cacy in tasks related to image classification and have been
are extensively utilized for image representation in cross-
modal retrieval. CNNs can automatically learn discriminative

FIGURE 2. An overview of cross-modal retrieval based on the
organizational structure.

features by capturing local patterns and global structures
in the images. In CNN-based cross-modal retrieval, images
are fed as input to the CNN architecture. The architecture
comprises numerous convolutional, pooling, and fully con-
nected layers. Convolutional layers extract local features via
filters, whereas pooling layers reduce the spatial dimensions
of the feature maps. The fully connected layers capture
high-level semantic information. Pre-trained CNN models,
such as AlexNet [23], VGGNet [24], and ResNet [25], trained
on large-scale image classification datasets (e.g., ImageNet),
are commonly used for image representation. These models
can extract high-level features that are transferable across
different tasks, including cross-modal retrieval. FromTable 1,
we can see that the choice of model depends on the specific
task requirements, available computing resources, and size
of the dataset. Usually, for general image classification tasks,
VGGNet is a good choice. If the task requires handling very
deep network structures or specific complex tasks, ResNet
may be more suitable.

Various techniques can be employed to incorporate
textual information into CNN-based cross-modal retrieval.
One approach is to convert text into fixed-length vectors
using word embeddings, such as Word2Vec or GloVe [26].
These embeddings capture semantic word relationships and
facilitate text representations within a continuous vector
space. Another method involves employing the bag-of-words
(BoW) representation, where each word in the text is depicted
by either a count or presence indicator. Recurrent Neural
Networks (RNNs) capture sequential dependencies and are
extensively used for text representation in cross-modal
retrieval. RNNs process text input in a sequential manner,
maintaining an internal hidden state that retains information
about previous inputs. Long Short-Term Memory (LSTM)
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TABLE 1. Comparison of AlexNet, VGGNet, and ResNet.

TABLE 2. Comparison of BoW, Word2Vec, GloVe, LSTM, and GRU.

[27] and gated recurrent units (GRU) [28] are prevalent RNN
variations designed to mitigate the vanishing gradient issue
and capture long-term dependencies. Character-level RNNs
operate on individual characters instead of words, and can
capture fine-grained information. These models are useful
when word-level representations are insufficient, such as
in tasks involving misspelled or unknown words. Table 2
summarizes the advantages and disadvantages of these text
feature extraction models and their applicable environments.

B. CANONICAL CORRELATION ANALYSIS (CCA) METHODS
Cross-modal retrieval data typically appear in pairs, such as
image-text pairs, and the premise of cross-modal retrieval
is the correlation between text content and image content.
Canonical Correlation Analysis (CCA) [9] is a classical
statistical method commonly employed in cross-modal
retrieval tasks. CCA aims to find linear transformations for
two different modalities, images and text, that maximize
the correlation between their transformed representations.
By maximizing the correlation, CCA seeks to capture the
shared information between modalities and align them in a
common subspace, thereby facilitating cross-modal retrieval.
Figure 3 illustrates the fundamental structure of the CCA
cross-modal retrieval technique.

The basic CCA model consists of two steps: feature
extraction and correlation maximization. In the feature
extraction step, the raw data from each modality are
transformed into a lower-dimensional feature representation.
For instance, in image retrieval, features can be extracted

using techniques such as Scale-Invariant Feature Transform
(SIFT) [10] or Convolutional Neural Networks (CNNs) [11].
In text retrieval, features can be derived from Word2Vec [12]
or bag-of-words [13] representations. Once the features are
obtained, CCA finds two projection matrices that maximize
the correlation between the transformed representations.
These projection matrices map the features of each modality
into a common subspace, where the correlation between
modalities is maximized. The CCA objective function is
formulated to maximize the correlation between the projected
features.

Although CCA is widely popular for its simplicity and
efficiency and has quickly become a benchmark algorithm
for similar algorithms, the CCA model is an unsupervised
method that does not use semantic category labels, CCA
cross-modal retrieval it faces several challenges and limi-
tations. One significant challenge is the semantic gap [14]
between different modalities, as CCA focuses on capturing
statistical correlations rather than semantic relationships.
In addition, CCA suffers from the curse of dimensionality
when the number of features is large, leading to decreased
retrieval performance. Furthermore, CCA assumes a linear
relationship betweenmodalities, whichmay limit its ability to
capture complex nonlinear correlations. Some extendedmod-
els based on CCA have been proposed to address the chal-
lenges and limitations of CCA. In 2010, Rasiwasia et al. [15]
introduced a joint model for images and text, and analyzed
the retrieval performance of different combinations of image
and text representations. These combinations encompass all
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permutations of the two guiding hypotheses they suggest,
thereby reinforcing the notion that incorporating cross-modal
correlation and semantic abstraction can enhance retrieval
accuracy. In fact, a certain modality of data may have more
than one semantics; therefore, focusing solely on pairwise
coupling is far from sufficient. The universal representation
acquired using this method may not entirely retain the
inherent cross-modal semantic structure within the data.
Standard linear CCA is limited to investigating the linear
relationships between two sets of random variables. However,
in real-world scenarios, the relationship between variables
frequently exhibits non-linear characteristics. Consequently,
non-linear CCA methods have been developed. Kernel CCA
(KCCA), proposed by Hwang et al. in 2012 [16], is a popular
nonlinear CCA algorithm. KCCA integrates the concept
of a kernel function into CCA, mapping low-dimensional
data to a high-dimensional feature space (referred to as the
kernel function space) and facilitating correlation analysis
within this space through the kernel function. Although the
KCCA method solves the non-linear problem of data, owing
to the unknowability of its kernel function selection, the
training cost is high, and the model is relatively complex.
Therefore, the DCCA(Deep Canonical Correlation Analysis)
was proposed to solve these problems. With the advancement
of deep neural networks, scholars have observed that
methods based on neural networks are adept at managing
exceedingly intricate nonlinear relationships within the data.
The strategy initially involves employing neural networks
for nonlinear data mapping, followed by linear CCA for
correlation calculation post data transformation. In 2013,
Andrew et al. [17] first proposed DCCA based on deep
neural networks, which has received widespread attention.
Table 3 summarizes the differences between CCA model-
based methods. Nevertheless, this approach suffers from
the drawbacks of having numerous model parameters and
necessitating a relatively large amount of data.

Overall, none of the above methods utilize multi-label
information. To accurately express multiple concepts in
an image, it is necessary to fully consider multi-label
information and accurately model the correlation between
different modalities. Ranjan et al. [18] in 2015 introduced a
Multi-Label CCA, proposing the use of cross-type data for
retrieval, where each item can be associated with multiple
labels while learning the common semantic space of two
modalities, solving the limitation of CCA’s inability to con-
sider advanced semantic information and improving retrieval
efficiency. Unlike CCA, Multi-Label CCA does not depend
on explicit one-to-one matching between modalities. Instead,
it utilizes multi-label information to establish corresponding
relationships, resulting in one-to-many, many-to-one, and
other pairing situations, forming a discriminative subspace
that is more suitable for cross-modal retrieval tasks.

Similar to CCA, methods such as Partial Least Squares
(PLS) [19] and Bilinear Models [20] also attempt to perform
cross-modal retrieval by learning subspaces; however, these
methods rely on explicit pairing between two modalities

TABLE 3. Comparison of four CCA methods.

to establish corresponding relationships. In 2003, Li et al.
introduced a novel cross-pattern association method, called
cross-pattern-factor-analysis (CFA). In CFA, queries from
one modality are utilized to retrieve content from another
modality that employs a low-level functionality. The primary
objective of subspace class methods is to learn discriminative
shared subspaces primarily by maximizing the correlation.
These techniques demonstrated promising outcomes in cross-
modal retrieval, a prevalent limitation is their failure to
consider the local data structure within each modality and
the structural alignment between modalities. In fact, samples
in one modality corresponding to neighboring samples in
another modality should also have adjacent relationships, and
vice versa.

Canonical correlation analysis enables us to summarize
relationships into fewer statistical dataset while retaining
the main aspects of the relationship. To some extent, the
motivation for typical correlations is very similar to that of
PCA. This is another dimensionality reduction technique.
The CCA formulation can be expressed as follows: We have
two sets of variables, I and T, which are the image and text,
respectively.

I =


I1
I2
...

Ip

 , T =


T1
T2
...

Tq

 (1)

As shown in formula (2), we define a linear combination
called U and V . U corresponds to the linear combination
of the first set of variables I , and V corresponds to the
second set of variables T . Each member of U is paired with
a member of V , we represent member pairing combinations
as (Ui,Vi).

U1 = a11I1 + a12I2 + · · · + a1pIp
U2 = a21I1 + a22I2 + · · · + a2pIp

...

Up = ap1I1 + ap2I2 + · · · + appIp
V1 = b11T1 + b12T2 + · · · + b1qTq
V2 = b21T1 + b22T2 + · · · + b2qTq

...

Vp = bp1T1 + bp2T2 + · · · + bpqTq (2)

We aim to find a linear combination that maximizes the
correlation between each typical variable and its members.
We calculate the variance Ui and Vi for variables using the
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FIGURE 3. The fundamental architecture of the CCA cross-modal retrieval method.

following expression, where a is the coefficient:

var (Ui) =

p∑
k=1

p∑
l=1

aikail cov (Xk ,Xl) (3)

var
(
Vj
)

=

p∑
k=1

q∑
l=1

bjkbjl cov (Yk ,Yl) (4)

The covariance between Ui and Vi is:

cov
(
Ui,Vj

)
=

p∑
k=1

q∑
l=1

aikbjl cov (Xk ,Yl) (5)

For the correlation between Ui and Vi, we take the
covariance between the two variables and divide it by the
square root of the variance product:

cov
(
Ui,Vj

)√
var (Ui) var

(
Vj
) (6)

Ultimately, the correlation between image text pairs i can
be expressed as ρ∗

i .

ρ∗
i =

cov (Ui,Vi)
√
var (Ui) var (Vi)

(7)

III. REAL-VALUED REPRESENTATION LEARNING
TECHNIQUES
As shown in Figure 4, in this section, we further subdivide
cross-modal retrieval real-value representation methods into
deep learning, adversarial neural network, graph network,
transformer, and other methods.

A. DEEP LEARNING TECHNIQUES
Scholars have investigated deep learning methodologies
for facilitating cross-modal retrieval tasks. Deep-learning
methods can automatically learn high-level representations
from raw data and capture complex relationships and
semantic information. The capacity of deep learning to
acquire hierarchical representations directly from unpro-
cessed data underscores its efficacy as a potent instrument
for cross-modal retrieval tasks. Ngiam et al. [29] presented
a series of tasks for multimodal learning and demonstrated
how to train deep networks to learn cross-modality features
and how to learn a shared representation between modalities.
Srivastava and Salakhutdinov [30] developed a joint density
model in a multimodal input space. Subsequently, given
the observed modes, the missing modes can be filled by
sampling from the conditional distribution above them.
Feng et al. introduced a deep- learning framework called
the cross-modal correspondence autoencoder (Corr-AE) [31].
This model integrates single-modal representation learn-
ing and inter-modal correlation learning through the joint
minimization of reconstruction errors from single-modal
autoencoders and correlation errors across distinct modal
representation layers. Wu et al. [32] treated click data as
a large click graph, where vertices denote images or text
queries, and edges represent the connections formed by clicks
between an image and a query. Their objective was to create
a multimodal representation that captures both explicit and
implicit relevance relationships between these vertices within
the click graph. He et al. [33] proposed a network architec-
ture to effectively capture cross-modal retrieval properties,
specifically enabling a bidirectional search. This architecture
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FIGURE 4. Real-valued representation learning methods’ research evolution.

is distinguished by the simultaneous incorporation of both
matched and unmatched image-text pairs during training.
Grangier and Bengio [34] formalized the retrieval task as
a ranking challenge, and introduced a learning method
that optimizes a criterion linked to ranking performance.
The model stands out because it does not depend on an
intermediary image annotation task, setting it apart from
prior research approaches. In fact, a certain modality of
data may have more than one semantics; therefore, focusing
solely on pairwise coupling is far from sufficient. The
universal representation learned in this manner cannot fully
preserve the potential cross-modal semantic structure in the
data. Overall, none of the above methods utilize multi-label
information. To accurately express multiple concepts in an
image, it is necessary to fully consider multi-label informa-
tion and accurately model the correlation between different
modalities.

B. RNN MODELS
The RNN model is mainly used in cross-modal retrieval to
process and understand sequential data (such as text or video),
and fuse it with image features extracted by models such as
CNN. RNN can effectively capture time series information in
text or video, and achieve cross-modal retrieval by converting
text sequences into vector representations and matching
them with image or video features. Its advantage lies in
its ability to process variable length sequence data, capture
contextual information, and improve the matching accuracy
between text, images, or videos. However, the disadvantages
of RNN include high computational complexity, long training
time, difficulty in capturing long-range dependencies, and
the possibility of gradient vanishing or exploding when
processing long sequences. Nevertheless, RNNs that combine
attention mechanisms, such as LSTM or GRU, have to some
extent alleviated these issues and improved the effectiveness

of cross-modal retrieval. Zeng et al. proposed a Fine grained
Iterative Attention Network (FIAT) for temporal language
localization in videos. FIAT iteratively adjusts attention
weights to accurately locate time periods in videos that
match text descriptions. RNN is used to process time series
information of videos and texts, while iterative attention
mechanism is used to dynamically adjust the alignment
relationship of different modalities, thereby improving the
accuracy and robustness of localization [51]. Chen et al.
proposed a Joint Visual Semantic Matching Embedding
(JVSM) model for language based object retrieval tasks.
This method encodes text using RNN, extracts features
from images using CNN, and then matches them in a
common embedding space. In order to further improve the
matching effect, the author introduced Bidirectional RNN (Bi
RNN) to capture the contextual information in the text [52].
Zhang et al. proposed a context aware cross-modal retrieval
method that achieves accurate cross-modal retrieval through
text and image embedding. The author uses RNN to process
text sequences and combines image features extracted by
CNN to enhance the quality of embedded representations
using contextual information [53]. Neng et al. proposed an
Attention Sequence to Sequence Model (ASSM) based on
attention mechanism for video subtitle generation. Although
this work mainly focuses on video subtitle generation tasks,
the methods involved can be directly applied to video
text retrieval. This model processes video frame sequences
through RNN to generate corresponding text descriptions,
while introducing attention mechanisms to capture the
correspondence between keyframes and text segments in the
video [54]. These methods that apply RNN to cross-modal
retrieval tasks, combined with other techniques such as
attention mechanisms and Transformers, have shown supe-
rior performance in cross-modal retrieval tasks, especially
when dealing with complex queries and diverse image
content.

115722 VOLUME 12, 2024



Z. Han et al.: Cross-Modal Retrieval: A Review of Methodologies, Datasets, and Future Perspectives

C. GENERATIVE ADVERSARIAL NETWORK (GAN)
A Generative Adversarial Network (GAN) is an inno-
vative architecture of deep learning, first proposed by
Goodfellow et al. [35] in 2014. The basic idea is to learn the
data distribution through two neural networks: a generator
and a discriminator, competing with each other. Some
scholars have applied GAN to the field of cross-modal
retrieval, and the correlation between modalities and within
modalities can be explored simultaneously in generative
and discriminative models, thereby promoting cross-modal
correlation learning through discriminative adversarial inter-
actions. The ACMR model proposed by Wang et al. [36]
in 2017 quickly became a benchmark for many subsequent
methods. It combines common deep representation learning
and adversarial learning for cross-modal retrieval. In this
model, the construction of adversarial networks adopts a
common-representation generation discrimination approach.
In addition, semantic information is used to construct
discriminative constraints for maintaining inter-modal and
intra-modal data structures, thereby enhancing the ability
to learn common representations. Xu et al. [37] introduced
a novel model called Self-Supervised Ternary Adversar-
ial Network (TANSS). This model leverages adversarial
learning techniques to enhance the consistency and corre-
lation of the semantic features across diverse modalities.
It comprises three sub-networks that collectively form
an end-to-end architecture, facilitating efficient iterative
parameter optimization. Wu et al. proposed an approach
known as model-specific and shared generative adversarial
network (MS2GAN) [38], designed specifically for cross-
modal retrieval. The generative model is trained to forecast
the semantic labels of features, thereby capturing both
inter-modal and intra-modal similarities with the aid of
label information. This also ensures a distinction between
modality-specific and modality-shared features. Simulta-
neously, the discriminative model learns to classify the
feature modalities. These learned modality-specific and
shared representations are jointly employed for retrieval
purposes. Xu et al. [39] proposed a new method called
Assembling AutoEncoder and Generative Adversarial Net-
work (AAEGAN), which merges the capabilities of an
autoencoder and a generative adversarial network. This
combined approach facilitates simultaneous learning of a
shared latent space, knowledge transfer, and feature synthesis
to enable zero-shot cross-modal retrieval. He et al. [40]
introduced a new approach called Category Alignment
Adversarial Learning (CAAL) designed for cross-modal
retrieval. They utilized two parallel generative adversarial
networks that incorporated category information. These
GANs generate artificial images and text features, which are
then combined with pre-existing embeddings to reconstruct
a shared representation. Finally, two joint discriminators are
employed to minimize the disparity between the initial stage
mapping and embadding of the subsequent stage. However,
such methods, due to their greater focus on local information,
have higher requirements for the size and quality of the

dataset, as well as the refinement of the model, and are mostly
not suitable for matching global information.

D. GRAPH REGULARIZATION
Graph regularization is a potent technique for cross-modal
correlation learning due to its ability to capture diverse
correlations within cross-modal data, encompassing semantic
relevance, intra-modal similarities, and inter-modal sim-
ilarities. Moreover, it naturally accommodates multiple
media types within a cohesive framework. Wang et al. [41]
suggested using visual and textual scene graphs—VSG
and TSG—to represent images and text. Each graph
captures objects and relationships within its respective
modality. Liu et al. [42] introduced the Graph Structured
Matching Network (GSMN), a new approach designed to
capture intricate correspondences. GSMN explicitly repre-
sents objects, relations, and attributes as structured phrases.
This unique representation enables the network to learn
correspondences for each element separately while also facil-
itating the fine-grained understanding of structured phrases.
Wang et al. [43] introduced an innovative cross-modal hash-
ing method that leverages sparse graph structures. These
structures are employed to utilize similarity information
effectively, aiming to tackle the degradation issue commonly
encountered in unsupervised algorithms. Cheng et al. [44]
introduced the Cross-modal Graph Matching Network
(CGMN), a graph-based approach that delves into both intra-
and inter-relations without the need for network interaction.
Han et al. [45] introduced a method called MGSGH, which
utilizes the construction of global semantic graph and scene
graph to deeply mine the coarse-grained and fine-grained
semantic information of images and texts, respectively,
providing an effective solution for cross-modal retrieval of
hash methods. Pei et al. [46] proposed an approach that
allows us to extract cross-modal features at both object and
relationship levels. Assessing the similarity between images
and text across these levels offers a more robust evaluation
framework. This article introduces a new network, designed
for matching images and text. SGSIN adeptly learns detailed
semantic information in both visual and textual domains,
aiming to reconcile differences between different modalities.
However, constructing the graph typically incurs high time
and space complexity, particularly in real-world scenarios
involving extensive cross-modal datasets.

E. TRANSFORMER METHODS
In recent years, transformer architecture has been suc-
cessfully applied in cross-modal retrieval, demonstrating
favorable outcomes in various tasks. The transformer is a
basic deep-learning model predominantly founded on the
self-attention mechanism, allowing it to capture extensive
dependencies within sequences and proficiently model
contextual information. In 2020, Messina et al. presented
the Transformer Encoder Reasoning and Alignment Net-
work (TERAN) [47], aimed at producing comprehensive
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FIGURE 5. The framework of cross-modal retrieval hashing method.

region-word alignments to enhance the cross-modal informa-
tion retrieval efficiency. Wang et al. [48] leveraged the struc-
tural semantics inherent in transformer architecture, enabling
comprehensive cross-modal learning through unified global
and fine-grained alignment. This approach effectively bridges
the gap between heterogeneous modalities. Zhang et al. [49]
introduced a pioneering framework for cross-modal retrieval
characterized by pre-training within an initial interaction
dataflow and decomposition into distinct encoders. This
decomposed architecture ensures both high retrieval accuracy
and rapid retrieval speeds. In 2023, Zhang et al. [50] unveiled
the Cross-Modal Transformer (CMT), which incorporates
a language query. This model adeptly fosters deep inter-
actions between visual and linguistic modalities, thereby
significantly boosting cross-modal capabilities. Although the
transformer model has achieved many successes, we can
continue to improve it in the following three directions. First,
cross-modal feature fusion, the self-attention mechanism of
a transformer, can be used to establish correlations between
different modalities, allowing the model to focus on the cor-
relations between different modalities when integrating fea-
tures. Second, in cross-modal alignment, the transformer can
help align data from different modalities in the embedding
space, making it easier to compare and retrieve similarities
by representing the data from different modalities in the
same semantic space. Third, multimodal information fusion,
through Transformer’s multi-head self-attention mechanism,
allows local and global information from different modal data
to be effectively integrated, improving the model’s ability to
understand cross-modal data. In addition, transfer learning

and pre-trained models leverage pre-trained transformer
models to apply transfer learning to cross-modal retrieval
tasks. This approach harnesses the semantic comprehension
capabilities of pre-trained models to enhance overall model
performance.

F. OTHER METHODS
There are also some deep learning based methods, such as
learning to rank methods, metric learning methods, cross-
modal reconstruction methods. They also adhere to the
concept of projecting heterogeneous data into a shared
space, enabling direct measurement of their similarities.
For instance, the cross-modal reconstruction method focuses
more on global information. This type of method is typically
uses one modality information to reconstruct the correspond-
ing modality while retaining the reconstruction information,
which can enhance the consistency of the cross-modal fea-
tures and semantic differentiation ability. In 2019, Wu et al.
devised an alternating minimization approach for tackling the
optimization problem of a multi-modal semantic autoencoder
[55]. This approach entails an encoder responsible for
transforming feature vectors into code vectors, while a
decoder performs the reverse mapping, converting code
vectors back into feature vectors. Such an encoder-decoder
framework guarantees the preservation and maintenance
of both feature-based and semantic information within the
embeddings. Considering the challenges associated with
acquiring semantic labels,Wu et al. [56] observed a consistent
representation in the latent space among various view
features belonging to samples within the same category.
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TABLE 4. Taxonomy of binary hash learning methods.

Consequently, they introduced a reconstruction-based com-
ponent aimed at restoring the original multimodal data
to facilitate the cross-modal retrieval. Zhang et al. [57]
introduced an autoencoder-based approach designed for
cross-modal retrieval to obtain hash functions. This strategy
aims to preserve richer and more valuable information,
thereby enhancing the potency of the generated hash
functions. Xie et al. [58] presented a novel methodology
that integrates multi-similarity reconstruction with cluster-
based contrastive hashing. This approach aims to bolster
the semantic coherence of both inter-modal and intra-modal
reconstructions within the cross-modal retrieval domain. The
cross-modal reconstruction method utilizes deep encoders
and other methods to effectively reduce the heterogeneity
differences between modalities and enhance the semantic
discrimination ability. This type of method does not require
high training and scale requirements for datasets, has low
annotation costs, is more suitable for small andmedium-sized
datasets, has scalability, and is often used for tasks such as
image subtitle generation. However, such methods are prone
to ignoring detailed information during model training, and
their performance in integrating the target data for correlation
is insufficient. Therefore, how to jointly learn the alignment
of local text and image information while narrowing the
statistical gap between modalities and dynamically adjusting
the generation process between modalities based on this
is currently a challenge faced by such methods. Learning
to rank techniques utilize ranking information as training
data, optimizing the ranking of retrieved outcomes directly,
rather than focusing on similarities between pairwise data
instances. Inspired by Bai et al. [59], some learning-to-rank

techniques have been proposed, such as [60], [61], and
[62]. They utilized ranking information as training data,
optimizing the ranking of retrieved outcomes directly, rather
than focusing on similarities between pairwise data instances.
Wei et al. introduced a novel universal weighting metric
learning framework tailored for cross-modal retrieval [63].
This framework effectively selects informative pairs and
assigns suitable weight values to enhance performance. The
assignment of weights is based on similarity scores, allowing
for a nuanced approach in which distinct pairs benefit from
varied penalty strengths.

IV. BINARY HASH METHOD
Cross-modal retrieval hashing techniques strive to compress
data from various modalities into concise binary code.
enabling an efficient and scalable retrieval in large-scale
cross-modal databases. These methods utilize hash functions
to map high-dimensional data, such as images and text, into
binary codes, where similar items have codes that are close
to each other. In this section, we explore various cross-modal
retrieval hashing techniques. Table 4 summarizes the struc-
ture of our hash method. In both supervised and unsupervised
hashing, hash functions are learned through an optimization
process that minimizes the quantization error between the
original data and binary codes. The learned hash functions
can then be used to map new multi-modal data to the
Hamming space for retrieval.

Figure 5 illustrates the basic process of the cross-modal
retrieval hash method. First, the feature vectors VI and Vt of
the image and text, respectively, are obtained through feature
extraction. They are then mapped to the binary Hamming
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space using a hash function to obtain the binary hash codes
Hi and Ht of the image and text. In the Hamming space,
the Hamming distance or cosine similarity is typically used
to measure the similarity between two different modalities.
The Hamming distance was used to calculate the difference
between the digits of the two binary sequences. The smaller
the difference in the digits of the sequence is, the more similar
it is. The cosine similarity measures the cosine value of the
angle between two vectors in the vector space; the closer the
value is to 1, the higher the similarity.

Cross-modal hashing offers three key advantages over real-
value representatio. First, based on binary expressions, cross-
modal hashing allows the conversion of time-consuming
distance calculations during retrieval into Hamming distance
calculations between hash bits. Second, due to the substan-
tially reduced storage space needed for binary hash codes in
comparison to the features of the original multimedia data,
such as text, image, or video features, cross-modal hashing
substantially diminishes the storage overhead of multimedia
data. Additionally, the length of the binary hash code acquired
through learning is typically significantly shorter than the
dimensionality of the original data, effectively alleviating the
problem of the ‘‘curse of dimensionality.’’

Cross-modal hashing techniques can be classified into
three main categories based on distinct learning methodolo-
gies: supervised, unsupervised, and semi-supervised cross-
modal hashing approaches. The subsequent sections offer a
detailed analysis of the current research status of these three
types of cross-modal hashingmethods, both domestically and
internationally.

A. SUPERVISED
Supervised cross-modal hashing methods utilize labeled data
to train the hash functions. These methods aim to preserve the
semantic similarity between paired instances from different
modalities while maximizing the Hamming distance between
non-matching instances.

Supervised hash learning is one of the most common
cross-modal hash learning methods. Its purpose is to use
the semantic labels of data for learning, thereby mining
the semantic discriminative features of multi-modal data.
Over the last decade, numerous significant methodologies
have emerged to enhance retrieval performance. Supervised
cross-modal hashing techniques can be further categorized
into shallow and deep model-based methods, based on the
employed model type. Among shallow methods, methods
based on eigenvalues or matrix factorization are widely
used for learning cross-modal hash codes. Kumar et al. [64]
constructed a set of hash functions for multimodal data
and transformed the hash function learning problem into a
solvable eigenvalue problem using a new relaxation method.
Bronstein et al. [65] introduced an innovative approach for
acquiring cross-modal hash functions by leveraging feature
decomposition and boosting techniques. Their method not
only mitigates redundancy but also enhanced the richness
of the vocabulary used in the description. Tang et al. [66]

concurrently addressed semantic label consistency and
local geometric consistency within multimodal data. They
employed a collaborative matrix decomposition method to
compute the cross-modal hash code. This approach not
only minimizes redundancy, but also enriches the lexicon
employed in the explanation. Liu et al. [67] introduced
an efficient cross-modal retrieval algorithm, termed Flex-
ible Collaborative Matrix Factorization Hash (FS-CMFH).
This method leverages label consistency across diverse
modalities to maintain the semantic information within and
between the modalities within a shared latent semantic
representation space. Mandal et al. [68] produced latent
factors corresponding to various modalities and employed
a matrix factorization-based linear transformation technique
to project multimodal data into a more discriminative label
space. Li et al. [69] introduced a scalable discrete matrix
factorization hashing approach. This method incorporates
the collaborative matrix factorization of kernel features and
labeled semantic embeddings to acquire latent semantic
spaces, ensuring the preservation of semantic similarity
across and within modalities. Wang et al. [70] presented a
hash method based on label consistency matrix factorization.
This approach enables the transformation of heterogeneous
data into a latent semantic representation space, wherein
multimodal data of the same category converge on a
unified feature representation. Liu et al. [71] utilized matrix
factorization to encode heterogeneous data with varying
hash lengths. They introduced a matrix factorization hashing
algorithm to extend cross-modal hash retrieval to varied
and demanding scenarios. The method based on shallow
models has high computational efficiency, but it mainly
relies on manually extracted features, and the nonlinear
representation ability of the model is limited. Therefore,
modeling the complex semantic correlation of data is not
outstanding. In recent years, with the booming development
of deep learning technology, more research has begun to use
deep models for end-to-end hash learning. Jiang et al. [72]
proposed a cross-modal hashing model based on deep neural
networks by merging multimodal feature learning and hash
learning into a unified framework. Yang et al. [73] fused
diverse types of paired constraints using deep models to
augment the measurement of hash code similarity from both
intra-modal and inter-modal perspectives. Chen et al. [74]
introduced a tri-stage dual deep neural network cross-modal
hashing approach, employing two deep networks to generate
cross-modal hash codes. Deng et al. [75] developed a deep
hash network based on triplets, utilizing triplet labels as
supervised information to establish semantic connections
between instances across modalities. Ma et al. [76] studied
a cross-modal hashing method based on global and local
semantic preservation, which maintains significant differ-
ences between different hash codes, thereby improving the
discriminability of hash codes. Shi et al. [77] studied the
relationship between semantic structure and discriminative
behavior and proposed a discriminative hashing algorithm
with equal guidance to construct a universal semantic
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TABLE 5. Supervised hash learning approaches based on the MAP score on the Wikipedia dataset.

structure preserving classification. Hu et al. [78] analyzed
the effectiveness of multimodal networks in maintaining
inter modal and intra modal consistency, and proposed a
multimodal deep binary reconstruction model. Xia et al. [79]
proposed an efficient multimodal learning module that
incorporates a fusion converter encoder supervised by
contrastive loss. This module enhances the interaction
between modalities and concurrently refines the semantic
representations of the individual modalities. In adition,
a dedicated contrastive hash learning module was designed
to produce high-quality hash codes associated with each
modality. Xie et al. [80] introduced an adversarial hashing
method that focused on multi-task consistency preservation.
This approach thoroughly investigated multimodal semantic
consistency and correlation, thereby accomplishing efficient
cross-modal retrieval. Nie et al. introduced a deep multi-scale
fusion hashing method [81], which employs a multi-scale
fusion model to explore cross-modal semantic correlations
through multi-scale semantic fusion. Hou et al. [82] intro-
duced a reasoning approach centered on multiple instance
relation graphs in their research. Through the construction
of similarity matrices, both global and local instance relation
graphs were formulated to leverage fine-grained relations
among instances comprehensively. Additionally, to address
the characteristics inherent to both the image and text
modalities, a progressive training strategy was employed
to train the proposed neural network model. Shu et al.
introduced the DAZSH method [83], that incorporates data
features and class attributes to generate a semantic category

representation for each category. This method adeptly
captures the relationships between seen and unseen classes
through the acquisition of a category representation vector
for each instance. Consequently, it enables the transfer of
supervised knowledge from seen classes to unseen ones.
Li et al. [84] introduced the ROHLSE method, which utilizes
sample representations in the feature space to predict labels
based on the dependencies between the sample instances
and labels. Wang et al. devised a semantic adaptation
network [85] to produce target prototype code and recon-
struct category labels. This facilitates semantic interactions
between the target semantics and implicit semantics within
the targeted model. Moreover, the authors incorporated a
discriminator into adversarial training, with the goal of
enhancing the visual realism and category discrimination
of adversarial examples, thereby improving targeted attack
performance. Tables 5, 6, and 7 respectively show supervised
hash learning approaches based on the MAP score on the
Wikipedia, NUS WIDE, and MIRFlickr datasets. These data
are all from the source paper, and the ‘‘-’’ in the table
indicates that the method was not tested on this dataset or
at this hash code length. The supervised hash method based
on deep learning models not only has a strong nonlinear
semantic representation ability, but also achieves end-to-
end semantic feature learning and hash code generation,
significantly improving the accuracy of cross-modal hash
retrieval. First, fine-grained semantic mining was insuffi-
cient. Although existing fine-grained semantic mining fully
considers objects and their relationships, the degree to
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TABLE 6. Supervised hash learning approaches based on the MAP score on the NUS-WIDE dataset.

which different combinations of objects and relationships are
mined is not sufficiently deep. Second, existing research has
not considered the organic combination of global semantic
information and local semantic information; that is, the fusion
of coarse-grained semantic information and fine-grained
semantics in multi-source heterogeneous data.

B. UNSUPERVISED
Unsupervised cross-modal hashing methods do not rely on
labeled data and focus on learning hash functions solely
from data distribution. These methods typically leverage the
correlation between modalities to learn binary codes that
capture the underlying cross-modal relationships.

The good learning performance of supervised learning
methods relies heavily on a large amount of labeled data.
However, data labeling relies mainly on manual annotation.
A large amount of manual annotation requires considerable
manpower, material, and financial resources, which are
expensive and unrealistic. Therefore, the vast majority of
the existing heterogeneous data from multiple sources have
not been manually annotated. to fully utilize the massive
amount of unlabeled data, many scholars have focused
on unsupervised cross-modal hash learning. Unsupervised
cross-modal hash learning does not rely on the semantic
labels of data, and its purpose is to deeply explore the
potential association relationships between multi-modal and
multi-view data. Existing research has mainly focused on

mining the association relationships between paired views,
with few studies considering the association relationships
between all modalities and all views simultaneously.

Hu et al. [86] proposed the Iterative Multi-View Hashing
algorithm (IMVH), which learns optimal alignment in
encoding schemes to maintain similarity between views.
Irie et al. [87] proposed an unsupervised hash method called
alternating common quantization, which alternately searches
for binary quantizers for each modal space by connect-
ing with multimodal data, ensuring minimal quantization
errors while maintaining data similarity. Wu et al. [88]
constructed the underlying relationships between domains
of the same object by maximizing the correlation between
cross domain hash codes, and the multimodal objective
function was transformed into a single modal formalization.
Ding et al. [89] introduced a collaborative matrix factor-
ization hash algorithm that seeks to acquire unified hash
code for a multimodal instance within a common latent
semantic space. Rafailidis and Crestani [90] introduced
a method for cross-modal hash learning that utilizes a
clustering-based joint matrix factorization strategy. This
approach enables the calculation of inter-modal similarity,
intra-modal similarity, and clustering-based similarities in
a unified representation space. Fang et al. [91] introduced
a method for multimodal graph-regularized smooth matrix
factorization hashing. This method ensures the sparsity of the
learned dictionary and common features, thereby effectively
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TABLE 7. Supervised hash learning approaches based on the MAP score on the MIRFlickr dataset.

minimizing quantization loss. Cheng et al. [92] proposed
a robust unsupervised cross-modal hashing method that
preserves the original feature information as much as possible
by exploring the partial or incomplete correspondence
between modalities. In recent years, the performance of
unsupervised cross-modal hashing, particularly that based on
deep learning, has been substantially enhanced owing to the
potent representational capabilities of deep neural networks.
Liong et al. [93] crafted a deep fusion neural network to
acquire the nonlinear transformations of image-text pairs.
The model generates a unified modal hash codes through the
application of classification hinge loss criteria. Wu et al. [94]
investigated the unsupervised deep cross-modal hashing
method, which is innovative in that it combines deep
learning with matrix decomposition, and cleverly utilizes
the binary latent factor model to facilitate cross-modal hash
learning. Su et al. [95] introduced an unsupervised deep
joint semantic reconstruction hash (DJSRH) technique. This
method integrates original neighborhood information from
various modalities through a semantic similarity matrix,
capturing intrinsic semantic similarities. Huang et al. [96]
presented an unsupervised cross-modal hashing framework
that employs data fusion to capture the underlying manifolds
across modalities. This approach mitigates issues related
to maximizing the intra-modal and inter-modal similarity
constraints. Yang et al. [97] investigated a deep semantic
alignment hash algorithm (DSAH), that intelligently aligns

the similarity between features and hash codes by incorpo-
rating a semantic alignment loss function. Liu et al. [98]
introduced a similarity hashing method (JDSH) rooted in
joint modal distribution. The proposed approach employs
an unsupervised learning algorithm, specifically based on
Distributed Similarity Decision and Weighting (DSDW),
to generate hash codes with enhanced discriminative prop-
erties. Hoang et al. [99] presented an algorithm grounded in
spectral embedding, aiming to learn single-modal and binary
cross-modal representations concurrently. This method effec-
tively preserves the local structure of each modality
and captures the hidden patterns across all modalities.
Wang et al. [43] designed an unsupervised method called
Semantic-based Cross-modal Hashing (SRCH). The method
accomplishes the computation of cross-modal similarity
by modeling the set recombination to update the training
data. Wang et al. [100] introduced an unsupervised deep
cross-pattern hashing algorithm, referred to as UDCH-VLR,
which leverages virtual label regression. This method focuses
on learning a unified hash code through collaborative matrix
decomposition, ensuring the preservation of shared semantics
across multiple modalities. In addition, in order to effectively
reduce the heterogeneity between modalities, some studies
have integrated deep adversarial learning methods into cross
modal hash learning models to improve the quality of
hash code generation. For instance, He et al. introduced
an unsupervised cross-modal retrieval approach based on

VOLUME 12, 2024 115729



Z. Han et al.: Cross-Modal Retrieval: A Review of Methodologies, Datasets, and Future Perspectives

TABLE 8. UnSupervised hash learning approaches based on the MAP score on the Wikipedia dataset.

adversarial learning [101]. Integrating a modal classifier that
predicts the modality of the transformed features ensures
their statistical indistinguishability. Zhang et al. [102] max-
imized the unsupervised representation learning capability
inherent in Generative Adversarial Networks (GANs) to
extract the manifold structure within cross-modal data. They
formulated an unsupervised cross-modal hash model based
on GANs. Li et al. investigated an unsupervised coupled
cyclic generative adversarial hash network (UCH) [103].
This approach employs an outer recurrent network to learn
shared representations and an inner recurrent network to
generate reliable hash codes. Zhang et al. introduced a
multipath generative adversarial network model for unsuper-
vised cross-modal hash modeling [104]. Shen et al. [105]
presented a novel network designed to pass extracted features
through an attention module, effectively encoding rich and
relevant features. Simultaneously, the network is capable of
generating hash codes through self-supervision, facilitated
by the proposed attention-aware semantic fusion matrix.
Shen et al. presented Clustering-driven Deep Adversarial
Hashing (CDAH) [106], that integrates soft clustering into
approximates and iteratively optimizes the clustering centers
for each modality. This approach aims to enhance the
accuracy of capturing the semantic similarities within each
modality. Mikriukov et al. [107] presented an innovative
unsupervised cross-modal hashing approach, referred to
as CHNR, specifically designed to handle noisy image-
text correspondences. The proposed method employs a
multi-term noise-robust contrastive loss function for unsu-
pervised learning of cross-modal hash codes. Shi et al.
proposed a method called DAEH [108], which combines
information mixture similarity estimation with integrated

distance analysis to model image text similarity discrim-
ination. The utilization of IMSE is aimed at mitigating
redundant information within similarity guidance during the
optimization of hash functions. Hoang et al. [109] utilize a
strategy that maximizes mutual information (MI) to tackle
the challenge of unsupervised learning for binary hash
codes, with a specific emphasis on improving efficiency in
cross-modal retrieval. Hu et al. [110] introduced a novel
momentum optimizer designed for learnable hashing oper-
ations in the context of contrastive learning. This innovative
approach facilitates on-the-shelf deep cross-modal hashing.
Zhu et al. [111] presented a novel unsupervised cross-modal
retrieval method termed correlation-identity reconstruction
hashing. The proposed approach incorporates a recon-
struction strategy that allows for simultaneous preservation
of multi-modal correlation and identity semantics within
binary hash codes. Tables 8, 9, and 10 respectively show
unsupervised hash learning approaches based on the MAP
score on theWikipedia, NUSWIDE, andMIRFlickr datasets.
Currently, unsupervised methods have two major limitations.
Unsupervised cross-modal hashing methods learn potential
correlations between multimodal data through multi-view
methods or deep models, the complex correlations between
multimodal data have not been fully explored. Although
there have been studies attempting to mine the correlations
between multiple modalities of data, most of them are
focused on learning for two modalities or are based on
pairwise correlations, making it difficult to simultaneously
consider the correlations between all modalities.In addition,
correlation analysis methods based on tensor decomposition
cannot effectively characterize complex nonlinear semantic
correlations. However, owing to the lack of semantic labels
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TABLE 9. UnSupervised hash learning approaches based on the MAP score on the NUS-WIDE dataset.

in the data, unsupervised hash models find it difficult
to effectively mine key semantic features and achieve
cross-modal semantic alignment.

C. SEMI-SUPERVISED
To address the challenge of accurately capturing cross-modal
semantic correlations in unsupervised cross-modal hashing
methods, some studies have introduced semi-supervised
learning methods into cross-modal hashing tasks, sup-
plementing the training set with rich unlabeled data to
improve supervised learning performance. Wang et al. [112]
proposed a semi-supervised semantic factor decomposition
hash algorithm (S3FH), which optimizes a joint framework
consisting of three interactive parts: semantic decompo-
sition, multi-graph learning, and multimodal correlation
learning. Wang et al. [113] proposed a semi-supervised
deep quantization (SSDQ) model, which is innovative in
that it integrates supervised information (pairwise simi-
larity + class labeling) and unsupervised information in
a unified framework. Employing composite quantization,
this model facilitates precise and efficient cross-domain
queries. Zhang et al. [114] designed a semi-supervised
cross-modal hash algorithm (SS-LPDP) based on label
prediction and distance preservation. This method employs
a shared objective function with distance preservation
constraints, which effectively classifies data and minimizes
interference during retrieval. Wang et al. [115] amalgamated
labeled and unlabeled data, undertaking the learning of
latent subspaces for both types by integrating cross-modal
relaxation latent subspace learning and semantic preservation
regularization. This approach is based on adversarial learning
techniques. Zhang et al. [116] introduced a model, namely
the cross-modal hash generation adversarial network, and

applied a reinforcement learning-based algorithm to facilitate
the training of the model. Mandal et al. [117] learned
complementary information from different modalities to
predict the class labels of unlabeled data. Their proposed
method can be used as a baseline method to effectively
improve the performance, even in situations with limited
labeled data. Shen et al. [118] proposed a semi-supervised
graph convolutional hash network (SGCH)method that learns
a common cross-modal Hamming space through end-to-
end neural networks. Owing to the lack of use of semantic
labels in unsupervised learning, it is difficult for unsupervised
learning to capture rich semantic discriminative information
and effectively narrow the semantic gap. To fully utilize
massive amounts of unlabeled data and improve the mining
ability of unsupervised learning for semantic discriminative
information, some scholars have turned their attention to
domain adaptive learning based on transfer learning. Transfer
learning, an innovative machine learning paradigm, leverages
pre-existing knowledge to address challenges in diverse
yet related domains. This method relaxes the two key
assumptions found in traditional machine learning, aiming
to apply existing knowledge to address learning tasks in the
target domain, even in situations with scarce labeled data.
Domain adaptive learning methods facilitate the transition
from the source domain to the target domain via four
consistency constraints: structural, domain, semantic, and
modal. For example, Huang et al. introduced the Modal Con-
frontation Hybrid Transfer Network (MHTN) [119], which
is specifically designed for transferring knowledge from a
single-modal source domain to a cross-modal target domain.
This model enabled the acquisition of a unified cross-modal
representation. In anther study [120], a two-stage progressive
cross modal knowledge transfer (TPCKT) method was
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TABLE 10. UnSupervised hash learning approaches based on the MAP score on the MIRFlickr dataset.

TABLE 11. Semi-Supervised hash learning approaches based on the MAP score on the Wikipedia dataset.

proposed, with parameter shared domain discriminators set
up at the modality specific layer and modality shared layer
respectively to maintain cross modal consistency of trans-
mission. Wen et al. introduced the Cross-Modal Similarity
Transfer (CMST) method [121] designed for unsupervised
learning and preservation of semantic relationships between
unpaired items. Zhen et al. [122] proposed a method called
Deep Multimodal Transfer Learning (DMTL), the highlight
of which is the transfer of semantic category information from
the source domain to the target domain. Peng et al. presented
a domain adaptation technique called scene graph-based
domain adaptation (DASG) [123]. This method utilizes
the Visual Genome as the source domain for knowledge
transfer, with the goal of improving the cross-modal retrieval
performance in the target domain. Shen et al. [124] made
a significant contribution by introducing an approach that
utilizes multi-view graphs to establish connections between

labeled and unlabeled data from various perspectives. This
innovativemethod effectively filters and highlights the signif-
icant features in the context of this study. Wu et al. proposed
a new semi-supervised cross-modal hashing approach, called
MCGCN [125]. This method optimizes the utilization of
label and structural information from both labeled and
unlabeled samples to enhance the propagation of semantic
information and the acquisition of discriminative hash codes.
Zhang et al. [126] introduced a flexible modality-specific
approach that efficiently addressed label completion for
unsupervised data, regardless of alignment. The proposed
method uses label regression to expedite and enhance the
precision of hash code learning for diverse data. In contrast
to conventional semi-supervised approaches that jointly learn
pseudolabels, hash codes, and hash functions, Fan et al. [127]
proposed a novel approach that decomposes into three
distinct stages. As implied by its name, each stage is
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TABLE 12. Semi-Supervised hash learning approaches based on the MAP score on the NUS-WIDE dataset.

TABLE 13. Semi-Supervised hash learning approaches based on the MAP score on the MIRFlickr dataset.

conducted individually, contributing to a more cost-effective
and precise optimization process. Tables 11, 12, and 13
respectively show semi-supervised hash learning approaches
based on the MAP score on the Wikipedia, NUS WIDE, and
MIRFlickr datasets. However, existing knowledge transfer
or domain adaptation methods mainly focus on cross-modal
real value representation retrieval, and there is little research
on large-scale cross-modal hashing. On the other hand,
existing work usually only selects one or two consistency
constraints for research, and there is no research that
comprehensively considers all consistency constraints in the
learning process of hash functions. Meanwhile, in terms
of research on structural consistency loss, existing studies
have only used a single spatial metric to describe the
structural relationships between data in different fields,
without fully exploring the deeper structural relationships
between data in different fields brought about by the com-
bination of multiple spatial metrics. Therefore, combining
cross-domain knowledge transfer methods with efficient
cross-modal hash code generation methods, transfering rich
semantic information from different fields to the target
domain, and improving the semantic discrimination ability
of cross-modal hashing will become the key to breaking
through the performance bottleneck of unsupervised cross-
modal hashing. In the era of big data, cross-modal hashing

has gained widespread application in cross-modal retrieval
owing to its high efficiency, low dimensionality, low storage
overhead, and effectiveness in representing the consistency of
high-level features within multi-source heterogeneous data.
However, current cross-modal hashing approaches have not
fully harnessed the rich semantic information embedded
in extensive multi-source heterogeneous datasets. Conse-
quently, a significant challenge in cross-modal hash retrieval
research is the effective mining of diverse information from
multi-source heterogeneous data to guide the training of
cross-modal deep hash models and enhance the quality of the
generated hash codes. This project aims to start with the deep
mining of different granularity data, different modal data,
and the inherent correlation relationships between different
data sources. It aims to study cross-modal hashing for
multi-granularity semantic fusion representation, multi-view
correlation cross-modal hashing for multi-modal data, and
domain adaptive learning cross-modal hashing for knowledge
transfer, to enhance the representation ability of cross-modal
hashing for multi-source heterogeneous data. Therefore, the
research on cross-modal hash retrieval for heterogeneous data
frommultiple sources has innovative and significant practical
value.

Investigating cross-modal hash retrieval for heterogeneous
data from multiple sources is of significant theoretical and
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practical importance. Cross-modal hashing is extensively
utilized in retrieval due to its efficiency, low dimensionality,
and minimal storage overheads. Although existing research
has made progress, numerous challenges remain unresolved
and require urgent attention. In a big data environment,
the correlation between different granularity data, different
modality data, and different data source data in multi-source
heterogeneous data has not been fully explored. This may
lead to a decrease in the representation ability of data
through cross-modal hash learning hash codes and reduce
the efficiency of cross-modal hash retrieval. Despite their
advantages, cross-modal retrieval hashing methods have
several challenges. One challenge is the semantic gap
between modalities, because binary codes may not fully
capture the semantic relationships. Another challenge is the
scalability of the hashing methods for handling large-scale
cross-modal databases efficiently. Additionally, the design of
effective hash functions and selection of appropriate training
strategies remain active research areas.

V. DATASET AND EVALUATION METRICS

FIGURE 6. The percentage of usage frequency for each dataset.

A. DATASET
For the cross-modal information processing of images and
text, datasets are generally required for evaluation. High
quality datasets can enable neural networks to fully learn
various potential knowledge while avoiding over fitting and
other problems. Currently, there are several commonly used
datasets for cross-modal image and text retrieval. Figure 7
shows some examples of the Wikipedia, NUS-WIDE, and
MIR-Flickr datasets. We have summarized all the references
in this paper, conducted statistical analysis on the datasets
used in their paper, and obtained a pie chart, as shown in
Figure 6, which shows the percentage of usage frequency
for each dataset, and Table 14 shows the differences between
different datasets.

1) WIKIPEDIA
The Wikipedia [15] dataset was collected from Wikipedia
and is the most commonly used dataset for cross-modal

retrieval research. It consists of 2866 document corpora
with relevant image text pairs that describe images in short
paragraphs. In addition, each pair was assigned a label from
one of the ten semantic classes. The text is presented with
10 dimensions derived from a recent Dirichlet allocation
model [128], and the images are presented by 128 dimen-
sional SIFT descriptor histograms [129]. Because to the small
size of this dataset and the abstract categories of image
text pairs, misunderstandings can easily occurt, resulting
in many methods not performing well on this dataset.
http://www.svcl.ucsd.edu/projects/crossmodal/ Readers can
directly download 2866 multimedia documents (image+text)
and features (Matlab format) from this link for experimental
research.

2) NUS-WIDE
NUS-WIDE [130] is a network image dataset created
by the Multimedia Retrieval Laboratory of the National
University of Singapore in 2009, and its images were mainly
sourced from the Flickr website. This dataset includes
269 648 images, that contain only two modalities: image
and text. It is one of the most commonly used datasets
for cross-modal retrieval. The dataset, encoding low level
features, ground truth, tags, concept lists, image lists, and
original URLs were acquired through the links https://lms.
comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/
NUS-WIDEHTML.

3) PASCAL VOC
PASCAL VOC [131] This dataset contains 5 011 and 4
952 training and testing image phrase label data pairs respec-
tively, totaling 20 semantic annotations. Each image has text
semantic annotations, and the annotation file is an object
class label for one of the 20 classes present in the image.
The PASCAL VOC 2007 dataset was divided into two parts:
training and validation set training, and testing set test, each
accounting for approximately 50 precent of the total data.
The dataset can be obtained directly from the following link.
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html.

4) MIR FLICKR 25K
The MIR Flickr 25k [132] contains approximately
25000 images from the Flickr platform. Each image had
five annotations, which where natural language descriptions
provided by human annotators to describe the main
content of the image. This dataset is commonly used to
train and evaluate image annotation models, helping the
model understand images and generate relevant semantic
descriptions. The Flickr 8k is a scaled down version. Flickr
30k is an expanded version of it, and these datasets provide
images and associated manual text descriptions for image
annotation tasks. The primary distinction lies in the dataset
size, which encompasses both the quantity of images and
the number of annotations associated with each image.
Readers can obtain dataset information from the following
link https://press.liacs.nl/mirflickr/.
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TABLE 14. Differences between different datasets.

FIGURE 7. Some example on Wikipedia, NUS-WIDE and MIR-Flickr dataset.

5) MSCOCO
MSCOCO [133] This dataset contains over 120000 images
from different scenes and contexts, each with multiple
manually annotated descriptions. It is primarily used for tasks
such as image annotation, object detection, and instance seg-
mentation, covering 80 different object categories. The rich
annotations and diversity of this dataset make it an important
resource for research in the fields of computer vision as
well as natural language processing, providing strong support
for the training and evaluation of image to text generation
models. The download link is http://cocodataset.org/.

6) XMEDIA DATASET
The XMedia dataset [134] developed by the Multime-
dia Computing Laboratory of Peking University through
Wikipedia, Flickr, and You Tube sources. It is a
large-scale dataset comprising five modalities, including
text, image, audio, video, and 3-D models, with a total of
100,000 instances. These instances were categorized into
200 semantic groups, encompassing 153 artifact species and
47 animal species. The largest amount of data and the largest
number of modalities. This is the largest data set with the
most modalities in a cross-modal search. The download link
is: http: / /www. icst. pku. edu. cn /mipl/XMediaNet.

B. EVALUATION METRICS
1) PRECISION
There are two methods for detecting the performance
indicators in CMRmodels. The first approach uses images as
input and retrieves relevant text from the dataset as output;
and the second approach uses text as input and retrieves
relevant images from the dataset as output. Specifically, they

can be classified into two operational methods. The first
method is to detect correlation evaluation between query and
output; the second type examining cross-modal release for
image text pairs for the first method, using the precision [135]
method, which is a commonly used performance metric in
information retrieval and classification tasks, used to measure
the proportion of true positives in the results returned by the
system. Accuracy mainly focuses on the number of results
returned by the model that are truly relevant.

Precision =
TP

TP + FP
(8)

Among them: True Positions (TP) refers to the number
of relevant instances correctly returned by the system. False
Positions (FP) refers to the number of unrelated instances
returned by system errors.

2) AVERAGE PRECISION
Average Precision (AP) [136] and Mean Average Precision
(MAP) [137] are two other important indicators used in the
field of information retrieval to evaluate the performance of
retrieval systems. Average accuracy is an indicator used to
measure system performance across different queries and is,
particularly suitable for binary classification tasks, such as
relevance judgment in information retrieval. The calculation
process is as follows. (1) For each query, the Precision
Recall curve is calculated. (2) On the Recall axis, calculate
the average Precision, which is the AP. (3) The APs of all
queries are averaged to obtain the MAP. Its advantage is
that it considers the ranking order of search results and is
sensitive to the sorting of the returned results. The mean
average accuracy is the average accuracy calculated across
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multiple queries and is used to comprehensively evaluate the
performance of the entire retrieval system. The calculation
process was as followes: (1) Calculate the average accuracy
(AP) for each query. (2) The average of all query APs is
used to obtain the MAP. Its advantage is that it considers the
performance of the system for different queries, providing a
more comprehensive evaluation of the overall performance
of the retrieval system. Overall, the AP is mainly used
for individual queries, emphasizing the performance of the
model on a particular query. MAP integrates the performance
of multiple queries and provides a more comprehensive
evaluation of the entire retrieval system. These two indicators
are commonly used to evaluate performance in fields such
as information retrieval, text retrieval, and image retrieval,
particularly in tasks that require consideration of ranking and
ranking quality.

AP =
1
N

N∑
k=1

P(k) · rel(k) (9)

where, N is the total number of search results, P(k) is the
accuracy of the first k results, and rel(k) is the number of truly
relevant instances in the first k results.

MAP =
1
Q

Q∑
q=1

AP(q) (10)

Among them, Q is the total number of queries, and AP(q)
is the average accuracy of the q− th query.

3) PRECISION AT k (P@k)
Precision at k (P@k) is another commonly used metric for
cross-modal retrieval evaluation. It measures the precision
of top k retrieved items. P@k is calculated by dividing the
number of relevant items among the top k retrieved items
by k. P@k provides a measure of the retrieval accuracy at the
top k positions, which is particularly important when users
are only interested in a limited number of results.

4) SSIM AND MULTI-SSIM
The Structural Similarity Index (SSIM) is an indicator used to
measure the similarity between two images, with a particular
focus on three aspects: brightness, contrast, and structure. The
value range of SSIM is between 0 and 1, where 1 indicates
that the two images are exactly the same and 0 indicates that
they are completely different. SSIM is calculated using the
following formula:

SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(11)

Among them, ux and uy are the average values of images x
and y. σx and σy are the variances of images x and y. σxy is the
covariance of images x and y. C1 and C2 are constants used
for stability.

The Multi-Scale-SSIM (MS-SSIM) is an extended ver-
sion of SSIM, which considers the structural information

of images at different scales to comprehensively eval-
uate the quality of images. MS-SSIM calculates SSIM
at different resolutions and calculates the final similarity
index by weighting and summing the results. By con-
sidering multi-scale information, MS-SSIM can better
simulate the human visual system’s perception of image
quality at different resolutions, especially in the pres-
ence of image distortion, providing more accurate quality
assessment.

5) PSNR AND MULTI-PSNR
Peak Signal to Noise Ratio (PSNR) is an indicator used to
measure the quality of image compression, mainly focusing
on the ratio between the peak signal and noise of the image.
PSNR is usually expressed in decibels (dB), with higher val-
ues indicating better image quality. The calculation of PSNR
is based on mean square error (MSE), and the first step is
to calculate the average square of the difference between the
original image and the reconstructed image. The formula is as
follows:

MSE =
1
mn

m−1∑
i=0

n−1∑
j=0

[I (i, j) − K (i, j)]2 (12)

PSNR = 10 log10

(
MAX2

I

MSE

)
(13)

Among them, I and K are the original image and
reconstructed image, respectively, and m and n are the width
and height of the image. MAX2

I is the maximum possible
pixel value of an image (usually 255 for 8-bit images). The
higher the PSNR, the closer the reconstructed image is to
the original image. PSNR is mainly used in engineering and
research because it is computationally simple and related to
mean square error (MSE). However, it should be noted that
PSNR cannot fully reflect the perceptual quality of the human
visual system.

Multi-Scale Peak Signal to Noise Ratio (MS-PSNR) is an
extension of PSNR used to evaluate image quality at different
scales. Unlike PSNR, which only evaluates image quality
at a single resolution, MS-PSNR considers the detailed
information of images at multiple resolutions. By considering
multi-scale information, MS-PSNR can provide a more
comprehensive and robust image quality assessment than
single scale PSNR. MS-PSNR is more commonly used in
some advanced image processing applications because it
can better reflect the quality changes of images at different
scales.

In summary, PSNR is a fundamental indicator for measur-
ing image quality and is suitable for simple image quality
comparisons. MS-PSNR provides more comprehensive and
accurate quality measurements through multi-scale evalu-
ation, making it particularly suitable for complex image
processing tasks and advanced image quality evaluation.
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VI. FUTURE WORK
Despite significant progress made in cross-modal retrieval,
several challenges and open research questions remain. In this
section, we summarize a few points about the future direction
of cross-modal retrieval.

A. HIERARCHICAL SEMANTIC ALIGNMENT
It is crucial to achieve fine-grained hierarchical seman-
tic alignment between different modalities, as well as
effective integration of coarse-grained and fine-grained
semantics. In the process of multi-granularity semantic
fusion representation learning, we need to mine fine-grained
semantic features from multi-modal data, identify hierarchi-
cal semantic relationships composed of ‘‘semantic objects
relationships scenes’’ from multi-modal data, achieve cross-
modal fine-grained hierarchical semantic alignment, and
effectively improve the discriminability of cross-modal
semantic representation. Therefore, achieving fine-grained
hierarchical semantic alignment between different modalities
is particularly important for improving hash code generation
quality.

B. MULTI-LEVEL CORRELATION LEARNING
In multi-view correlation mining, deep representation learn-
ing and correlation analysis methods are combined to
synchronously mine nonlinear correlations between views.
The existing unsupervised multi-view correlation learning
methods mainly focus on pairwise view correlation mining,
and are mostly implemented by shallow models, making it
difficult to achieve synchronousmining of nonlinear semantic
correlations in multiple views. Meanwhile, in the process
of multi-view feature learning, existing methods have not
considered the mining of view invariant features at different
levels, which are crucial for the representation of multi-view
semantic correlations. Therefore, organically combining deep
representation models with multi-view correlation learning
methods, mining multi-level key features, and improving the
performance of unsupervised cross-modal hash learning is
another key issue that needs further research in cross-modal
retrieval in the future.

C. COMPLETE CONSISTENCY CONSTRAINT
In the process of cross domain knowledge transfer learn-
ing, research cross-domain and cross-modal consistency
constraints to narrow the ‘‘heterogeneous gap’’ between
different domains and modes. Usually, data from different
fields exhibit significant heterogeneity in terms of structural
information, feature distribution, semantic categories, and
modalities, making it difficult to achieve effective and
accurate semantic knowledge transfer between different
fields. Existing domain adaptation methods mainly focus
on maintaining consistency in one or two aspects, without
simultaneously considering structural heterogeneity, domain
heterogeneity, semantic heterogeneity, and modal hetero-
geneity. This makes it difficult for existing methods to

effectively address cross-modal and cross-domain semantic
knowledge transfers, making it difficult to provide effective
support for unsupervised cross-modal hash learning. There-
fore, how to conduct effective theoretical analysis on the
four ‘‘heterogeneity’’ mentioned above, provide complete
consistency constraints for cross-domain and cross-modal
knowledge transfer learning, and effectively narrow the
‘‘heterogeneity gap’’, is a scientific problem that requires
further research focus in cross-modal retrieval in the future.

D. DESIGN INTERACTION AND FEEDBACK MECHANISMS
By utilizing advanced natural language processing tech-
nology, design an intuitive and user-friendly user interface
that enables users to describe their needs through natural
language, enabling them to easily perform cross-modal
retrieval. By analyzing user behavior (such as clicks, dwell
time, scrolling, etc.), the system can infer user interests and
needs, thereby optimizing search results. Allow users to
provide feedback and evaluation on search results. Through
continuous user feedback, the system can adaptively adjust
the weights of different modal features, optimize search
algorithms and model parameters, and ensure continuous
improvement and optimization of the system.

E. THE APPLICATION OF CROSS-MODAL RETRIEVAL IN
VARIOUS FIELDS
Future research will further enhance the accuracy, efficiency,
and intelligence level of cross-modal retrieval technology,
providing more intelligent and efficient information retrieval
solutions for various industries through its wide applicability
and powerful functions. For example, medical researchers
can quickly find relevant images and text reports from a large
case library through cross-modal retrieval systems for scien-
tific research and teaching. The monitoring system can input
text descriptions, such as ‘‘searching for running people,’’ and
retrieve relevant clips from the surveillance video to improve
the efficiency of public safety monitoring. The teaching
system utilizes cross-modal retrieval technology to provide
an interactive learning experience, such as retrieving relevant
video or image explanations based on student questions.

F. PRIVACY AND SECURITY
With the increasing diversity and complexity of data, how
to achieve efficient cross-modal retrieval while ensuring
user privacy and system security has become an important
research direction. Privacy protection and security are key
issues that must be taken seriously. By implementing various
technical means such as data anonymization, encryption tech-
nology, access control, anomaly detection, and complying
with relevant laws and regulations, the privacy protection
and security of the system can be effectively improved,
ensuring the security of user data and the stable operation
of the system. Future research will continue to explore
more advanced and intelligent privacy protection and security
technologies, utilizing machine learning and big data analysis
techniques to detect and identify abnormal behaviors in the
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system, such as abnormal login and data leakage, and taking
timely measures to prevent security risks, providing solid
support for the development of cross-modal retrieval systems.

VII. CONCLUSION
In this paper, we provide a comprehensive review of cross-
modal retrieval, covering traditional CCA-based methods,
deep learning approaches, and cross-modal retrieval hashing
methods. We discussed the basic models and implementation
processes of these methods, enabling readers to grasp the
fundamental principles of cross-modal retrieval. We hope
to facilitate adoption and further research in this area by
presenting the basic concepts, techniques, and evaluation
metrics. Moreover, we explored emerging trends and future
directions, including multi-modal fusion techniques, deep
metric learning, cross-modal adversarial learning, deep rein-
forcement learning, and explainable cross-modal retrieval.
The aim of this review is to serve as a valuable reference
for researchers and practitioners in the realm of cross-modal
retrieval, sparking further advancements in this dynamic
field.
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