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 Machine learning model has been widely used to provide flood forecasting 

including the ensemble model. This paper proposed an ensemble of neural 

networks for long-term flood forecasting that combine the output of 

backpropagation neural network (BPNN) and extreme learning machine 

(ELM). The proposed ensemble neural networks model has been applied 

towards the rainfall data from eight rainfall stations of Kelantan River Basin 

to forecast the water level of Kuala Krai. The aim is to highlight the 

improvement on accuracy of the forecast. Prior to the development of such 

ensemble model, data are optimized in two steps which are decomposed it 

using discrete wavelet transform (DWT) to reduce variations in the rainfall 

series and selecting dominant features using entropy called mutual 

information (MI) for the model. The result of the experiments indicates that 

ensemble neural networks model based on the data decomposition and 

entropy feature selection has outperformed individually executed forecast 

model in term of RMSE, MSE and NSE. This study proved that the 

proposed method has reduce the data variance and provide better forecasting 

with minimal error. With minimal forecast error the generalization of the 

model is improved. 
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1. INTRODUCTION 

Machine learning model has been widely adopted by researchers in developing flood forecast. 

Recently, many non-linear machine learning models has been developed to forecast flood in long-term 

manner such as support vector machine (SVM) [1], support vector regression (SVR) [2], [3], artificial neural 

network (ANN) [4], [5], extreme learning machine (ELM) [6], random forest (RF) [7], and neuro fuzzy [8]. 

These machine learning model has demonstrated the use of single model in flood forecasting, but it can 

provide bias and keeping the variance high within the network. This may impact the generalization ability of 

the model. Another adaptation of machine learning model can be found as an ensemble model. Ensemble 

model usually done by the combination of various model such as by bagging or stacking technique [9]. 

Ensemble model has been deemed to provide better performance of forecasting and achieving higher 

accuracy [10], [11]. 

Neural network model such as ANN has been widely adopted by researchers. ANN is first 

developed by [12]. It is a system that simulate how human brains analyze information. ANN works as if they 

are interconnected neurons in brains that process information and works self-adaptively by producing better 

results for each of the learning cycle. The complex relationship of the data is defined by its input and output 

[13] and can produced various patterns. ANN has proven its potential to producing an accurate flood forecast 
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using various predictors in recent studies, but it has some drawbacks in which ANN suffers from local 

minimum problem and slow convergence [14].  

Noticing the drawback of slow convergence in ANN, ELM was introduce by [15] that able to speed 

up the learning algorithm. ELM is single-layer feedforward neural networks to discover hidden neurons at 

random and learn the pattern encoded in input variables [16]. Unlike ANN, gradient-based backpropagation 

isn't required for ELM to work. It sets its weights by using Moore-Penrose generalized inverse. Regardless of 

these advantages and the faster convergence of the random hidden nodes ELM also tend to produce 

performance instability [17]. 

Both ANN and ELM are non-linear method that can flex themselves towards the intricate 

underlying structure of the data. This high flexibility allows these models to learn in a stochastic way in 

which each time they are trained, they may find a different set of weights resulting various forecast. With 

various forecast results produce, they keep the variance of the model high, thus making the final forecast a 

very challenging task.  

When utilising machine learning, specifically neural network models, to forecast long-term floods, it 

has been demonstrated that incorporating a pre-processing strategy improves the accuracy of the forecasting 

model [18], [19]. Utilising historical data in a machine learning model for forecasting can have an impact on 

the model’s behaviour [20], [21]. A recently popular pre-processing method is the discrete wavelet transform 

(DWT), which involves decomposing data into shifted wavelets. This method offers an approach for 

analysing time-series variance, providing insights into both the time and frequency domains of the signal 

[22]. The DWT is more efficient than the continuous wavelet transforms, which involves calculating the 

wavelet coefficient at each conceivable scale and requires more computational resources [23]. 

Decomposing the hydrological times series data especially in a single dimension manner has been a 

great way to provide input for a forecast, but it will only optimize specific input. In the event when datasets 

are consists of different features, decomposition alone doesn’t reveal the relationship between various data, 

and it is a challenging task to determine which of these features in the dataset can provide a better forecast. 

One way to measure the relationship of data is by using entropy. Entropy has proven its ability in 

hydrological forecasting as it been used in various studies such as to construct flood mapping [24], and 

forecasting the long-term streamflow [25].  

In summary, to have an accurate long-term flood forecasting: i) input must be optimized as it will 

affect the behavior of the model and ii) forecast model should be able to maintain low variance and minimize 

the generalization error. The aim for this paper is to fulfill these two goals by proposing long term flood 

forecasting model based on decomposition-entropy-ensemble machine learning framework. This model is 

intended to: i) decomposing and optimizing the original input to provide cleaner input and dominant feature 

for the forecasting model and ii) to improve the flood forecasting performance by reducing the generalization 

error of the model by combining the outputs of the neural networks model. 

 

 

2. METHOD 

2.1.  Discrete wavelet transform with entropy 

The use of wavelet decomposition, specifically the DWT, involves the breakdown of time series 

data into a wavelet representation that has been shifted and scaled. The determination of the decomposition 

level of DWT is very subjective and lacks a straightforward approach [26]. The decomposition level is 

determined using the empirical (1) as described in reference [27]. 

 

𝐿 = 𝑖𝑛𝑡[log(𝑁)]  (1) 

 

where L is the level of decomposition, N is the length of time-series data, and int [] is the integer-part 

function. Daubechies with three vanishing moments (db3) is used as the mother wavelet. It provide high 

vanishing moments for any given support width [28].  

While DWT decomposed each of the features in a multi-dimensional dataset, it is become a 

challenging of which of these features that are dominant as inputs to provide higher accuracy of the forecast 

model. The selection of features can be done by evaluating the features using entropy called mutual 

information (MI) and derived the most dominant features from the MI’s rank. Figure 1 present the DWT with 

MI used in this study. To gain the most superior input that could give better forecast, dataset can be analyze 

in term of their correlation between the information dispersion with the variable. For this purpose, MI is  

well-suited for synchronizing non-linear time-series data and handling a non-linear relationship between 

input and output [29]. Consider X and Y as the two random variables. The amount of information about X 

that is contained in Y (and vice versa) is measured as MI. Both linear and non-linear interactions between the 

variables are captured by it. MI is calculated by (2) [29]: 
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𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (2) 
 

where H(X) and H(Y) are the entropy of X and Y, and the joint entropy of H (X, Y) would be as in (3): 
 

𝐻(𝑋, 𝑌) = −∑𝑥∈𝑋∑𝑦∈𝑌𝑝𝑋𝑌(𝑥, 𝑦) log 𝑝𝑋𝑌 (𝑥, 𝑦)  (3) 
 

where x and y are the specific value of X and Y, and p(x,y) is the joint probability of these values occurring 

together. MI has ranked each feature in every dataset according to the MI evaluated score. MI has a value 

between 0 and positive infinity. An increased value denotes a stronger correlation between the variables, 

whereby understanding the value of one reveals more details about the other. Figure 1 present the DWT with 

MI used in this study. 
 

 

 
 

Figure 1. Decomposition of input using DWT and features ranked by MI 

 

 

2.2.  Ensemble neural networks based on DWT decomposition and MI 

ANN is a machine learning model that can be utilized to make a forecast through pattern learning. 

ANN can be a feedforward process that involve the signals been process in one flow direction without any 

cycle from the input layer to the output layer. Another type is backpropagation neural network (BPNN) in 

which weight of the networks is adjusted through the error rate gain from previous iteration. The reason 

behind the weight adjustment is to reduce the error rate to increase generalization. The network relationship 

of the BPNN in this study can be present as in (4): 

 

Y=𝑓𝑎[∑ 𝑊𝑚𝑘 . 𝑓𝑠(∑ 𝑊𝑘𝑖𝑥𝑖 + 𝑏𝑘𝑖 ) + 𝑏𝑜𝑗 ] (4) 

 

where x is the vector of input, 𝑊𝑘𝑖 is the weight of the connection between ith node in input layer and kth 

node in hidden layer, 𝑏𝑘 is the bias of kth hidden neuron, 𝑊𝑚𝑘 is the weight of the connection between kth 

node in hidden layer and mth node in the output layer, 𝑏𝑜 is the bias of kth output neuron, and activation 

functions is represented as 𝑓𝑎 and 𝑓𝑠. During the backpropagation, the signal is sent in reverse manner. BPNN 

works by tuning the neural network weight and biases to minimize error.  

ELM is based on the feedforward neural networks that uses Moore-Penrose generalized inverse to 

adjust the networks weights [16]. ELM is run without iterative tuning and the learning parameters are assign 

independently and automatically. In hydrological forecasting, ELM has been found to provide flood 

forecasting using various parameters such as watershed [30], groundwater [5], and stream flow [31]. ELM 

can be formulated in mathematical (5) as [15]: 
 

Yj=∑ 𝑤𝑖𝑔(𝑊𝑖𝑛(𝑖), 𝑏𝑖 , 𝑥𝑗)
𝐿
𝑖=1 = ∑ 𝑤𝑖𝑔(𝑊𝑖𝑛(𝑖). 𝑥𝑗 + 𝑏𝑖)

𝐿
𝑖=1    j=1………. N (5) 
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where 𝑥𝑗 is the vector of input, 𝑊𝑖𝑛(𝑖) is the weight vector for input, 𝑊𝑖𝑛(𝑖). 𝑥𝑗 is the inner product of 𝑊𝑖𝑛(𝑖) 

and 𝑥𝑗, 𝑏𝑖 is the bias of the ith hidden node, 𝑔(·) is the approximation function (sigmoid), 𝑤𝑖  is the weight 

matrix of the output and Yj is the output of the ELM. In initial stage of ELM, the weight and bias are 

randomly assigned. 

BPNN and ELM are powerful tool and widely used by researcher in flood forecasting, but due to 

their high flexibility towards the training data, it may produce high variance in the forecast and reduce the 

generalization. The generalization of these neural networks can be elevated by proper ensemble model. 

Forecasted results produce by individual model may varied according to their datapoints, thus combining the 

results of those individuals model can indemnify the error [32], [33]. The ensemble neural networks model 

and independent models are executed with the optimized datasets gain from the pre-processing phased using 

DWT decomposition and MI. Feature scaling using standardization is used to make the features in common 

scales. In ensemble model, the output of each independently executed neural networks then been averaged to 

gain better forecast. Combining the results of different neural network model tends to add bias that balance 

out the variance of the independent model. It is less dependent towards the input data and the selected 

training scheme. The proposed architecture of the ensemble neural networks model based on the input 

decomposition of DWT and features selection by MI is present in Figure 2. 
 

 

 
 

Figure 2. Ensemble neural networks architecture  
 

 

By combining the predictions from various distinct classifiers tends to produce better prediction and 

reduce the generalization error. The ensemble averaging is taking the idea of arithmetic mean. Let say we 

have an ensemble neural network with N sub-neural networks, the ensemble averaging can be defined as (6): 
 

�̅�=
1

𝑁
∑ 𝑦𝑖

𝑛𝑁
𝑛=1  i=1,2,3……X (6) 

 

where 𝑦𝑖
𝑛 is the output of the n-th sub-neural networks and X denotes the data set length. 

To comprehensively measuring the performance of the ensemble model, three statistical methods has 

been used to evaluate the ensemble forecast result against the observed value. These methods are root mean 

squared error (RMSE), mean absolute error (MAE), and nash-sutcliffe efficiency (NSE). The smaller the number 

of RMSE and MAE represent better forecast while NSE represents powerful forecast with higher value produce. 

 

2.3.  Model development 

In developing forecast model for water level, data from eight rainfall stations along Galas River and 

Lebir River in Kelantan River Basin are utilized which include Gunung Gagau, Kuala Koh, Kampung Aring, 
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Kampung Lalok, Kampung Tualang, Kuala Krai, Dabong and Limau Kasturi. These rainfall stations are all 

located in the upstream. These 2 rivers are the primary tributaries of Kelantan River. The rainfall data from 

these stations are the predictors to forecast the Kuala Krai water level that located at the downstream. 

These data range from April 2011 to November 2019 and in monthly pattern, 75% of this data are 

used in the training phase of the model while the rest are used to test the model. As Kuala Krai is prone to 

flooding, water level forecasting is considered vital. To accurately forecast the monthly water level of Kuala 

Krai, an ensemble neural networks based on DWT decomposition and MI are developed. To verify the 

ensemble model, BPNN and ELM model also been developed as independent model for comparison and their 

forecast result will be assessed. To accommodate validation of the results, every independently developed 

model and the ensemble model are executed three times and averaged the recorded performance to assess the 

accuracy. The forecast result of the ensemble model then be compared to the forecast result of the 

independent models. 

 

 

3. RESULTS AND DISCUSSION 

Kuala Krai is prone to flood every year due to the changes of Northeast Monsoon especially during 

December-January. In nature, the relation between rainfall and water level is highly nonlinear. An accurate 

water level forecast is crucial to minimize the flood risk. Four category of water level has been outlined by 

Department of Irrigation and Drainage Malaysia which are normal level (17.00 m), alert level (20.00 m), 

warning level (22.5 m) and danger level (25.00 m).  

The original time-series data contains various variability which can affect the model performance. 

The pre-processing of original data in this study tends to provide the model with cleaner input that could 

elevate the model performance. The data first been decomposed using DWT. The coefficient of the sub-signal 

produces then been evaluated using the Spearman correlation coefficient (p-value). Selected sub-signal with 

higher coefficient with original data then been selected to become a feature in the multidimensional dataset. 

After all the original timeseries data from all stations are decomposed, and sub-signal has been 

selected, the multi-dimensional dataset is constructed by treating each of these selected signals as the features 

of the dataset. Hence, altogether there are eight features (selected sub-signal of each of the rainfall station) 

and one output (water level of Kuala Krai) defined in the multidimensional dataset. The result of selected 

sub-signal is as in Table 1. The selected feature is labelled with features identification (ID) for ease of 

references. The data structure for the multidimensional dataset is as in Figure 3. Further optimization is done 

by evaluating all the features in the multidimensional dataset using MI. From the process, features are rank, 

and the evaluation result is presented in Table 2. All features in the rank are executed repeatedly as 

combination with elimination of the lowest rank in each repetition until only the highest rank is executed.  
 

 

Table 1. Selected sub-signal for each rainfall stations after DWT decomposition 
Rainfall station Total sub-signal Selected sub-signal p-value Features ID for selected sub-signal 

Gunung Gagau cA2, cD2, cD1 cA2 0.753 GG 

Kuala Koh cA2, cD2, cD1 cA2 0.664 KK 

Kampung Aring cA2, cD2, cD1 cA2 0.552 KA 
Tualang cA2, cD2, cD1 cA2 0.642 TU 

Kampung Lalok cA2, cD2, cD1 cD1 0.581 KL 
Kuala Krai cA2, cD2, cD1 cA2 0.612 KR 

Limau Kasturi cA2, cD2, cD1 cA2 0.711 LK 

Dabong cA2, cD2, cD1 cA2 0.626 DA 

 
 

 
 

Figure 3. Data structure for the multi-dimensional dataset 
 

 

Table 2. MI rank 
More to less dominant 

GG KR DA TU KK KA KL LK 

 

 

By using the optimized dataset gained in the pre-processing phase, the ensemble of neural networks 

is executed three times for each combination order and the performance measurement of all execution is 
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averaged to validate the result. The ensemble model performance is statistically measured using RMSE, 

MAE and NSE. The performance measurement comparison is extended to the model using original data 

without any optimization. Table 3 present the forecast result for BPNN, ELM and ensemble neural networks 

model with original data without any optimization, while Table 4 present the performance measurement of 

RMSE, MAE and NSE for the individual and ensemble neural networks model using optimized datasets 

based on DWT and MI. 
 
 

Table 3. BPNN, ELM, and ensemble neural networks forecast result using unoptimized data  
RMSE MAE NSE 

BPNN 1.4805 1.0608 -6.4814 

ELM 1.4266 0.8918 -0.7956 
Ensemble neural networks 1.3065 0.9054 -2.1685 

 

 

Table 4. BPNN, ELM, and ensemble neural networks forecast result using data optimized by DWT and MI   
Number of features   

8 7 6 5 4 3 2 1 

BPNN RMSE 1.3748 1.1576 1.3194 1.3521 1.1846 1.1876 1.3518 1.3652 

MAE 1.0502 0.9343 0.9924 1.0385 0.9389 0.9762 1.0376 1.0611 
NSE -6.4678 -2.1375 -4.6931 -4.4639 -3.1113 -2.8168 -4.4582 -4.9719 

ELM RMSE 1.0535 1.1208 1.0492 0.9650 1.1437 1.2443 1.1428 1.3465 
MAE 0.7335 0.7808 0.7156 0.7217 0.7586 0.8102 0.8365 0.9400 

NSE 0.1689 -0.1626 0.2487 0.2380 0.2320 0.1872 -0.6184 -0.9372 

Ensemble neural networks RMSE 1.0682 1.0817 1.0465 1.0156 0.8855 1.0463 1.1687 1.3565 
MAE 0.7830 0.7498 0.7722 0.7444 0.6559 0.8062 0.8679 0.9437 

NSE -1.2421 -1.6688 -0.6290 -0.3462 0.4054 -0.7565 -1.6825 -2.3024 

 

 

The performance measurement indicates that based on the pattern, the use of ensemble neural 

networks model in forecasting water level of Kuala Krai has improved the overall forecast performance and 

minimizing the error compared to the model that use unoptimized data and independently executed model. 

The lowest score for RMSE and MAE, and the highest score for NSE are achieved by the ensemble model 

with the value of 0.8855, 0.6559 and 0.4054 respectively. This has been achieved by executing the ensemble 

model using four features which are decomposed rainfall data from Gunung Gagau, Kuala Krai, Dabong and 

Tualang stations. The optimization process using DWT and MI has reduced the dimensionality of the dataset. 

This means we can use less data to achieve better forecast. It is also found that the proposed ensemble model 

has outperformed the single independently executed model which are BPN and ELM.  

Figure 4 present the forecasted water level by the ensemble neural networks model compared to the 

observed water level. Here, we analyze the best forecasted water level for the ensemble model with DWT 

and MI optimization using four features. The model is executed three times and the performance 

measurement are averaged, thus Figure 4 shown the results for every execution. Based on Figure 4, the 

ensemble model pattern works well following the observed data trend, but when spike is occurred in the 

observed data, it seems to behave differently.  
 
 

 
 

Figure 4. Observed vs forecasted water level for each execution of the ensemble model 
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In Kelantan River, rainfall is influenced by monsoon movement that occurred mostly during the end 

and early of the year. During this season, rainfall might reach to a certain category level that can lead to 

flood. To validate the ensemble neural networks model towards the observed data, the forecast value resulted 

from the ensemble model with input optimization is distributed within the boxplot in Figure 5. Based on the 

four category of water level outlined by the Department of Irrigation and Drainage Malaysia, it is indicated 

that all three executions (labelled as exc1 for first execution, exc2 for second execution and exc3 for third 

execution) of the ensemble model have produced maximum forecast point of over twenty in which reaching 

the alert level. This has foreseen the alert level of Kuala Krai’s water level for the same period. The ensemble 

model has proven to provide better generalization of the water level forecast using rainfall data for Kelantan 

River by averaging the outputs of independent neural networks.  

 

 

 
 

Figure 5. Observed vs forecasted water level for ensemble neural networks model 

 

 

4. CONCLUSION 

This study proposed an ensemble neural networks model with input optimization based on DWT 

and MI for long-term flood forecasting. The ensemble neural networks model is used to forecast the monthly 

water level of Kuala Krai. Neural network has been deemed to be a useful tool in flood forecasting, but they 

imposed high flexibility that led to high variance of the model and poor generalization. The ensemble of 

neural networks based on decomposition by DWT and ranked by MI has reduced the generalization error 

compared to the independently executed neural network model by selecting the dominant features for the 

forecast. It also reduced dimensionality of dataset in which an accurate forecast can be done with minimal 

inputs. The ability of ensemble model to provide an accurate forecast with reduce RMSE, MAE and higher 

NSE flood forecasting can help relevant agencies and citizen to gain early knowledge and information to 

manage the risk of flooding.  
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