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ABSTRACT Many machine learning algorithms excel at handling problems with conflicting objectives.
Multi-Objective Optimization (MOO) algorithms play a crucial role in this process by enabling them to
navigate these trade-offs effectively. This capability is essential for solving complex problems across diverse
scientific and engineering domains, where achieving optimal solutions often requires balancing multiple
objectives. One of theseMOO algorithmsMulti-Objective Particle SwarmOptimization (MOPSO) extends it
to handle problemswithmultiple objectives simultaneously, but likemany swarm-based algorithms,MOPSO
can suffer from premature convergence or local optima solutions. Therefore, this article introduces a novel
Multi-Exemplar Particle Swarm Optimization with Local Awareness (MEPSOLA) as a potent solution.
The algorithm presents a developed multi-objective-aware criterion for multi-exemplar selection, adeptly
balancing exploration and exploitation to avoid local optima and enhance performance across multiple
objectives. It also introduces a conditional and periodic Tabu search tailored specifically for exemplar
selection enhancement, improving both exploration and exploitation capabilities and avoiding premature
convergence. Additionally, our method employs an improved initialization phase using equal sampling for
each decision variable to ensure a comprehensive exploration of the entire solution space. A comprehensive
assessment utilizing standard mathematical functions such as Fonseca-Fleming (FON), Kursawe (KUR),
ZDT1, ZDT2, ZDT3, and ZDT6, and a comparison with state-of-the-art benchmarks in the field such as
the Multi-Objective Evolutionary Algorithm (MOEA), Non-Dominated Sorting Genetic Algorithm (NSGA-
II), and NSGA-III, validate the efficiency of MEPSOLA. Notably, MEPSOLA’s solutions outperform other
benchmarks in key metrics across the majority of mathematical problems, for instance in set coverage, where
our method dominates other methods’ solutions by 99.22%, 69%, and 93.58 %, respectively, highlighting
its enhanced capability in optimizing capability within complex multi-objective optimization scenarios.

INDEX TERMS Multi-objective optimization, multi-objective particle swarm optimization, MOPSO, multi-
exemplar, local search, complex optimization landscapes, Tabu search.

I. INTRODUCTION
The field of optimization has become an indispensable tool
for tackling complex problems in applied mathematics and
engineering. This paradigm shift recognizes that many real-
world challenges can be framed as finding the ‘‘best’’ solution
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– the one that maximizes desired objectives while adhering
to specific constraints. These desired objectives can vary
widely depending on the context. For instance, it might
seek to maximize performance, accuracy, or coverage, while
minimizing resource usage, error rates, delay, or even the
cost-effectiveness [1]. The impact of optimization extends far
beyond theoretical exercises, with applications now driving
advancements in diverse fields like security [2], energy
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management [3], financial modeling [4], transportation
logistics [5], data analysis [6], and even medical field [7].

In Artificial Intelligence (AI) and Machine Learning
(ML), optimization algorithms are essential [8]. These
algorithms, crucial for constructing optimization models and
identifying optimal values or parameters from the objective
function [8]. There are two main types of optimization
techniques used in various fields: single-objective and Multi-
ObjectiveOptimization (MOO). InMOO involves optimizing
multiple conflicting objectives simultaneously, often under
conflicting constraints. Unlike single-objective optimization,
which seeks a single optimal solution, MOO aims to find a
set of solutions known as the Pareto front. These solutions
represent trade-offs among the objectives, where no solution
in the set is superior in all objectives. This approach
acknowledges the complexity and multi-faceted nature of
real-world problems, where balancing different objectives is
necessary for optimal decision-making [9].
One of the standout methods in MOO is the Multi-

Objective Particle Swarm Optimization (MOPSO), an
advancement of the Particle Swarm Optimization (PSO)
algorithm [10], inspired by the social behaviors of birds flock-
ing [11]. MOPSO extends PSO principles to solve multiple
objectives, directing a swarm of particles or solutions into
the search space. Each particle modifies its path based on
personal and neighboring experiences, aiming for efficient
exploration. MOPSO’s strength lies in its simplicity and
ability to quickly converge to a set of diverse solutions [12].

Complex solution spaces where MOPSO algorithms like
MEPSOLA excel involve various challenging conditions:
multiple conflicting objectives requiring trade-offs, as seen
in engineering and design; high dimensionality, common
in large-scale feature selection [2] and financial opti-
mizations [4]; non-linear objective functions that create
multiple local optima, typical in network design; discrete and
combinatorial decision variables in scheduling and routing
tasks; dynamic environments like inventory management
where conditions change over time [13]; multi-modality,
where distinguishing between multiple satisfactory solutions
is difficult, seen in ecological modeling; constraint-rich
problems with numerous complex constraints, prevalent in
aerospace industries; and environments with uncertainty or
noise, such as in simulation-based optimizations.

MOPSO has proven to be a valuable tool in tackling
complex optimization problems involving multiple objec-
tives. Researchers have developed and refined MOPSO to
address various scenarios [14], aiming to achieve a balance
between exploration (discovering new possibilities) and
exploitation (refining promising areas) [15]. This ongoing
refinement helps MOPSO avoid premature convergence
on suboptimal solutions [16]. However, the literature still
lacks a comprehensive MOPSO algorithm that integrates
conditional local searching for exemplar selection, multi-
exemplar approaches, and smart initialization to ensure a
well-distributed initial population, which could further boost
the algorithm’s exploratory abilities.

In MOPSO, exemplars are crucial reference points that
guide the swarm’s search by directing particles towards
promising solution space. Exemplars selection, usually
preformed based on performance of particle or certain
equation, significantly influences search efficiency and
convergence [17]. MOPSO, exemplars are often chosen from
a repository of non-dominated solutions, ensuring that the
swarm is guided by the most effective solutions discovered
so far [18]. Therefore, the concept of multi-exemplar usage
introduces an additional layer of diversity to the search
process. Instead of each particle following a single exemplar,
the multi-exemplar approach allows particles to be influenced
by multiple guidance points [19]. This diversity is crucial
in avoiding premature convergence and ensuring a thorough
exploration of the solution space. By having multiple
exemplars, particles are exposed to a wider range of solution
characteristics, encouraging them to explore different regions
and thereby enhancing the algorithm’s ability to discover a
diverse and well-distributed Pareto front. The multi-exemplar
strategy balances the exploration and exploitation phases
of the search, making it highly effective in complex MOO
scenarios. However, relying solely on multiple exemplars
might not fully explore complex MOO scenario due to
the risk of particles becoming trapped in local optima.
Hence, incorporating local search methods is essential to
mitigate this issue, ensuring a more thorough exploration and
improving the algorithm’s overall performance in navigating
challenging optimization landscapes [10].

Local search methods, such as Tabu search (TS), are
designed to intensively explore the neighborhood of a
solution, providing a deeper insight into local regions of the
solution space [20]. When integrating local search algorithms
like TS, Simulated Annealing (SA), or Variable Neighbor-
hood Search (VNS)withMOPSOmethods, TS often emerges
as a particularly effective choice. Unlike SA, which relies
on probabilistic decisions influenced by a cooling schedule
that can demand complicated adjustments, TS employs a
memory-driven approach that systematically avoids revis-
iting previous solutions, offering a more consistent and
stable search path. This deterministic approach is crucial for
structured exploration in multi-objective optimization, where
managing complex objectives systematically is paramount.
Moreover, TS’s adaptability through flexible strategies such
as varying the Tabu list length and utilizing aspiration criteria
enables more controlled exploration and exploitation. This
complements the global search capabilities of MOPSO effec-
tively, ensuring seamless integration that leverages historical
data to optimize decision-making processes. In contrast, other
local search methods like VNS offer multiple neighborhood
structures but may not provide the same level of strategic
depth in avoiding previously explored areas, which is critical
in complex multi-objective settings. Therefore, TS is often
preferred for its predictability, control, and the ability to
handle complex multi-objective scenarios efficiently, making
it a robust choice in structured and reliable optimization
processes [21].
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The combination of temporary multi-exemplar searching
with local search methods could potentially address the
limitations of both strategies. While the multi-exemplar
approach improves global exploration and diversity, local
search methods can efficiently exploit the local regions,
leading to a more comprehensive search. However, such
an integrated approach is not commonly found in existing
literature. The lack of this integration results in a missed
opportunity for enhancing the algorithm’s capability to
navigate complex optimization problems effectively. Without
local search, particles may overlook finer details in the
solution space, while without multi-exemplar guidance, they
may get trapped in local optima. An ideal algorithm would
dynamically switch between these two modes, employing
multi-exemplar searching for global exploration and local
search methods for detailed exploitation. This synergy could
lead to more robust and effective optimization results,
especially in problems where the solution space is rugged or
has many competing objectives.

This article introduces an innovative MOO algorithm,
grounded in the theoretical framework of PSO, and provides
the following contributions:
1. To our understanding, this research presents a MOPSO

algorithm specifically designed to address the com-
plexities of solution spaces. The algorithm not only
incorporates but also refines multiple techniques to
efficiently manage the multi-objective nature.

2. A multi-objective-aware criterion for multi-exemplar
selection is also presented. This criterion adeptly balances
between the dual imperatives of exploration and exploita-
tion, thereby optimizing the algorithm’s performance
across multiple objectives.

3. Enabling of Tabu search for exemplar selection only
and for every T period provides both global and local
awareness in the searching behavior and enable avoidance
of local minima.

4. Rigorous evaluation of the algorithm has been conducted
using standard mathematical benchmarks prevalent in
the optimization domain. Furthermore, the algorithm’s
performance metrics have been assessed using established
multi-objective evaluation standards, and comparative
analyses have been performed against benchmark algo-
rithms in the field of optimization.
The remainder of the article is organized as follows:

Section II provides a literature survey and related works.
Section III presents our developed methodology. Section IV
discusses evaluation metrics and benchmarking functions.
Section V explains the experimental design and the results
analysis and discussion. Finally, Section VI represents the
conclusion and directions for future work.

II. LITERATURE SURVEY
PSO is a computational technique that has gained prominence
for its ability to solve complex optimization problems. PSO,
inspired by social behaviors of bird flocking, excels in
complex optimization tasks. Its adaptability lies in solution

representation and particle mobility, offering simplicity with
minimal parameter adjustments [10]. Each particle in PSO
represents a potential solution, with position indicating
solution quality [22]. This representation is adaptable to
various problem types, including continuous, discrete, and
combinatorial [14]. Particle mobility, determined by velocity
updates based on personal and neighbor’s best positions,
facilitates a balance between exploration and exploita-
tion [23], [24].

MOPSO extends PSO to handle multi conflicting objec-
tives. Key features ofMOPSO include a repository for storing
Pareto-optimal solutions and a grid mechanism ensuring
solution diversity [25], [26]. Recent advancements include
variable length PSO [27] and autonomous Convolutional
Neural Network (CNN) architecture optimization using an
evolved encoding method and ‘‘Disabled layer’’ concept for
variable-length solutions [28]. Moreover, a study combined
PSO with evolutionary game theory, introducing Modified
Self-Adaptive PSO (MSAPSO) for parameter optimization,
balanced exploration and exploitation, and convergence
analysis procedure [29]. Another integration of enhanced
PSO with a Pareto archive addresses multi-objective reactive
power optimization, employing a greedy strategy for inten-
sive local searches [15]. A study introduce method named
a PSOBSA, a combine of PSO with Search Optimization
Algorithm (BSA), aims to overcome PSO’s diversity loss and
local optima entrapment [1].

Further advancement for MOPSO with a fuzzy dom-
inance relationship and crowding distance measure are
proposed, with a tolerance coefficient ensuring decision-
maker satisfaction [30]. In the term of addressing PSO’s
complexity, a simplified MOPSO algorithm is developed,
compared qualitatively with real-coded elitist non-dominated
sorting genetic algorithm [31]. To overcome limitations
in archive size and diversity maintenance, MOO based
PSO with an archive updating mechanism using nearest
neighbor strategies is introduced [32]. Furthermore, a multi-
modal MOO-based PSO with a self-adjusting strategy
tackles convergence deterioration, employing sub-swarms for
solution diversity [33]. The impact of swarm connection
topology in MOPSO is analyzed, enhancing sensitivity to
swarm topologies using regular graphs [34]. An improved
guidance for swarms is proposed by pairing with suitable
leaders, adapting strategies for leader selection based on the
evolutionary state and dominance relationship [35].

Moreover, dynamicMOO solutions address shifting objec-
tive importance, employing a double search strategy for
PSO and a piecewise strategy for rapid convergence [13],
[36]. High-dimensional challenges are tackled by a two-
stage optimizer, population cooperation based PSO, utilizing
auxiliary and sub-population cooperation for convergence
rate and diversity balance [37]. A two-archive MOPSO
focuses on convergence and diversity, with archives refined
using indicator-based and density estimation approaches, and
genetic techniques for solution quality enhancement [38].
Lastly, a novel global best solution selection method, based
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on virtual generational distance, optimizes both convergence
and diversity, complemented by an adaptive personal best
solution selection based on evolutionary stages, strengthening
exploitation or exploration [39]. In [40], the authors tackle
the issue of weak selection pressure in MOPSOs, which
can hinder the generation of robust Pareto solutions in
many-objective problems. They introduce a Hybrid Global
Leader Selection Strategy (HGLSS) that features two distinct
global leader selection mechanisms aimed at enhancing
both exploration and exploitation capabilities. Each particle,
representing a potential solution, can select between these
two mechanisms to identify its global best leader. The
approach also incorporates an external archive, utilized
for maintaining solution diversity and updated through
Pareto dominance and density estimation. This strategy has
shown promising results, outperforming other state-of-the-
art multi-objective metaheuristics in terms of the Modified
Inverted Generational Distance (IGD+) indicator, providing
a significant advancement in the field of MOPSO.

Upon reviewing the literature in the Table 1, for the
recent MOPSO methods developments it became noticeable,
uncovers a significant gap, the lack of a comprehensive
method that joining multi-exemplar strategies, robust local
searching mechanisms for exemplar selection enhancement
and an improved initialization phase. Current PSO-based
MOOapproaches primarily focus on exploring and exploiting
trade-offs and improving the selecting diverse solutions.
However, they often overlook the integration of smart
initialization and underutilize local searching techniques and
multi-exemplar strategies.

This article, proposes a method called Multi-Exemplar
Particle Swarm Optimization with Local Awareness (MEP-
SOLA), which addresses the literature gap by incorporating
smart initialization, advanced solution selection-based grid
selection, and an innovative combination of multi-exemplar
strategies with a global and conditional local search approach.
This integration promises a more holistic exploration of
the solution space, potentially leading to more diverse and
optimal solutions, enhancing both exploration and conver-
gence while avoiding premature convergence traps. Thus,
our approach aims to enhance the effectiveness of Multi-
Objective Optimization (MOO) in complex optimization
scenarios.

III. METHODOLOGY
This section details the methodology of the MEPSOLA
algorithm, it begins with problem formulation, followed by
describing the general flowchart. Next, the introduction of
the initial phase of solution initialization is provided. Then
demonstration of solutions’ mobility and interactions in the
search space is introduced, which is divided into three parts:
solutions interactions with exemplars, solutions mutation,
and exemplar selection. Next, local searching based on Tabu
search is presented, followed by a detailed explanation of
the main algorithm. Lastly, the exploration mechanisms are
presented.

FIGURE 1. Flowchart of the general process for MEPSOLA.

A. PROBLEM FORMULATION
MOO is an essential tool in various fields, enabling the
simultaneous optimization of multiple conflicting objectives.
The challenge of identifying optimal solutions under complex
constraints, illuminating the complexities of decision-making
in environments where trade-offs are inevitable.

Let’s assume that f = (f1, f2, . . . ,fn), be a vector of n
objective functions to be optimized. Each objective function
fi:X→ R maps a solution x∈X to a real number where X is
the set of all feasible solutions defined by a set of constrains
gj(X ). X = {x ∈ R|gj (X) ≤ 0,hk = 0, } j = 1, . . .m,
k = 1, 2 . . . p where m denotes the number of inequality
constraint gj (X) ≤ 0, p denotes the number of equality
constraints hk = 0.
A solution x1 is said to dominate another solution x2 or

x1≺x2 if and only if: f (x1) ≤ f (x2) for all i = 1, 2 . . . n and
f (x1) < f (x2) for at least one 1 ≤ i ≤ n.
The multi-objective optimization problem based on the

concept of non-domination can be formally stated as: Find
x∗

∈ X such that ∄x∈X for which x≺x∗. All the solution x∗

that meet this condition are given in the Pareto front X∗
=

{x ∈ X |∄x ′
∈X , x ′

≺x}.
The ultimate aim is to determine an optimal set of

solutions, each offering a unique balance among the different
goals, known as the best compromise solutions.

B. GENERAL FLOWCHART FOR MEPSOLA
This section presents the general flowchart in Fig. 1, illus-
trates the MEPSOLA algorithm procedure, which follows
a systematic optimization sequence. It begins with smart
initialization to strategically set up the population and
repository. The algorithm iterates through cycles of exemplar
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TABLE 1. Literature for existing methods of multi-objective particle swarm optimization.
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validation, particle velocity and position updates, and detailed
cost computation with mutation. A notable feature is the
inclusion of a conditional Tabu search for local exemplar
selection enhancement. This iterative process continues until
convergence criteria or maximum iterations are reached,
culminating in the formation of a Pareto front that indicates
the optimal set of solutions. The detailed methodology of
MEPSOLA will be thoroughly described in the subsequent
sections of the article.

C. SOLUTIONS INITIALIZATION
The initialization stage is a crucial step is undertaken where
for each decision variable, equal sampling within its range
is conducted. This process is pivotal as it ensures that
the initial values for the decision variables are selected
in a manner that is representative of their entire range.
The methodology here involves assigning Range_values for
each decision variable. This equitable distribution of initial
values is fundamental for the algorithm’s performance, as it
guarantees a comprehensive exploration of the solution space
right from the outset. Without this balanced initialization, the
algorithm could potentially overlook significant areas of the
solution space, leading to suboptimal outcomes.

The Cartesian product is applied to these Range_values,
resulting in a set of permutations. These permutations
embody all possible combinations of decision variable values
within their respective ranges. The generation of these
permutations is a testament to the thoroughness with which
the solution space is being explored.

The population is then established by randomly selecting a
subset of these permutations, the size of which is determined
by pop_size. Each particle in this initial population is assigned
a position from Positions. Subsequently, the initialization
of the particle’s velocity and the calculation of its cost are
performed. This random sampling from a comprehensively
generated permutation set ensures that the initial population
is not biased towards any specific region of the solution space.

The formation of the Repository involves the iden-
tification of non-dominated particles from the initial
population. This process, executed through the function
get_particles_non_dominated(population), is essential for
maintaining a diverse set of solutions that are not over-
shadowed by any dominant trait or characteristic. Each
particle in the population is assigned an exemplar through the
exemplar_selection() function. This step is integral to guiding
the search process in the algorithm, as exemplars serve as
reference points for particles to follow.

Finally, the algorithm concludes by returning the popula-
tion alongside the Repository. The initial population, having
been generated through a process that emphasizes fairness
and thoroughness in sampling, sets a solid foundation for
the subsequent computational steps. This fair initialization
is not merely a procedural necessity but a cornerstone
that significantly influences the algorithm’s efficiency and
effectiveness in exploring the solution space and converging

towards optimal solutions, the process of initialization phase
illustrated in Algorithm 1.

Algorithm 1 Pseudocode of generate of first population
Input:
- Pop_size: The size of the population.
Output:
-First_pop: The first generated population.
- Repository: A repository of non-dominated particles.
Procedure:

Initialization:
For each decision variable

Range_values(decision variable) = do equal
sampling with the range of decision variable
End
Permutations=apply Cartesian product on
Range_values
Positions = random.sample(permutations, pop_size)

Population Setup:
- For each particle in particles:

- Assign a position from Positions to
Particle.position.

- Initialize Particle.velocity.
- Calculate Particle.cost.

Repository Formation:
- Form Repository by identifying non-dominated

particles from the population using
get_particles_non_dominated(population).
Exemplar Assignment:

- For each particle in particles:
- Assign an exemplar to Particle.exemplar by calling the

exemplar_selection() function.
Return:

- Return population and Repository.

The improved initialization phase is pivotal for the success
of the MEPSOLA algorithm in handling multi-objective
problems. By establishing a solid foundation of diverse
and representative initial solutions, this phase significantly
influences the quality of solutions and the speed at which
the algorithm converges. These enhancements not only
streamline the computational process but also lead to
comprehensively covering the entire search space, preventing
initial clustering of solutions and improving the diversity of
the initial population [42].

D. SOLUTIONS MOBILITY AND INTERACTIONS
This subsection presents three types of operations related
to solutions’ mobility. Firstly, solutions interaction with
exemplar. Secondly, solution conditional mutation. Lastly,
exemplar selection.

1) EXEMPLAR AND SOLUTIONS INTERACTION
In optimization algorithms, particularly those similar to PSO,
the nuanced interaction between a solution and its exemplar is
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defined by a specific mathematical formula as in Equation 1
[27].

vt+1
i = w·vti + c · ri ·

(
ptexmplr(i) − x ti

)
(1)

where vti denotes the current velocity of the solution.
ri denotes a random number between 0 and 1.
ptexmplr(i) denotes the position of the exemplar of dimension

d for solution i.
The formula involves multiple components that collec-

tively determine the movement of a solution within the search
space. At its core, this interaction involves the update of
a solution’s velocity, a process influenced by the solution’s
current velocity, represented by vti . This element of velocity
is crucial as it dictates the rate and direction of the solution’s
movement, fundamentally shaping its direction through the
search space.

The influence of inertia weight, denoted as w, plays a
pivotal role in this process. It determines how much of the
solution’s previous momentum is carried forward into its
new velocity, thus balancing the forces of exploration and
exploitation within the algorithm. A larger inertia weight
encourages a broader, more explorative approach, while a
smaller weight focuses on localized, detailed searches.

The interaction is further characterized by a randomized
attraction towards the exemplar, represented by ptexmplr(i).
This exemplar, often the best solution found by either
the individual or the entire swarm, serves as a point of
attraction. The level of this attraction is influenced by a
random factor, ri, a number generated between 0 and 1,
introducing unpredictability and variation in the movement
of the solution. This randomness is critical in preventing the
solution from becoming trapped in local optima.

An acceleration coefficient c, modifies this attraction,
steering the solution more decisively towards promising
regions within the solution space. The influence of this
coefficient is crucial in dictating the interaction of the
solution’s movement towards the exemplar.

Finally, the interaction takes into account the solution’s
current position, x ti , by subtracting it from the exemplar’s
position. This difference is integral as it quantifies the relative
position of the solution to its guiding point, thus directing the
update of velocity.

Through this interaction, each solution in the population
is methodically guided towards optimal or near-optimal
regions. The exemplar acts as a point, directing the solution’s
journey, while the inertia and random elements ensure
a diverse and comprehensive exploration of the solution
space. This balance of individual movement influenced by
personal and collective experiences encapsulates the essence
of population-based optimization techniques, leading to
effective and efficient discovery of solutions.

2) SOLUTION MUTATION
The mutation technique is a concept borrowed from evolu-
tionary algorithms. It serves as a mechanism to introduce

diversity into the population.While not a standard component
of PSO, mutation can be incorporated in particle swarm
optimization to prevent premature convergence. In our
proposed algorithm, we adopt picking randomly one of the
decision variables and replacing its value with another from
its originally generated range values.

3) EXEMPLAR SELECTION
Multiple exemplar strategies in advanced MOPSO methods,
such as MEPSOLA, significantly enhance the optimization
process compared to traditional methods that typically rely
on a single exemplar for guidance. These strategies introduce
greater exemplar diversity by allowing particles to follow
multiple exemplars, each representing different regions of the
search space, which promotes a broader and more diverse
exploration of the solution space. Also, the dynamic exemplar
selection enables particles to switch between exemplars based
on their need for exploration or exploitation, adapting to the
evolving solution landscape. This approach combines local
and global guidance, preventing premature convergence on
certain parts of the Pareto front and encouraging exploration
of less dominant regions [19].

Algorithm 2 Exemplar Selection Procedure
Input:
- particle: The particle for which the exemplar is to be
selected.
Output:
- Exemplar: The selected exemplar for the input particle.
Procedure:
Initialization:

- Set a Threshold_repetition value.
- Initialize Used_exemplars as an empty directory.

Selection of Exemplar:
- Choose a random Exemplar from the Repository.
- If Exemplar is not in Used_exemplars :

- Add Exemplar to Used_exemplars and set its count to
1.

- Else, if Used_exemplars[Exemplar] is less than
Threshold_repetition:

- Increment the count of Exemplar in
Used_exemplars.

- Otherwise:
- Select a new Exemplar by applying

tabu_search(particle.position) Algorithm 3
Return:

- Return the selected Exemplar.
End

In the exemplar selection phase, as illustrated in
Algorithm 2, this process is critical for guiding the search
behavior of particles in an optimization algorithm. The
conditional calling of local search, the temporary usage
of an exemplar, and the utilization of multi-exemplar are
key elements that significantly influence the algorithm’s
effectiveness and efficiency. The algorithm begins with an
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initialization step, where a Threshold_repetition value is
set. This threshold is crucial as it defines the maximum
frequency with which an exemplar can be used before
triggering alternative search mechanisms. Additionally,
Used_exemplars is initialized as an empty directory. This
directory will track the usage frequency of each exemplar,
thereby playing a vital role in managing the diversity of the
search process.

The primary step involves choosing a random Exemplar
from the Repository. The randomness here is vital for
ensuring an unbiased selection process. The selection process
then checks whether the chosen Exemplar is already in
Used_exemplars. If it is not, the Exemplar is added to
Used_exemplars directory, with its count set to 1. This
step ensures that each Exemplar gets a chance to influence
the search process. If the Exemplar is already used but
its count is less than Threshold_repetition, its count is
incremented. This mechanism allows for the repeated use of
effective exemplars but within a controlled limit. The role
of conditional calling of local search is highlighted when
the count of an Exemplar reaches the threshold. In this
case, instead of continuing to use the same Exemplar, the
algorithm calls Algorithm 3, which is responsible on Tabu
search. This shift to a local search method, triggered by the
threshold, ensures that the search does not stagnate due to
over-reliance on a particular Exemplar. It introduces a new
dimension to the search process, allowing for exploration in
different regions of the solution space. The temporary usage
of an exemplar, as governed by the Threshold_repetition and
the use of Used_exemplars, ensures that no single exemplar
dominates the search process. This temporary usage allows
for a dynamic and adaptive search strategy, where exemplars
are rotated based on their efficacy and frequency of use.
It prevents premature convergence andmaintains the diversity
of the search process. The utilization of multiple exemplars,
as facilitated by the dynamic selection process, plays a
pivotal role in exploring various regions of the solution space.
By allowing particles to be influenced by different exemplars
over time, the algorithm benefits from a multi-faceted search
approach. This diversity in guidance helps in effectively
navigating the solution landscape, aiding in the avoidance of
local optima and enhancing the probability of finding global
optima. Finally, the algorithm returns the selected Exemplar,
which is then used to guide the movement of the particle in
the optimization process.

E. TABU SEARCH
Tabu Search algorithms as a conditional interaction is
employed through a series of steps to navigate and enhance
the exemplar selection process within the optimization
problem as in Algorithm 3. Its only enabled when the
Threshold_repetition reach the maximum counts which is the
maximum frequency with which an exemplar can be used.
The process started by setting the initial_solution as both the
current_solution and the best_solution. This dual assignment
signifies the commencement of the search process from a

defined point, with the best_solution being a placeholder
for the optimal solution encountered during the search. A
tabu_list is also introduced, initially as an empty list. The
function of this list is to record the solutions that have been
recently explored. The maintenance of this list is critical as it
helps in avoiding repetitive exploration of the same solutions,
thereby preventing the algorithm from being trapped in cyclic
patterns.

Another key component is the tabu_list_max_size, a pre-
defined value that limits the number of entries in the tabulist .
This constraint ensures that the list only retains a certain
number of recent solutions, balancing memory efficiency
with the effectiveness of avoiding recent solutions.

The core of the algorithm is a loop that continues until
a specified stopping criterion is met. Within this loop, the
algorithm generates a neighborhood of solutions surrounding
and close to the current_solution. These solutions typically
representing slight modifications or variations of it. From
this neighborhood, the algorithm selects the best_neighbor ,
which is themost promising solution that is not in the tabulist .
This step is crucial as it guides the search towards areas of
the solution space that are yet unexplored or hold potential
for better solutions.

Upon identifying the best_neighbor , the algorithm updates
the current_solution to this new solution. Concurrently,
it checks if this best_neighbor is an improvement over the
best_solution found so far. If it is, the best_solution is updated
to reflect this new, better solution.

Finally, the tabu_list is updated with the best_neighbor .
This update involves adding the new solution to the list and
ensuring that the list size does not exceed the predefined
tabu_list_max_size. This management of the tabu list is
essential for the algorithm’s ability to efficiently navigate
through the solution space without revisiting recently con-
sidered solutions. The algorithm concludes by returning
the best_solution once the stopping criteria are met. This
solution is the optimal solution found by the algorithm in
its exploration of the solution space, guided by the strategic
avoidance of recently explored solutions through the tabu list.

F. MULTI-EXEMPLAR PARTICLE SWARM OPTIMIZATION
WITH LOCAL AWARENESS (MEPSOLA) GENERAL
PROCEDURE
The algorithm initiates by setting the initial population of
particles,First_population, and a Repository for storing non-
dominated particles. The First_population is derived from
Algorithm 1, which emphasizes fair and comprehensive
initialization, ensuring a diverse and representative starting
point for the optimization process. The algorithm in this phase
assign exemplars for each particle from the current set of non-
dominated solutions found in the population.

Then, in the main loop of the algorithm, which repeats
until predefined stopping criteria are met, each particle in
the population undergoes a series of steps. An Exemplar
Check is first conducted for each particle. If a particle’s
position is identical to its exemplar’s, the exemplar is adjusted
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Algorithm 3 Tabu Search for Exemplar Selection
Input:
initial_solution
Output:
best_solution
Start:
current_solution = initial_solution
best_solution = initial_solution
tabu_list = empty list
tabu_list_max_size = some predefined value
while stopping_criteria_not_met:

neighborhood =

generate_neighbors(current_solution)
best_neighbor = find_best_candidate(neighborhood,

tabu_list)
current_solution = best_neighbor
if better_than(best_neighbor, best_solution):
best_solution = best_neighbor

update_tabu_list(
tabu_list, best_neighbor, tabu_list_max_size)

return best_solution
End

using the get_close_number function. This step is crucial
as it maintains diversity and avoids stagnation in the search
process. Subsequently, the particle’s velocity and position are
updated to reflect the ongoing dynamics of the algorithm.
These updates play a crucial role in navigating the solution
space and are influenced by the guidance provided by the
exemplar. Following this, each particle’s cost is calculated,
and a mutation is potentially applied, introducing variability
and aiding in exploring new areas of the solution space. The
cost calculation is vital for evaluating each solution’s quality.

If a particle’s cost is better than that of its exemplar, the
exemplar is updated using the exemplar_selection method
from Algorithm 2. This method selects exemplars in a
manner that balances exploration and exploitation, using
a tabu list to avoid repetitive exploration and enhance
the search’s diversity. After processing all particles, the
Repository is updated with non-dominated particles from the
population. This update is a crucial step, as it maintains
a set of optimal solutions found so far, influenced by the
diverse and dynamic exemplars. The algorithm concludes by
forming the Pareto_front from the non-dominated solutions
in both the repository and the population, as determined by
their costs and positions. This front represents the set of
optimal solutions, balancing various objectives. The final
step is returning the Pareto front, marking the end of the
optimization process.

G. EXPLORATION MECHANISMS
The exploration behavior of our proposed algorithm is
resulted from several mechanisms that can be stated as
follows.

Algorithm 4 Multi-Exemplar Multi-Objective Particle
Swarm Optimization
Input:
First_population : Initial set of particles.
Repository : Storage of non-dominated particles.
Output:
Pareto_front The final set of optimal solutions.
Procedure:
Initialization using Algorithm 1

- Set population to First_population.
- Initialize repository as Repository.
-initialization of exemplar

Main Loop:
- While the stopping criteria are not met:
- For each particle in population:
- Exemplar Check:
- If particle.position is equal to

particle.exemplar :

- Adjust particle.exemplar using
get_close_number(particle.exemplar).

- Velocity and Position Update:
- Update particle.velocity using Equation(1)
- Update particle.position using x t+1

i = x ti + vt+1
i

- Cost Calculation and Mutation:
- Calculate particle.cost.
- Apply mutation to the particle with

apply_mutation(particle).
- Exemplar Update:
- If particle.cost is better than

particle.exemplar.cost :

- Update particle.exemplar using
exemplar_selection() using Algorithm 2

- Repository Update:
- Update repository with non-dominated particles

from population using
get_particles_non_dominated(population).
Pareto Front Formation:

- Form Pareto_front from the non-dominated solutions
in repository and population using
get_solutions_non_dominated(repository, population).
Return:

- Return Pareto_front.
End

1. The incorporation of smart or equal initialization to enable
fair sampling of initial population in the objective space.
This ensures a diverse starting point for the optimization
process, laying the groundwork for comprehensive explo-
ration.

2. The incorporation of Tabu search to be conducted on each
exemplar every T period. This integration enhances local
exemplar selection, preventing Local optimal solutions
and encouraging exploration in diverse regions of the
solution space.
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3. The incorporation of mutation which is an evolutionary
mechanism. This mechanism, not typical in traditional
PSO, helps prevent premature convergence by exploring
new areas of the solution space.

4. The incorporation of grid aware solutions selection mech-
anism for selecting solutions as a part of the repository.
This approach ensures that solutions are strategically
chosen to maintain diversity and representativeness in the
repository, further enhancing the exploration capabilities
of the algorithm.

IV. EVALUATION
The evaluation section comprises two primary subsections:
first, it includes the benchmark mathematical functions
utilized to evaluate the algorithms. Second, presents the
evaluation measures employed to evaluate the algorithm
performance and compare them to other benchmarks.

A. BENCHMARKING MATHEMATICAL FUNCTIONS
The main aim of MOO algorithms is to find a set of solutions
that represent the best possible trade-offs between conflicting
objectives in a given problem. In the evaluation of MOO
algorithms, several different mathematical problem functions
are utilized to evaluate the algorithm’s performance and
compare it against other state-of-the-art benchmarks. These
problems vary in shapes and complexity and are commonly
used to evaluate MOO algorithms. The functions include
FON,KUR, ZDT1, ZDT2, ZDT3, and ZDT6 [43]. The details
of these mathematical problems are described in Table 2.
These mathematical functions utilized in this study encom-

pass a diverse range of complexities and shapes, each posing
unique challenges for optimization algorithms. The functions
range from FON’s non-convexity to KUR’s disconnected
Pareto shape, and from ZDT1’s convexity to ZDT6’s non-
convex and non-uniform Pareto shape. Collectively, these
functions serve as robust challenges for evaluating MEP-
SOLA’s efficacy across various optimization problems.

B. EVALUATION MEASURES
In the MEPSOLA evaluation process, several measures
are used to assess it performance and compare to other
benchmarks of MOEA, NSGA-II, and NSGA-III. These
evaluation measures serve to measure various aspects of the
algorithm’s behavior and solution quality. These evaluation
measures include, set coverage, hyper-volume, delta metric,
generational distance, and NDS.

1) SET COVERAGE MEASURE
The Set Coverage measure, also known as the C-metric,
measure the proportion of solutions in one Pareto set that are
dominated by another. It compares two Pareto sets, Ps1 and
Ps2, as shown in Equation 2.

C (Ps1;Ps2) =
|{y ∈ Ps2 | ∃x ∈ Ps1 : x ≺ y}|

|Ps2|
(2)

where C represents the ratio of non-dominated solutions in
Ps2 that are dominated by non-dominated solutions in Ps1,
to the number of solutions in Ps2.

2) HYPER-VOLUME MEASURE
The HV-metric is a widely used measure in MOO algorithms
for performance evaluation. It calculates the volume of
the dominated portion of the objective space relative to
a reference point. This region comprises the union of
hypercubes with diagonals equal to the distance between the
reference point and a solution x from the Pareto set PS. Higher
values of this measure indicate more desirable solutions.
HV calculated using Equation 3.

HV = volume

(⋃
x∈Ps

HyperCube (x)

)
(3)

3) DELTA MEASURE (1)
TheDelta measure is a metric used to evaluate the distribution
and spread of the non-dominated solutions in MOO. The
idea behind the delta measure is to ensure that the solutions
obtained are not only non-dominated but also uniformly
distributed across the Pareto front. To calculate the delta
measure according to the Equation 4.

1 =
(df + dl+(

∑N−1
i=1

∣∣di − d̄
∣∣)

(df + dl + (N − 1) · d̄)
(4)

where N is the number of solutions di. df and dl are the
Euclidean distances between the extreme solutions and the
boundary solutions, and d̄ is the average of all the consecutive
distances di for i = 1, 2, 3, . . . ,N−1. Smaller value of
1 indicates a better and more uniform distribution of the
solutions along the Pareto front.

4) NUMBER OF NON-DOMINATED SOLUTIONS
The number of non-dominated solutions measures the
effectiveness of the optimization algorithm in terms of its
ability to discover non-dominated solutions. NDS can be
calculated using Equation 5.

NDS (N ) = |Ps| (5)

A higher NDS value suggests that the algorithm has
found a larger set of optimal trade-offs between conflicting
objectives, which is often the goal in the MOO problems.

5) GENERATIONAL DISTANCE (GD)
Generational distance metric, measures the distance between
the obtained Pareto front (PS) by the proposed method and
the true Pareto front PT. A lower GD value indicates better
performance. GD can be calculated by the Equation 6.

GD (PS ,PT ) =

√∑|PS |
i=1 d

2
i

|PS |
(6)

where |Ps| is the number of solutions in the Pareto set, PT is
the true Pareto front, di is the Euclidean distance between the
solutions in Ps and the nearest solutions in PT .
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TABLE 2. Benchmarking mathematical functions.

V. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS
This section includes nine sub-sections: the first covers the
steps of experimental design, six sub-sections present the
results of the proposed algorithm in comparison to state-of-
the-art benchmarks, and the final two sub-sections address
complexity analysis and parameter sensitivity.

A. EXPERIMENTAL DESIGN
The experimental design for the proposed algorithm was
evaluated across a range of six mathematical functions, each
possessing diverse shapes and level of complexity, FON,
KUR, ZDT1, ZDT2, ZDT3, and ZDT6. These functions
were characterized by varying acceleration parameters c,
as explained in Table 3. Additionally, the parameters for
MEPSOLA, including the embedded Tabu search parameters,
are outlined in the same table.

The proposed method compared with well-established
benchmarking MOO algorithms, NSGA-II [44], NSGA-
III [45], and MOEA [46]. These benchmark algorithms
are recognized for their robust performance across a wide
range of MOO problems and have been extensively validated

TABLE 3. The experimental design parameters.

in the literature. To ensure parity in our comparative
analysis, the parameter settings for the benchmarking were
directly aligned with those recommended in their original
publications with minor tuning.

The experimental simulations were implemented using
the Python programming language in two platforms the
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FIGURE 2. Visualizing a Pareto front obtained from the proposed method and the benchmarks MOEA, NSGA-2, and NSGA-3 based
on mathematical functions FON, KUR, ZDT1, ZDT2, ZDT3, and ZDT6.

PYCharm Community Edition 2023.1.2 and Google Colab.
The hardware setup utilized a 12th generation Intel Core i5 of
4.40 GHz processor with 10 cores and 16 GB of DDR4RAM,
ensuring that the computational environment was sufficiently
capable of handling the intensive calculations required by
these optimization algorithms.

B. RESULTS
In complex optimization scenarios, the efficiency of an
optimization algorithm is crucial. This article introduces an
enhanced version of MOPSO called MEPSOLA, specifically
tailored for addressing complex optimization problems
with high dimensionality. MEPSOLA integrates a range of
sophisticated techniques to improve its performance.

The experimental results analysis presented in this article
aims to demonstrate the algorithm’s effectiveness in navi-
gating the complexities of MOO. The results, illustrated in

Fig. 2, display the Pareto front obtained from one run from ten
experimental runs for MEPSOLA and each benchmark. This
visual representation serves as evidence of the algorithm’s
capability, compared to other benchmarking algorithms,
to produce a diverse and evenly distributed set of solutions
that closely approximate the true Pareto front.

To assess performance across multiple runs, we utilize
box plots as a graphical representation of the distribution of
results. By employing box plots to visualize the outcomes
of multiple runs of the MOO algorithm, we gain valuable
insights into its behavior, variability, and overall performance
across various executions.

C. FONSECA FUNCTION (FON) RESULTS
1) SET COVERAGE RESULTS
The SC metric results of the FON function, SC measure
the level of dominance exhibited by one set of solutions
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FIGURE 3. Set coverage measure results for FON function.

over another. In the comparison between MEPSOLA and
MOEA as illustrated in Fig. 3 (a), MEPSOLA’s solutions
demonstrate significant dominance over those in MOEA,
as evidenced by SC interquartile ranging from Q1 of 0.404 to
Q3 of 0.673. The median SC value of 0.53 indicates that in
the majority of runs, MEPSOLA’s solutions dominate over
MOEA’s solutions. Conversely, MOEA exhibits minimal
dominance overMEPSOLA’s solutions, with SC interquartile
ranging from Q1 of 0.006 to Q3 of 0.019, and a median SC
value of 0.01, suggesting rare instances of dominance.

Similarly, when comparing MEPSOLA with NSGA-2 as
depicted in Fig 3. (b), MEPSOLA showcases a notable level
of dominance, with SC interquartile values ranging from
0.21 to 0.28 and a median SC value of 0.24. In contrast,
NSGA-2 demonstrates less dominance overMEPSOLA,with
SC interquartile values ranging from Q1 of 0.11 to Q3 of
0.17 and a median SC value of 0.16.

In MEPSOLA against NSGA-3 as illustrated in Fig. 3(c),
MEPSOLA’s solutions exhibit a median SC value of
0.07, indicating lower dominance compared to MOEA and

NSGA-2. Conversely, NSGA-3’s solutions display a less
degree of dominance over MEPSOLA’s, with a median SC
value of 0.02, which falls between MOEA’s and NSGA-2’s
levels of dominance.

2) HYPER VOLUME RESULTS
The HV metric results, illustrated in Fig. 4 (a), represent the
degree of coverage of the generated Pareto front in relation to
the objective space.MEPSOLA achieves the HV interquartile
values, ranging from Q1 of 567.4 to Q3 of 680.6, indicating
extensive coverage of the objective space. The median
HV value of 655.11 suggests that MEPSOLA consistently
produces Pareto fronts that capture a considerable region of
the optimal set across several runs.

In contrast, MOEA exhibits substantially lower HV values,
indicating limited coverage of the objective space. The
maximum HV value of 24.67 is considerably lower to
MEPSOLA’s, and themedianHVof 24.61, alongwith narrow
interquartile ranges fromQ1 of 24.59 to Q3 of 24.64, suggests
that MOEA’s Pareto fronts fall short of extending across
the optimal set. Subsequent, the NSGA-2 demonstrates
consistent HV values within a narrow interquartile range,
from Q1 of 188.12 to Q3 of 188.12. The median HV of
188.21 indicates a moderate coverage of the objective space
that remains consistent across runs but is not as expansive as
MEPSOLA’s.

Similarly, NSGA-3 exhibits consistent but low HV values,
the interquartile ranging from Q1 of 24.69 to Q3 of 24.71.
The median HV of 24.7 and interquartile values suggest
performance similar to MOEA in terms of HV, with a Pareto
front covering only a minimal portion of the optimal set.
In the case of the FON function, MEPSOLA outperforms
MOEA, NSGA-2, and NSGA-3 significantly in terms of HV.

3) DELTA MEASURE RESULTS
The delta measure results for the FON function, as shown
in Fig. 4 (b), measure the proximity between the true Pareto
front and the approximated front produced by the algorithm.
In the case of MEPSOLA, the range of delta interquartile
values spans from Q1 of 0.801 to Q3 of 0.868, with a median
of 0.826. While the maximum value is not optimal, the
relatively lower minimum and median values suggest that
MEPSOLA maintains a satisfactory distribution of solutions.

For MOEA, the delta interquartile values vary from Q1
of 0.677 to Q3 of 0.679, with a median of 0.679. These
values indicate a tight spread, also they may not cover the
Pareto-optimal region as extensively as desired. Similarly,
for NSGA-2, the delta interquartile values range from Q1
of 0.674 to Q3 of 0.683, with a median of 0.678. These
findings imply a consistent but moderate uniformity without
exceptional coverage. In the case of NSGA-3, the median
delta value is 0.675, closely resembling those of MOEA and
NSGA-2. This suggests a consistent yet potentially narrower
spread, and could also indicates lacking the diversity ideally
desired [47].
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FIGURE 4. FON function results.

4) NUMBER OF NON-DOMINATED SOLUTIONS RESULTS
The NDS metric results depicted in Fig. 4 (c) for the FON
function, the measure evaluates the efficacy of optimization
algorithms in discovering a varied array of Pareto-optimal
solutions. In the case of MEPSOLA, the findings reveal a
robust efficacy to identify a considerable number of non-
dominated solutions, ranging from a minimum count of
277 to a maximum of 422. With a median count of 341,
MEPSOLA consistently discovers a significant number of
optimal solutions across several runs.

Conversely, MOEA exhibits lower NDS values, all fixed
at 13. This consistent figure implies that MOEA may have a
narrower scope in exploring the solution space. Furthermore,
the NSGA-2 yields a consistent count of 100 non-dominated
solutions across all statistical measures, surpassing MOEA’s
count but still limiting the variety and quantity of solutions
compared to MEPSOLA. However, NSGA-3 yields result
similar to MOEA, with a fixed count of 13 non-dominated
solutions. This similarity indicates a comparable limitation
in the diversity and range of solution space exploration.
In the context of the FON function, MEPSOLA outperforms
MOEA, NSGA-2, and NSGA-3 in terms of the NDS metric,

showcasing its ability to generate a vast and varied set of
Pareto-optimal solutions.

5) GENERATIONAL DISTANCE RESULTS
The GD measure evaluates the proximity of generated
solutions to the true Pareto front. In Fig. 4 (d), MEPSOLA
obtained GD interquartile values ranging from Q1 of
0.0041 to Q3 of 0.0048, with a median of 0.0043, indicating
consistently close approximation to the true Pareto front.
While in MOEA GD interquartile values ranging from
0.002 to 0.0025 and a median of 0.0023, suggesting less
consistent approximation. Furthermore, in NSGA-2 presents
a narrower range of GD interquartile values from Q1 of
0.0025 to Q3 of 0.0026 with a median of 0.0026, indicating
relatively consistent performance and slightly less compared
to MOEA.

The NSGA-3 results demonstrate the closest approx-
imation to the Pareto front with a median GD value
of 0.0009, reflecting tight convergence across runs. The
range of interquartile values from Q1 of 0.0009 to Q3 of
0.001 further confirm this consistent performance. Overall,
NSGA-3 exhibits the closest convergence to the Pareto front,
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FIGURE 5. Set coverage measure results for KUR function.

followed by MOEA, while MEPSOLA and NSGA-2 also
perform well, albeit with slightly wider ranges suggesting
marginally less tight convergence compared to NSGA-3.

D. KURSAWE FUNCTION (KUR) RESULTS
1) SET COVERAGE RESULTS
The analysis of the SC results for the KUR function,
as illustrated in Fig. 5 (a), shows thatMEPSOLA significantly
dominates the solutions provided by MOEA. The SC
interquartile values range from a Q1 of 0.23 to Q3 of
0.31, with a median of 0.23, indicating that a large number
of MEPSOLA’s solutions outperform MOEA’s. Conversely,
MOEA exhibits minimal dominance over MEPSOLA, with
interquartile values ranging from Q1 of 0.014 to Q3 of
0.023 and a median of 0.02, suggesting rare occurrences
where MOEA’s solutions surpass those of MEPSOLA.

In comparison MEPSOLA against NSGA-2 in the
Fig. 5(b), MEPSOLA displays some dominance, with SC
values extending from 0.04 to 0.21. A median SC of
0.12 and an interquartile range from Q1 of 0.07 to Q3 of

0.17 indicate that MEPSOLA’s solutions frequently cover
those from NSGA-2, albeit to a moderate extent. However,
NSGA-2 shows some dominance over MEPSOLA, with an
interquartile SC value of Q1 of 0.116 and Q3 of 0.227,
though with a moderate median of 0.13. Furthermore, the
comparison of MEPSOLA against NSGA-3 as shown in the
Fig. 5 (c), MEPSOLA’s solutions exhibit a dominance over
NSGA-3 median SC value of 0.08, slightly less dominance
compared to MOEA and NSGA-2. NSGA-3 demonstrates
limited dominance over MEPSOLA with a median SC of
0.03.

These SC outcomes for the KUR function reveal that
MEPSOLA’s solutions significantly outperform MOEA and
moderately surpass NSGA-3, while NSGA-2 exhibits only
minimal dominance over MEPSOLA.

2) HYPER VOLUME RESULTS
The results of the HV metric for the KUR function as
shown in Fig. 6 (a), highlight MEPSOLA exceptional per-
formance, presenting HV values ranging from a minimum of
5391.07 to a maximum of 18171.68. This range underscores
MEPSOLA’s capability to extensively cover the objective
space. The median HV of 9397.94 indicates that MEPSOLA
consistently produces solutions encompassing a significant
area of the space, confirmed by the interquartile range
from Q1 of 8693.74 to Q3 of 12604.38, demonstrating the
algorithm’s robust performance. In contrast, MOEA exhibits
considerably lower HV values, peaking at just 225.33, which
signals a very limited exploration of the objective space.
The median HV value of 217.76, coupled with a narrow
interquartile range extending from a Q1 of 217.43 and Q3
of 218.05, illustrates MOEA’s limited capability in covering
the space as MEPSOLA’s solutions do.

The NSGA-2 result presents moderate HV values, with
ranging from 1709.9 to 1743.53. The median HV of
1723.68 and a relatively narrow interquartile range from Q1
of 1718.39 to Q3 of 1729.16 indicate that NSGA-2 covers a
greater portion of the objective space than MOEA, yet it does
not reach the expansive coverage achieved by MEPSOLA.
Similarly, NSGA-3’s performance aligns more closely with
MOEA’s, displaying HV values from 194.57 to 198.73. The
median HV of 196.68 and interquartile values from Q1
of 196.32 to Q3 of 197.02 suggest that NSGA-3’s Pareto
fronts are also confined in scope, covering only a minimal
section of the objective space. In the analysis of the KUR
function, MEPSOLA markedly surpasses MOEA, NSGA-2,
and NSGA-3 in terms of hyper-volume. This demonstrates
MEPSOLA’s superior ability to generate solutions that
not only closely approach the true Pareto front but also
offer a comprehensive and diverse representation of optimal
solutions.

3) DELTA MEASURE RESULTS
In the Delta Measure results for the KUR function, depicted
in Fig. 6 (b), MEPSOLA demonstrates a notable spread in its
solution distribution, albeit with slight non-uniformity. The
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FIGURE 6. KUR function results.

median value of 1.107 suggests a generally broad and diverse
distribution. The interquartile range for Q1 of 1.076 and Q3
of 1.116 also indicates some non-uniformity but may signify
proficient exploration of the search space, which could be
interpreted alongside other measures. In contrast, MOEA’s
Delta values show a narrower scope, with an interquartile
range fromQ1 of 0.673 toQ3 of 0.691, and amedian of 0.679.
NSGA-2 exhibits a fair distribution, with a Delta median
value of 0.706. The interquartile range for Q1of 0.697 and Q3
of 0.719 suggests reasonable uniformity in solution spread.
On the other hand, NSGA-3 reveals the most narrowly
focused distribution among the compared algorithms, with a
median of 0.629. The quartile values for Q1 of 0.628 and Q3
of 0.63 indicate a highly concentrated distribution.

4) NUMBER OF NON-DOMINATED SOLUTIONS
In the NDS measure for the KUR function, MEPSOLA
demonstrates a robust ability to discover a wide array of non-
dominated solutions, as illustrated in Fig. 6 (c). The results
show a median count of 525.5 non-dominated solutions, with
an interquartile range stretching from Q1 at 450 to Q3 at
687.7, highlighting MEPSOLA’s consistent effectiveness in
identifying numerous optimal solutions. In contrast, MOEA
identifies only a small number of non-dominated solutions,

consistently capped at 13 across all statistical measures.
NSGA-2 maintains a steady count of 100 non-dominated
solutions across all statistical measures, indicating amoderate
exploration capability. Similarly, NSGA-3 mirrors MOEA
with a limited count of 12 non-dominated solutions across
all statistical measures, suggesting a constrained exploration
of optimal solutions. In the results for the KUR function,
MEPSOLA markedly surpasses MOEA, NSGA-2, and
NSGA-3 in identifying a broad spectrum of non-dominated
solutions.

5) GENERATIONAL DISTANCE RESULTS
In the GDMeasure results for the KUR function, as shown in
Fig. 6 (d), MEPSOLA shows a spectrum of GD values, with
the interquartile ranging from 0.0106 for Q1 to 0.0125 for
Q3, centering around a median value of 0.0111. This range
indicates that MEPSOLA’s solutions generally lie close to the
Pareto front.

In comparison, MOEA exhibits a broader range of GD
values, spanning fromQ1 of 0.0138 to Q3 of 0.0171. Notably,
the upper limit of this range is the highest among all the
algorithms. The median GD value for MOEA, at 0.0163,
suggests a slightly less consistent approximation to the Pareto
front compared to MEPSOLA. The NSGA-2 presents the
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lowest GD values, indicating a closer approximation to the
Pareto front than the others. The interquartile range from a
Q1 of 0.0064 to a Q3 of 0.0068, with the median at 0.0066,
reflects NSGA-2’s effectiveness in this regard. On the other
hand, NSGA-3’s GD values are generally higher than those
of NSGA-2. The median value of 0.0146, along with quartile
values of 0.0142 for Q1 and 0.0147 for Q3, suggests that
NSGA-3’s solutions are somewhat further from the Pareto
front compared to NSGA-2.

E. ZDT1 FUNCTION RESULTS
1) SET COVERAGE RESULTS
The SC measure results for the ZDT1 function, in Fig. 7 (a),
the result highlight MEPSOLA’s significant dominance over
MOEA. The interquartile range spans from Q1 at 0.923 to
Q3 andmedian values reaching 1, indicating that almost all of
MEPSOLA’s solutions dominate those ofMOEA. In contrast,
MOEA exhibits minimal dominance over MEPSOLA, with
most SC values at 0 and a maximum of only 0.0116,
reflecting almost negligible coverage over MEPSOLA’s
solutions.

Moving on to the comparison between MEPSOLA and
NSGA-2, as depicted in Fig. 7 (b), MEPSOLA again
demonstrates dominance, with a median SC of 0.73. The
interquartile range fromQ1 of 0.7025 toQ3 of 0.765 indicates
that a significant majority of MEPSOLA’s solutions are
superior to those of NSGA-2. However, NSGA-2 does exhibit
less dominance over MEPSOLA, albeit less obviously, with
an interquartile range from Q1 of 0.1726 to Q3 of 0.2154 and
a median of 0.1913.

In the results of MEPSOLA against NSGA-3, as shown
in Fig. 7 (c), MEPSOLA maintains strong dominance,
with identical median and quartile SC values at 0.7692,
demonstrating consistent and substantial coverage. In con-
trast, NSGA-3 shows the lowest level of dominance over
MEPSOLA, with a median SC of 0.0349. These SC results
for the ZDT1 function underscore MEPSOLA’s impressive
capability in consistently outperforming MOEA, NSGA-2,
and NSGA-3.

2) HYPER VOLUME RESULTS
The HV results for the ZDT1 function in Fig. 8 (a),
reveals MEPSOLA’s notable performance, with HV values
showcasing a median HV of 261.54. The interquartile range,
stretching from Q1 of 203.97 to Q3 of 367.28, indicates
MEPSOLA consistently generates Pareto fronts that cover a
substantial portion of the optimal set across different runs.
In contrast, MOEA exhibits limited HV performance, with
its highest HV value only reaching 60.51 and a median HV
of 32.98. The quartile values, ranging from Q1 at 31.66 to
Q3 at 40.16, suggest MOEA’s Pareto fronts are significantly
less effective in covering the objective space compared to
MEPSOLA.

For NSGA-2, the HV values are more consistent than
MOEA, but they still remain lower than those of MEPSOLA.

FIGURE 7. Set coverage measure results for ZDT1 function.

With a median HV of 241.663, NSGA-2 indicates a moderate
coverage of the objective space, with quartile values at Q1
of 241.24 and Q3 of 242.39. Conversely, NSGA-3 exhibits
the lowest HV value, with a median HV of 31.55, along with
quartile values of Q1 at 31.53 and Q3 at 31.56, indicating
NSGA-3’s Pareto fronts are the least effective in spanning
the objective space. These HV results for the ZDT1 function
underscore MEPSOLA’s superior capability in generating
Pareto fronts that not only approach the true Pareto front
but also span a broader and more significant portion of the
optimal set.

3) DELTA MEASURE RESULTS
The results of the deltameasure for the ZDT1 function, shown
in Fig. 8 (b), underscore MEPSOLA’s performance in evenly
distributing solutions along the Pareto front. With a median
value of 1.025 and quartile values of Q1 at 0.988 and Q3
at 1.049, MEPSOLA showcases a broad yet slightly varied
distribution along the Pareto front. In comparison, MOEA
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FIGURE 8. ZDT1 function results.

exhibits a slightly lower delta value than MEPSOLA, with
a median value of 0.8936. The quartile range spans from Q1
of 0.8558 to Q3 of 0.9835.

For NSGA-2 and NSGA-3, both algorithms demonstrate
lower Delta values. NSGA-2’s Delta values range from
0.6512 to 0.6939, with a median of 0.6663. Similarly, NSGA-
3 exhibits Delta quartile values from Q1 of 0.6669 to Q3 of
0.6673, with a median of 0.6671. Despite the slightly higher
Delta values, MEPSOLA’s overall performance in the ZDT1
function remains robust, evidenced by its strong outcomes in
SC, HV, and the NDS metrics.

4) NUMBER OF NON-DOMINATED SOLUTIONS
The NDS measure results for the ZDT1 function, shown
in Fig. 8 (c), highlight MEPSOLA’s strong performance,
with a median of 92.5, and the interquartile range, spanning
from Q1 at 86.25 to Q3 at 116.5, underscores MEPSOLA’s
consistent ability to identify a high number of quality
solutions. In contrast, MOEA exhibits significantly fewer
non-dominated solutions, with all statistical values notably
lower than MEPSOLA’s, ranging from a minimum of 11 to a
maximum of 13. The median and quartile values consistently
hover around 13, indicating that MOEA struggles to find a
diverse set of optimal solutions.

The NSGA-2 maintains a consistent count of 100 non-
dominated solutions across all statistics, surpassing MOEA’s
performance but falling short of MEPSOLA’s maximum
value.

Similarly, NSGA-3 also demonstrates a limited range of
NDS, akin to MOEA, with 13 NDS across all statistics,
indicating a constrained exploration of the solution space.
In the context of the ZDT1 function, MEPSOLA outperforms
MOEA, NSGA-2, and NSGA-3 in terms of the identified
NDS, showcasing its effectiveness in exploring the search
space and discovering a greater number of high-quality
solutions.

5) GENERATIONAL DISTANCE RESULTS
The GD results for the ZDT1 function, illustrated in
Fig. 8 (d), provide intriguing insights into the performance
of MEPSOLA compared to other algorithms. MEPSOLA
obtained a median GD value of 0.0263, with quartile values
of 0.0247 for Q1 and 0.0356 for Q3.

In contrast, MOEA displays a wider variation in GD
values, with a median GD value of 0.0711, notably higher
than that of MEPSOLA. The interquartile range spans from
0.0409 for Q1 to 0.1018 for Q3, indicating inconsistencies
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TABLE 4. The set coverage measure results for ZDT2, ZDT3 and ZDT6.

in MOEA’s performance, with certain runs deviating notably
from the Pareto front.

Conversely, NSGA-2 and NSGA-3 demonstrate low GD
values, signifying a more consistent proximity to the Pareto
front. NSGA-2 boasts a median GD of just 0.0004, while
NSGA-3’s median GD is 0.0008, both substantially lower
than those of MEPSOLA and MOEA.

F. ZDT2, ZDT3, AND ZDT6 FUNCTIONS RESULTS
1) SET COVERAGE RESULTS
The remaining results for ZDT2, ZDT3, and ZDT6 functions,
as illustrated in Table 4, starting with SC measure, the
results highlight the robust performance of MEPSOLA
in dominating the solutions of other competitors, MOEA,
NSGA-2, and NSGA-3. For the ZDT2 function, MEP-
SOLA demonstrates significant dominance over MOEA,
as indicated by the median SC value reaching 0.96154,
whereas MOEA exhibits no dominance over MEPSOLA.
This dominance is also observed, albeit to a lesser extent,
against NSGA-2 and NSGA-3, with median SC values of
0.11 and 0.15385, respectively, whereas themethods obtained
lower SC values with 0.01059 and 0.00152, respectively,
suggesting that a considerable proportion of MEPSOLA’s
solutions outperform those from NSGA-2 and NSGA-3.

In the ZDT3 function, MEPSOLA’s superiority continues
to excel, particularly evident in its total dominance over
MOEA, where both the median and maximum SC values
peak at 1. MOEA exhibits no dominance over MEPSOLA.
While against NSGA-2, it shows some advantage compared
to MEPSOLA with a median of 0.09011, whereas MEP-
SOLA obtained a 0.07 SC value. However, its performance

against NSGA-3 indicates significant but not absolute
dominance, as reflected by a median SC value of 0.19872,
compared to NSGA-3’s value of 0.0116.

In the context of the ZDT6 function, MEPSOLA’s
strength is further confirmed, showing strong dominance
over MOEA. This is underscored by SC values with a
minimum of 0.84615 and a median of 0.88462, compared
to MOEA’s median value of 0.00454. Against NSGA-2,
MEPSOLA’s dominance is marked, with a median SC value
of 0.69, whereas NSGA-2 only achieved 0.01149 median.
Additionally, MEPSOLA maintains a substantial edge over
NSGA-3, as indicated by the median SC value of 0.65385,
compared to NSGA-3’s value of 0.01149.

These findings collectively present MEPSOLA as a
effective algorithm in MOO, consistently outperforming
MOEA, NSGA-2, and NSGA-3 across various test functions.
The consistent and significant dominance of MEPSOLA in
the Set Coverage metric across majority of the three functions
not only underscores its efficacy in producing competitive
solution sets but also cements its position as a preferred
choice for tackling complex optimization challenges in the
multi-objective domain.

2) HV, DELTA, NDS, AND GD MEASURES RESULTS
The remaining results for the HV, delta, NDS, and GD
measures for the mathematical functions ZDT2, ZDT3, and
ZDT6 are illustrated in Table 5.

In the HV metric MEPSOLA exhibits notable superiority,
showcasing its robust capacity to cover an extensive area
of the objective space. For example, on the ZDT2 function,
MEPSOLA achieves a median HV value of 957.5, surpassing
MOEA’s median of 15.2, NSGA-2’s median of 192.5, and
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TABLE 5. The results for four metrics HV, 1, NDS and GD for three mathematical functions ZDT2, ZDT3 and ZDT6.

NSGA-3’s median of 25.2. This highlights the algorithm’s
effectiveness in approximating the true Pareto front. Sim-
ilarly, on ZDT3, MEPSOLA outperforms others with a
median of 1113.2, compared to MOEA’s median of 33.2,
NSGA-2’s median of 257.3, and NSGA-3’s median of 33.4.
Additionally, on ZDT6, MEPSOLA achieves the highest
median of 2862.7, demonstrating its superior performance
compared to other methods.

The Delta Measure results for ZDT2 and ZDT6 position
MEPSOLA in the third rank, surpassing MOEA. The results
exhibit a broader distribution of solutions across the Pareto
front compared to NSGA-2 and NSGA-3, which obtain
better uniformly distributed solutions. For ZDT2,MEPSOLA
achieves amedian value of 1.07969, and for ZDT6, it achieves
1.30178. However, MEPSOLA ranks last in ZDT3, with a
median value of 1.12535.

In terms of NDS, MEPSOLA consistently outperformed
its counterparts by discovering a larger quantity of optimal
solutions, indicative of a diverse Pareto front. Specifically,
within the ZDT2 function, MEPSOLA achieved a median
NDS of 513, a substantial increase compared to MOEA’s
13, NSGA-2’s 100, and NSGA-3’s 13. Similarly, in ZDT3,
MEPSOLA obtained a median of 486, followed by NSGA-
2 with 100, NSGA-3 with 13, and lastly, MOEA with a
median value of 12. In ZDT6, MEPSOLA achieved 442,
outperforming the other methods.

In the GD metric, MEPSOLA achieved commendable
results, ranking third in ZDT2, ZDT3, and ZDT6, with

TABLE 6. Overall average median of the measures across all function.

median values of 0.0017, 0.00123, and 0.05502, respectively.
These results demonstrate MEPSOLA’s ability to main-
tain closeness to the Pareto front, indicating near-optimal
convergence.

G. OVERALL RESULTS
In the overall results of measures across all functions as
shown in the Table 6, MEPSOLA demonstrates significant
superiority across various metrics compared to its com-
petitors. Notably, in Set Coverage measure, MEPSOLA
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TABLE 7. Solutions initialization complexity calculation.

TABLE 8. Exemplar selection complexity calculation.

TABLE 9. Tabu search for exemplar selection complexity calculation.

TABLE 10. Overall MEPSOLA complexity calculation.

achieves an average median of 0.7692, while MOEA lags far
behind at 0.006. Similarly, MEPSOLA outperforms NSGA-
2 and NSGA-3, with average median set coverage measures
of 0.3258 and 0.3226, respectively, compared to NSGA-
2’s 0.101 and NSGA-3’s 0.0207. SC results confirmed
that MEPSOLA has effectively explored and represented a
broader range of optimal solutions across multiple objectives.
In the HVmetric, MEPSOLA’s remarkable achievement with
an average median of 2541.32 surpassing each of in second
rank NSGA-2 of 542.01 followed by MOEA of 167.7 last
NSGA-3 of 160.9 HV results highlights its superiority in
covering a substantial portion of the Pareto front compared to
its counterparts. The NDS metric results further underscore
MEPSOLA’s dominance, with an average median value of
413.33. In contrast, MOEA, NSGA-2, and NSGA-3 exhibit
significantly lower values of 12.83, 100, and 12.83, respec-
tively, emphasizing MEPSOLA’s superior performance in
identifying non-dominated solutions. Furthermore, in terms
of the Delta measure and GD metrics, MEPSOLA maintains
efficiency with modest median values of 1.0771 for the Delta

TABLE 11. Parameters sensitivity for MEPSOLA in ZDT-1 function.

TABLE 12. Parameters sensitivity for MEPSOLA in FON function.

measure, and ranked third with a GD metric value of 0.0166.
In contrast, MOEA, NSGA-2, and NSGA-3 demonstrate
better values in Delta measure, with values 0.8698, 0.6869,
and 0.6420, respectively. While in Generational distance
the values of these methods 0.0471, 0.0019, and 0.0039,
respectively.

MEPSOLA’s superior performance in MOO scenario is a
direct result of its innovative methodology that incorporates a
multi-objective-aware criterion. This criterion is specifically
designed to address the complexities and trade-offs between
conflicting objectives effectively. MEPSOLA well employs
a multi-exemplar selection process, which facilitates a
concurrent balance between exploration and exploitation,
thereby enhancing its convergence capabilities as well the
diversity. Furthermore, the incorporation of Tabu search as
a conditional local search mechanism within the algorithm
for exemplar selection over a predetermined time frame
significantly improves search efficiency and solution quality.
By periodically updating the search strategy to circumvent
previously visited or ‘tabooed’ solutions, the algorithm is
able to escape local optima. This promotes exploration in
new and potentially more optimal regions of the solution
space. Such strategic application of Tabu search ensures
dynamic adaptation to the evolving landscape of the search
space, thereby improving the algorithm’s capacity to identify
high-quality, diverse solutions across multiple objectives.
Moreover, the employment of a smart initialization strategy
enhances the search effectiveness by ensuring that the
initial population encompasses a broad and representative
range of the solution space. This strategy prevents prema-
ture convergence on suboptimal regions, providing a solid
foundation for the algorithm to efficiently explore diverse
solutions.
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FIGURE 9. Parameters sensitivities for ZDT-1 function.

Furthermore, MEPSOLA’s superiority in SC, HV, and
the NDS, along with sensible results in Delta and GD
metrics. Further study for these measures should be made
to understand the performance of the proposed method.
The HV, quantifies the volume covered by the Pareto front,

offering a holistic measure that captures both diversity and
convergence [44]. SC complements HV by evaluating how
well the Pareto front covers the objective space, ensuring the
exploration of diverse solutions [48]. This dual focus on HV
and SC provides a nuanced understanding of the algorithm’s

125830 VOLUME 12, 2024



M. S. Noori et al.: Multi-Objective Multi-Exemplar Particle Swarm Optimization Algorithm

FIGURE 10. Parameters sensitivities for FON function.

performance in terms of both spread and representation.
NDS, with its focus on diversity, avoidance of clustering,
exploration of trade-offs, and robustness provision, emerges
as a valuable metric in MOO. It ensures a thorough
representation of the Pareto front, offering decision-making
flexibility for users and facilitating benchmarking of MOO
algorithms [49]. On the other hand, while Delta and GD are
valuable measures, but they have limitations in providing a
holistic view of the Pareto front. Delta focuses on specific
aspects, such as spread relative to a reference set, while
GD quantifies the average distance to the true Pareto front,
potentially overlooking overall spread [50]. This highlights
the need for a more comprehensive evaluation beyond
these specific aspects. By considering NDS alongside HV

and SC, a more well-rounded assessment of our algorithm
performance is achieved, encompassing overall quality and
diversity. This balanced approach enhances the understanding
of how MOO algorithms navigate various objectives and
trade-offs.

H. COMPLEXITY ANALYSIS
In this subsection, the computational complexity analysis of
MEPSOLA is evaluated. This multi-objective optimization
algorithm, based on a meta-heuristic approach, involves
multiple computational steps, each contribute to the overall
complexity.

The process of solutions initialization phase as illustrate in
Table 7, involving equal range sampling, Cartesian product
computation, and initialization of particle positions and
velocities. The most computationally intensive part here is
the Cartesian product due to an exponential complexity in the
number of decision variables.

Next, the phase of exemplar selection for particles as
demonstrated in Table 8, introducing a threshold-based
repetitionmechanism and a Tabu search for handling repeated
selections, adding complexity based on the number of Tabu
search iterations and neighborhood size.

Moreover, the conditional Tabu search further refines
this process, iterating until a stopping criterion is met,
as illustrated in Table 9.

Overall MEPSOLA algorithm complexity as shown in
Table 10, including updates particle positions, velocities,
costs, and exemplars, and continuously refining the reposi-
tory of non-dominated particles. The overall complexity of
the entire process combines these steps, with the main loop’s
complexity being the most significant due to its iterative
nature and the number of operations per iteration. The
final complexity reflects the combined effort of initializing
the population, running the main optimization loop, and
maintaining the repository of solutions. Based on the tables,
the overall complexity of MEPSOLA is given as:

O
(
T ·

(
popsize · (n+ C +M + E) + popsize2

)
+ n+ mn

+pop_size · n+ pop_size · C + popsize2 + pop_size · E
)

I. PARAMETER SENSITIVITY
In parameters sensitivity we evaluated MEPSOLA algorithm
and compared to the other benchmarks in different 8 scenarios
based on ZDT-1 mathematical function and six different
scenarios on FON mathematical function to evaluate the
effect on Pareto front shape, these evaluations help in under-
standing how each parameter influences on the algorithm’s
performance, the most sensitive parameters were chosen
that have direct impact on the performance of the proposed
algorithmwas the iteration of theMEPSOLA, population size
PoP, inertia weightW , and the acceleration parameter c. The
Table 11, illustrate the different scenarios parameters with the
original setting before these scenarios.
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From Fig. 9, it is observed that MEPSOLA performs
robustly in many scenarios, particularly in dominance and
Pareto front coverage. It suggests that initial parameter
settings (as in the original scenario) might be near-optimal for
MEPSOLA. The variation in performance across scenarios
from 1 to 8 indicates sensitivity to certain parameter
adjustments. Specifically, changes in the iteration count
and population size appear to impact performance more
significantly than changes in inertia weightW and the accel-
eration parameter c. NSGA-2 and NSGA-3 show varying
degrees of competition with MEPSOLA, with NSGA-3 often
providing competitive in some scenarios for set coverage or in
Delta Measures, indicating that for some parameter settings,
these algorithms might outperform MEPSOLA in uniform
distribution and the quality of solutions.

Further parameter sensitivity analysis conducted on FON
mathematical function on six scenarios as presented in
the Table 12, to assess the effect of these parameters
on the Pareto front shape in critical aspects like the diversity
the convergence and the solutions distribution.

The results in Fig. 10, for FON function sensitivity to
parameters reveals all scenarios were capable of producing
a fair enough Pareto front with high similarity with the true
Pareto. However, scenario 6 has produced the best solutions
distributions Pareto with the least number of populations
compare to 1and 4.

VI. CONCLUSION AND FUTURE WORKS
This article, introduces an innovative variant of MOPSO
named Multi-Exemplar Particle Swarm Optimization with
Local Awareness (MEPSOLA). MEPSOLA excels in solving
complex multi-objective optimization scenarios through
its innovative methodology, which incorporates a multi-
objective-aware criterion designed to address the complexi-
ties and trade-offs between conflicting objectives effectively.
MEPSOLA employs a multi-exemplar selection process,
striking a balance between exploration and exploitation to
enhance convergence capabilities and diversity. Additionally,
the integration of Tabu search as a conditional local search
mechanism significantly improves search efficiency and
solution quality. By dynamically updating the search strategy,
MEPSOLA can escape local optima and explore new,
potentially more optimal regions of the solution space. it also
addresses the issue of initialization sensitivity by incorpo-
rating equal sampling initialization enhancing enhance the
algorithm’s ability to effectively explore diverse regions of
the solution space.

We compared MEPSOLA’s performance against well-
established benchmarks in the field, including MOEA,
NSGA-2, and NSGA-3, across various mathematical func-
tions. The results demonstrate MEPSOLA’s superiority
across majority of the evaluation measures. The superiority
obvious in Set Coverage, showcasing dominance over all
benchmarks with an average median percentage dominance
across mathematical problems of 99.22%, 69%, and 93.58%,
respectively. Moreover, MEPSOLA achieves higher

hyper-volumes, with average percentage increases of 93.4%,
78.67%, and 93.66%, respectively.

MEPSOLA’s innovative methodology, which integrates a
multi-objective-aware criterion and a balanced exploration-
exploitation approach, significantly enhances convergence
capabilities and diversity. The incorporation of local search
further boosts search efficiency, allowing for the escape from
local optima and exploration of new regions. Comparative
evaluations consistently highlight MEPSOLA’s superiority
over benchmarks across various functions, showcasing its
adaptability and potential for integration with other fields.

Despite its promising outcomes, there is potential scope
for future investigation to explore MEPSOLA across dif-
ferent domains and its adaptability to a wider range of
real-world problems. Enhancing convergence consistency
through hyperparameter refinement could further improve
MEPSOLA’s performance. Future work may involve explor-
ing real-world applications such as feature selection and
integrating MEPSOLA with other optimization techniques to
provide deeper insights and advance the field.
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