

EVALUATION OF DIFFERENT TYPES OF MOROCCAN PHOSPHATE ROCK

ON PHOSPHORUS AND OTHER NUTRIENT UPTAKES BY OIL PALM (Electronic State)

OF DIFFERENT TYPES OF MOROCCAN PHOSPHATE ROCK

ON PHOSPHORUS AND SECULTIVISM SURVEY OF THE **EVALUATION OF DIFFERENT TYPES OF MOROCCAN PHOSPHATE ROCK ON PHOSPHORUS AND OTHER NUTRIENT UPTAKES BY OIL PALM (***Elaeis guineensis* **Jacq.) SEEDLINGS**

By

NORAKMAL KHAIRUANUAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2021

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

EVALUATION OF DIFFERENT TYPES OF MOROCCAN PHOSPHATE ROCK ON PHOSPHORUS AND OTHER NUTRIENT UPTAKES BY OIL PALM (*Elaeis guineensis* **Jacq.***)* **SEEDLINGS**

By

NORAKMAL BINTI KHAIRUANUAR

November 2021

Chair : Tan Ngai Paing, PhD Faculty : Agriculture

**EVALUATION OF DIFFERENT TYPES OF MORCOGAN PHOSPHATE ROOK AND AND THE ROOK AND ANNOUNTED ROOK AND A SUMPARE SO COLUPALM (Elsels

ON PHOSPHORUS SUND THER NUTRIENT UPTAKES BY OIL PALM (Elsels
** $guiineensis\, 3aca, 3 \text{ EEDLINGS}$ **

By
** Malaysia has a total of 5.87 million ha of oil palm planted area and it is the world's second largest palm oil producer. Malaysia has also subjected for 25.8% of world's palm oil production and 34.3% of world's oil palm exports. Phosphorus (P) is one of the most essential elements for plant growth but P deficiency is considered to be one of the major limitations for crop production on a global scale, in particular tropical acid soils. To fulfill the P demand for crop production, oil palm plantation in Malaysia has been relying heavily on the use of P fertilizer in particular phosphate rocks (PRs), due to its solubility in acid soils and lower cost. The reactivity of PRs used in Malaysia however are very low and will eventually affect the plant's performance. Recently, PRs from different geographical locations are being transported into the Malaysian market. Moroccan Phosphate Rock (MPR) reserves a large production of phosphate in the market which can be a good alternative to the previous PR deposit. Hence, the aim of this study was to investigate the growth performance of different oil palm genotype seedling applied with different types of MPRs. An incubation study was conducted to evaluate the release of P in acid soils. 700g of two different acid soils (Munchong and Bungor series soils) were incubated with three different types of MPR (Type A, B and C) at the rate of 350 mg P kg-1 of soil for 15 weeks. Egyptian Phosphate Rocks (EPRs) was used as a comparison. Apart from that, a field study was also conducted on oil palm seedlings. Different rates and types of PRs was being evaluated for its

manufactive interactions are observed in the solution of the content of the content of the content property and pair and (30%) and pair through profile the two contents of such as the previous experiment, three speech of M effectiveness on N, P, K, Ca and Mg uptake. Five different rates of MPR Type B (0, 50, 100, 200 and 400mg P kg-1) were applied two times; first and fourth month of 8 months throughout the study into 20kg of mixture of topsoil (70%) and sand (30%) and put into polythene bag with the size of 20'x20'. While for the different types of MPR, the experiment was conducted simultaneously with the previous experiment. Three types of MPR were used (Type A, B and C) at the rate of 100 mg P kg⁻¹ with EPR was chosen as a comparison. 4 months old of oil palm seedlings from two different genotypes (Felda *Yangambi* and Sime Darby *Avros*) were used. The treatments were carried out for 8 months and arranged in a Randomized Complete Block Design (RCBD) with 4replications. Meanwhile, a detection of organic acid from oil palm seedlings root exudates under P-stress condition was performed for the third study. As for the result, the changes of extractable P in soils treated with MPR is higher compared to the EPR. Munchong series soil showed a better soil property in term of nutrient absorption into the soils. The lower amount of Al oxides in Munchong soil series attributed to the higher changes of extractable P in soils. Meanwhile, the rates and types of PR application had a significant effect on the nutrient uptake of the oil palm seedlings. A positive correlation was obtained for all plant nutrients which indicate that application of PRs into the soil improves the nutrient in plant. The rate of PR application at 100 mg P kg⁻¹ was found to be the optimum rate for P uptake of the oil palm seedlings. As for different types of PR application, MPR Type B was found to be superior in providing P for plant uptake. Lastly, the detection of organic acid exuded by the plant roots under P- stress condition resulted in the identification of two organic acids; oxalate and citrate. All in all, these findings bring to the conclusion that MPR Type B at the rate of 100mg P kg⁻¹ has been identified as an optimum and affective amount in supplying sufficient P and others nutrient (N, K, Ca, and Mg) uptake to the oil palm seedlings. Hence, MPR Type B can be a good alternative to the current PR used in Malaysia.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENILAIAN PELBAGAI JENIS BATUAN FOSFAT MOROCCO TERHADAP PENYERAPAN NUTRIEN FOSFORUS DAN NUTRIEN LAIN OLEH ANAK POKOK KELAPA SAWIT *(Elaeis guineensis* **Jacq.)**

Oleh

NORAKMAL BINTI KHAIRUANUAR

November 2021

Pengerusi : Tan Ngai Paing PhD Fakulti : Fakulti Pertanian

PENILAIAN PELBAGAI JENIS BATUAN FOSFAT MOROCCO TERHADAP

PENYERAPAN NUTRIEN POSPORUS DAN NUTRIEN LAIN CUEH ANAK

POKOK KELAPA SANYIT (Eleeis guineensis Jusca)

Oleh

Oleh

Noramber 2021

Oleh

Noramber 2021

Copyright is Malaysia mempunyai sejumlah 5.87 juta hektar kawasan tanaman kelapa sawit dan ia merupakan pengeluar minyak sawit kedua terbesar di dunia. Malaysia juga tertakluk kepada 25.8% daripada pengeluaran minyak sawit dunia dan 34.3% daripada eksport kelapa sawit dunia. Fosforus (P) adalah salah satu unsur yang paling penting untuk pertumbuhan tumbuhan tetapi kekurangan P dianggap sebagai salah satu had utama untuk pengeluaran tanaman pada skala global, khususnya tanah asid tropika. Untuk memenuhi permintaan P bagi pengeluaran tanaman, ladang kelapa sawit di Malaysia telah banyak bergantung kepada penggunaan baja P khususnya batu fosfat(PR), kerana keterlarutannya dalam tanah berasid dan kos yang lebih rendah. Kereaktifan PR yang digunakan di Malaysia bagaimanapun adalah sangat rendah dan akhirnya akan menjejaskan prestasi loji itu. Baru-baru ini, batuan fosfat dari lokasi geografi yang berbeza sedang diangkut ke pasaran Malaysia. Maghribi Phosphate Rock (MPR) mempunyai pengeluaran besar fosfat di pasaran yang boleh menjadi alternatif yang baik kepada deposit batu fosfat sebelumnya. Oleh itu, matlamat kajian ini adalah untuk mengkaji prestasi pertumbuhan benih genotip kelapa sawit yang berbeza digunakan dengan jenis fosfat Maghribi yang berbeza. Kajian inkubasi dilakukan untuk menilai pembebasan fosforus dalam tanah asid. 700g dua tanah asid yang berbeza (tanah siri Munchong dan Bungor) diinkubasikan dengan tiga jenis MPR (Jenis A, B dan C) dengan kadar 350 mg P kg-1 tanah selama 15 minggu. EPR digunakan sebagai perbandingan. Selain itu, kajian lapangan juga dilakukan terhadap anak benih kelapa sawit. Kadar dan jenis PR yang berbeza telah dinilai untuk keberkesanannya terhadap kepekatan P, K, Ca dan Mg. Lima jenis MPR Type B (0, 50, 100, 200 dan 400 mg P kg-1) telah digunakan dua kali; bulan pertama dan keempat 8 bulan sepanjang kajian ke dalam 20kg campuran tanah atas (70%) dan pasir (30%) dan dimasukkan ke dalam beg polythene dengan saiz

Buuli Kelapa sawit beruta 4 bulan diti dua jenis general kelapa sawit beruta membuki kelapa sawit beruta kelapa terdirik diselukukan di banding membuki beruta beruta kelapa terdirik telapa sawit yang diselukukan di banding 20'x20 '. Walaupun untuk pelbagai jenis MPR, eksperimen ini dijalankan serentak dengan eksperimen sebelumnya. Tiga jenis MPR digunakan (Jenis A, B dan C) pada kadar 100 mg P kg-1 dengan EPR dipilih sebagai perbandingan. Buah kelapa sawit berusia 4 bulan dari dua jenis genotip (Felda *Yangambi* dan Sime Darby *Avros*) telah digunakan. Rawatan telah dijalankan selama 8 bulan dan disusun dalam reka bentuk blok lengkap rawak dengan 4replikasi. Sementara itu, pengesanan asid organik dari akar benih kelapa sawit yang dikeluarkan di bawah keadaan P-stress dilakukan untuk kajian ketiga. Hasilnya, perubahan P yang boleh diekstrak dalam tanah yang dirawat dengan MPR adalah lebih tinggi berbanding dengan EPR. Tanah siri Munchong menunjukkan sifat tanah yang lebih baik dari segi penyerapan nutrien ke dalam tanah. Perubahan amaun yang lebih rendah daripada Al oksida dalam siri tanah Munchong disebabkan oleh P yang boleh dieksekusi dalam tanah. Sementara itu, kadar dan jenis aplikasi PR mempunyai kesan yang signifikan terhadap kepekatan nutrien benih kelapa sawit. Kadar aplikasi PR pada 100 mg P kg-1 didapati kadar optimum untuk pengambilan P oleh anak benih kelapa sawit. Bagi pelbagai jenis aplikasi PR, MPR Jenis B didapati unggul dalam menyediakan P. Akhir sekali, pengesanan asid organik yang dipancarkan oleh akar tumbuhan di bawah keadaan P-tekanan mengakibatkan pengenalpastian dua asid organik; oksalat dan sitrat. Secara keseluruhannya, penemuan ini membawa kepada kesimpulan bahawa MPR Jenis B pada kadar 100mg P kg-1 telah dikenal pasti sebagai jumlah optimum dan berkesan dalam membekalkan serapan P dan nutrien yang lain (N, K, Ca dan Mg) yang mencukupi kepada anak benih kelapa sawit. Oleh itu, MPR Jenis B boleh menjadi alternatif yang baik kepada PR semasa yang digunakan di Malaysia.

ACKNOWLEDGEMENTS

All praises and thanks are to ALLAH SWT, the magnificent and merciful. I would like to thank Almighty ALLAH for His unfailing love, protection, guidance, wisdom and for provision of the able, effective, directional and courageous leadership that I worked under.

I avail myself of this opportunity to express my gratitude to my supervisor, Dr Tan Ngai Paing, chairman of my supervisory committee, for his dedicated effort, support, invaluable advice, intellectual guidance and encouragement in the conduct of my research and in the preparation of thesis.

would like to thus Maringhty ALLAP for this unitariality provision on the formulation and for provision of the lable, effective, directive, directional and courageous leadership that I worked under.

I avail may all f with Grateful thanks are also to the members of the supervisory committee, Prof Dr. Mohamed Hanafi Musa, Dr Adibah Md. Amin and Prof Dr. Zaharah Abd Rahman for their endless guidance and advise throughout my study. I truly appreciate their patience, passionate, and encouragement within the process of research and until finished writing this thesis.

Besides that, I would like to thank Ministry of Education (KPM) for sponsored my postgraduate studies in Universiti Putra Malaysia. A deepest gratitude to all the staff and laboratory assistant at the Department of Land Management, Faculty of Agriculture, UPM for all their advises and consultation time.

Not to forget, an endless thank to my family especially my beloved parents for their love, moral and financial supports. Thank you for being supportive and responsible.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Tan Ngai Paing, PhD

Senior Lecturer Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Mohamed Hanafi Musa, PhD

Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Adibah Binti Mohd Amin, PhD

Tan Ngai Paing, PhD

Sencuri yof Agriculture

Université Puite Malaysia

(Chairman)

Machamed Hanafi Musa, PhD

Projects of Agriculture

Machamed Hanafi Musa, PhD

Projects of Agriculture

Université Puite Machamed

Sencur Senior Lecturer Faculty of Agriculture Universiti Putra Malaysia (Member)

\mathcal{L} , we have the set of the **ZALILAH MOHD SHARIFF, PhD**

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 08 June 2023

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Therefore control is the traction of control in the traction of the control of the present and control of the theorem is the tractions. Illustrations in the theorem is the traction of the traction of the traction of the tr x written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
	- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Name and Matric No.: Norakmal Binti Khairuanuar

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

TABLE OF CONTENTS

LIST OF TABLES

14 Correlation coefficients (in bold) and probabilities for plant concentration in oil palm seedlings as affected by different types of PR application 15 RAE of Different Type of MPR Application Based on

55

56

- Plant P Uptake.
- 16 Composition of organic acids exuded by plant roots as affected by the presence of P

LIST OF FIGURES

LIST OF ABBREVIATIONS

- RCBD Randomized Complete Block Design
- SAS Statistical Analysis System
- SOA Sulphate of Ammonium
- USDA United States Department of Agriculture

CHAPTER 1

INTRODUCTION

In Mulaysia, oil paint industry plays an essential role in the agriculural
development and paint of production has been known to be one of the missin-
economic contributors of the country. According to the Department of S In Malaysia, oil palm industry plays an essential role in the agricultural development and palm oil production has been known to be one of the main economic contributors of the country. According to the Department of Statistics, Malaysia, in 2016, higher palm oil prices and improved export trade to RM77.85 billion, up from RM67.92 billion. Over the last 100 years, oil palm has been widely and extensively planted in South East Asia, primarily in Malaysia and Indonesia. Currently, Malaysia is the world's second-largest producer of the oil palm's produce after Indonesia. At present, Malaysia has a total of 5.845 million ha of oil palm planted area. The planted areas in Sarawak are 1.56 million hectares, whereas in Sabah, the planted areas are 1.55 million hectares. Meanwhile in Peninsular Malaysia, the planted areas are 2.70 million hectares or 46.6% (MPOB, 2018).

Phosphorus(P) is one of the crucial elements in plant growth and plays vital roles in plant's energy transfer and storage, and also in the growth of roots during the establishment and early growth stages. It is a structural unit of nucleic acids, nucleotides and coenzymes. (Raghothama and Karthikeyan, 2005; Fita et al., 2011). Meanwhile, as compared to other plants, oil palm requires a high amount of nutrients especially macronutrients including P and this adequate supply of nutrients will ensure the optimum growth and yield of the oil palm (Behera et al., 2016).

However, low amount of P nutrient is recognized to be one of the leading limitations for crop production on a global scale, in particular tropical acid. As for the tropical soils, in Malaysia for instant, they are normally acidic and inherently low in available P, which can be a major factor in declining crop production (Chien, 1995; Chien and Menon, 1995). This is due to the presence of oxides and hydroxides of Fe and Al in the acid soils (Owen, 1953; Pusharajah et al., 1977; Kalpage and Wong, 1978; Zaharah, 1979).

The most common practice to overcome this problem is by supplying phosphate fertilizer in the form of soluble P fertilizers; superphosphate, triphosphate and diammonium phosphate. However, the practice of using these fertilizers has been limited (Menon and Chien, 1990; Komolafe, 1997). Nevertheless, one of cheaper sources of P for direct application in tropical soil is phosphate rocks (PRs). The principal mineral in most PR sources is apatite, but these PRs vary extensively in their physical, chemical and crystallographic properties (Chien et al., 2010). Gholizadeh et al (2009) stated that to avoid the cost of doing field trials for the purpose of determining the PRs reactivity, establishing the solubility of PR in citiric acid could be a best formula in predicting their reactivity.

by containing are viactions of the the spin state of PR directly to the solid map of the spin state of the spin state of the scale map be a proportionally correspond to these photospherical tells to be use of the more sep Several studies have shown that the application of PR directly to the soils may be agronomically comparable to those phosphate fertilizers at the lower price and economically attractive substitute to the use of the more expensive soluble phosphate fertilizers (Khasawneh and Doll, 1978; Hammond et al., 1986; Chien et al., 1990; Chien and Friesen, 1992 Sale and Mokwunye, 1993). In Malaysia, due to this acid soil conditions, ground PR, especially PR has been widely and extensively used in plantation crops like oil palm and rubber since 1930's (Razman et al., 1999). Zin et al. (2001) also reported that direct application of PRs is very practical in correcting P deficiency in most Malaysian soil as Malaysian soil is highly weathered soil and inherently low in P. The use of ground PR also shows a positive result in liming as it has a high calcium content (Isenmila et al., 2006) and the residual effect of PR was found to be significant in acid soils for at least two to four years (Chan, 1981). Lee and Foong (2003) stated that in Malaysia, 30% of the total production cost of the fresh fruit bunches (FFBs) of oil palm is greatly attributed to the fertilizer cost. Thus, the use of appropriate fertilizer type and rate are crucial in maximizing FFB yields in order to reduce the fertilizer costs which further leads to economic benefits.

At present, a number of PR types have been used with different performance which will attribute to their reactivity. However, the reactivity of the current PRs used in the Malaysian agriculture are relatively low and this will eventually affect the performance of the plant. Morever, as PR is a finite resource and rapid rising demand of PR, several studies have cautioned that large phosphorus production could be reached (Déry and Anderson, 2007; Rosemarin et al.,2009; Cordell et al., 2009; Mórrígan, 2010; Mohr and Evans, 2013). Cordell et al. (2009) reported that world production could reach a maximum at an annual production of 203Mt of PR concentrate around the year 2033, which drive to a debate on whether a "peak phosphorus" was possible or not.

Hence, with a large reserve of Moroccan phosphate rock (MPR) in the market, it can be a good alternative to the previous phosphate rock. Therefore, this study aims to investigate the growth performance of different oil palm seedling genotypes with different types of MPR application. The specific objectives are:

1. To evaluate the release of P in acid soil after incubated with different types of MPR with time.

2. To evaluate the effect of different rates and types of PR application on N, P, K, Ca and Mg uptake by different oil palm seedlings genotypes.

3. To identify the organic acid exuded by roots of oil palm seedlings under P-stress condition

REFERENCES

- Abdel-Zaher, M.A., 2008. Physical and thermal treatment of phosphate ores—anoverview. Int. J. Miner. Process. 85, 59–84
- Anda, M., Shamshuddin, J., Fauziah, C.I. and Syed Omar, S.R. (2008). Mineralogy and factors controlling charge development of three Oxisols developed from different parent materials. Geoderma, 153, 153-167.
- Anderson, J. M., & Ingram, J. S. I. (Eds.). (1989). *Tropical soil biology and fertility* (p. 171). Wallingford: CAB international.
- Abdel-Zahe, M.A., 2008. Physical and fhemal textment at \overline{R} , 1008. Physical and fhemal textment in the matterial end for the state of the Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q., & Vivanco, J. M. (2013). Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolicrelated compounds predominantly modulate the soil microbiome. *Journal of Biological Chemistry*, *288*(7), 4502-4512.
	- Badri, D. V., Weir, T. L., Van der Lelie, D., & Vivanco, J. M. (2009). Rhizosphere chemical dialogues: plant–microbe interactions. *Current opinion in biotechnology*, *20*(6), 642-650.
	- Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. *Annu. Rev. Plant Biol.*, *57*, 233-266.
	- Bar-Yosef, B. (1991). Root excretion and their environmental effects: influence on availability of phosphorus. *Plant Roots, the Hidden Half*, 529-557.
	- Behera, S. K., Rao, B. N., Suresh, K., & Manoja, K. (2016). Soil nutrient status and leaf nutrient norms in oil palm (Elaeis guineensis Jacq.) plantations grown on southern plateau of India. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences*, *86*(3), 691-697.
	- Beyer, L and Bolter, M. (2000) Chemical and biological properties, formation, occurrence and classification of Spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). Catena 39, 95–119.
	- Birkhofer, K., T.M. Bezemer, J. Bloem, M. Bonkowski and S. Christensen *et al*.(2008). Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem., 40: 2297-2308.
- Brady, N.C. and R.R. Weil., (2010). Elements of the Nature and Properties of Soils. 3rd Edn., Pearson Educational International, Upper Saddle River, New Jersey, ISBN-13: 9780138002817, Pages: 614.
- Brady, N.C. and Weil, R.R. (2004). Elements of the Nature and Properties of Soils. New Jersey: Prentice Hall.
- Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. *Soil science*, *59*(1), 39-46.
- Caroline, H., & Micheal, R.,(2005). Acid soils. Retrieved from http://agriculture.vic.gov.au/agriculture/farm-management/soil-andwater/soils/acid-soils
- Brayl, NC. and Well, R.R. (2004). Eliments of the Nature and Properties

of Solis, New Jersey: Prentice Hall.

Bray, R. H., & Kurtz, L. T. (1985). Determination of total, organic, and

available forms of phosphorus in sai Chaparro, J. M., Badri, D. V., Bakker, M. G., Sugiyama, A., Manter, D. K., & Vivanco, J. M. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. *PloS one*, *8*(2), e55731.
	- Chien S H, Prochnow Luis I and Mikkelsen R, (2010) "Agronomic Use of Phosphate Rock for Direct Application" Better Crops vol. 94, no.4, pp.21-23.
	- Chien S.H. (1995) "Agronomic Evaluation of Various of Phosphate Rock for Direct Application. In Seminar on the Use of Reactive Phosphate Rock for Direct Application. Kuala Lumpur.
	- Chien, S. H., & Menon, R. G. (1995). Factors affecting the agronomic effectiveness of phosphate rock for direct application. *Fertilizer Research*, *41*(3), 227-234.
	- Chien, S.H., P.W.G. Sale and L.L. Hammond (1990). "Comparison of effectiveness of various Phosphate fertilizer product" In International Symposium on *Phosphorus Requirements for Sustainable Agriculture in Asia and Oceania.* IRRI. Los Banos. Philippines, pp.143-156
	- Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. *Global environmental change*, *19*(2), 292-305.
	- Corley, R. H. V., & Tinker, P. B. (2003). The climate and soils of the oil palm-growing regions. *The Oil Palm, Fourth Edition. Blackwell Science Ltd, Oxford, United Kingdom*, 53-88.
	- Corley, R.HV. (1976) PhySiological Aspect of Nutrient. Nedherla삊d : Elsewier Scientific Publishing Company.
- de Weert, S., Vermeiren, H., Mulders, I. H., Kuiper, I., Hendrickx, N., Bloemberg, G. V., ... & Lugtenberg, B. J. (2002). Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. *Molecular Plant-Microbe Interactions*, *15*(11), 1173-1180.
- Déry P, Anderson B. Peak phosphorus. Resilience 2007, Available from: http://www.resilience.org/stories/2007-08-13/peak-phosphorus
- Dodor, D. E. (2016). Relative agronomic effectiveness of some African rock phosphate fertilizers in an ultisol of Okinawa, Japan. *West African Journal of Applied Ecology*, *24*(2), 45–55.
- Emich, G.D., 1984. Phosphate rock. Ind. Miner. Rocks 2, 1017–1047.
- Fairhurst, T. & Härdter, R. (2003). Oil palm: management for large and sustainable yields. *Oil palm: management for large and sustainable yields.*
- Fita, A., Nuez, F., & Picó, B. (2011). Diversity in root architecture and response to P deficiency in seedlings of L. *Cucumis melo*Euphytica, 181, 323-339. http://dx.doi.org/10.1007/s10681-011-0432-z.
- Plant-Microboth Interactions. 15(11), 1173-1180.

Déry P., Moterson B. Peak phosphorus Resilience objetoires 2007-08-13/peak-phosphorus

Tub://www.resilience.org/stories/2007-08-13/peak-phosphorus

Dedor, D. E. (2016). Rel Fong, S.F. (1993) "Comparative Efficacy of Various PR on the Growth of Oil Palm Seedlin甛? Using Radio Isotop and Conventional Technique." Paper presented at PORIM International Palm Oil Congress : Update and Vision. Hotel Istana Kuala Lumpur Sept 20- 25, 1993
	- Fontes, M.P.F. and Weed, S.B. (1996). Phosphate adsorption by calys from Brazilian Oxisols: Relationships with specific surface area and mineralogy. Geoderma, 72, 37-51.
	- Fox, T. R. and Comerford, N. B. (1992). Low-molecular-weight organic acids in selected forest soils of the southeastern USA. - Soil Sci. Soc. Am. J.54: 1139-1144.
	- Furihata, T., Suzuki, M., & Sakurai, H. (1992). Kinetic characterization of two phosphate uptake systems with different affinities in suspensioncultured Catharanthus roseus protoplasts. *Plant and Cell Physiology*, *33*(8), 1151-1157.
	- George, T.S., Turner, B.L., Greogory, P.J., CadeMenun, B. J. and Richardson, A.E. (2006). Depletion of organic phosphorus from Oxisol in relation to phosphatase activities in the rhizosphere. European Journal of Soil Science, 57, 47-57.
- Gerke, J., Rdmer, W. and Jungk, A. (1994). The excretion of citric and malic acid by proteoid roots of Lupinus albus L.; effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere in samples of an oxisol and a luvisol. - Z. Pflanzenernähr. Bodenkd. 157: 289-294.
- Gharabaghi, M., Noaparast, M., & Irannajad, M. (2009). Selective leaching kinetics of low-grade calcareous phosphate ore in acetic acid. *Hydrometallurgy*, *95*(3-4), 341-345.
- Gholizadeh A, Ardalan M, Tehrani M M, Hosseini H M, Karimian N., (2009)."Solubility test in some phosphate rocks and their potential for direct application in soil", World Applied Sciences Journal vol.6, no.2, pp.182-190.
- Goh, K.J. and Chiew, P.S. (1995). Direct application of phosphate rocks to plantation tree crops in Malaysia. International Fertilizer Development Center (IFDC).
- Gomez, K. A., & Gomez, A. A. (1980). *Statistical procedures for agricultural research*. John Wiley & Sons.
- probable ritizoginere in surigies of un oxisol and a lavisol. Z.

Phlancenematir. Bodenkd. 157: 289-294.

Chrankonematic M. Nonparast, M., & itamsgiad, M. (2009). Selective leaching

linearise of Low-grade. Collimbation Graham, J. H., Leonard, R. T., & Menge, J. A. (1981). Membranemediated decrease in root exudation responsible for phorphorus inhibition of vesicular-arbuscular mycorrhiza formation. *Plant Physiology*, *68*(3), 548-552.
	- Guimaraes, R.C., Araujo, A.C., 2005. Reagents in igneous phosphate oresflotation. Miner.Eng. 18, 199–204.
	- Hardon, J J And Tan, G Y (1969). Interspecific hybrids in the genus Elaeis I and II. Euphytica, 18: 372-380.

Hartley, C. W. S. (1988) "*The Oil Palm*" Longman. England

- Hasset, J.L. and W.L. Bainwart (1992) *Soils and their environment*. New Jersey: Prentice Hall.
- Hoffland, E., J. A. Nelemans, and G. R. Findenegg.(1990) "Origin of organic acids exuded by roots of phosphorus stressed rape (Brassica napus) plants." In *Plant nutrition—physiology and applications*, pp. 179-183. Springer, Dordrecht.
- Holford I. C. R. (1997) Soil phosphorus: its measurement, and its uptake by plants. Soil Research 35, 227-240.
- Hutchinson, G. E. (1950). Survey of contemporary knowledge of biogeochemistry 3. The biogeochemistry of vertebrate excretion. *Bull. Am. Mus. Nat. Hist.*, *96*.
- IBSRAM (1985) Report of the Inaugural Workshop and Proposal for Implementation of the Acid Tropical Soils Management Network. International Board for Soil Research and Management, Bangkok. p 40.
- Isenmila, A. E., Omoti, U., & Oviasogie, P. O. (2006). Development of alternative, cheap, easily available and affordable fertilizers from local rock minerals for the palms. The Journey sofar. In NIFOR Seminar (pp. 1-20).

Jasinski, S. M. (2007). Phosphate Rock. USGS, pp. 120-121.

- Jones, D. L. (1998). Organic acids in the rhizosphere–a critical review. *Plant and soil*, *205*(1), 25-44.
- Jouannic, S., Argout, X., Lechauve, F., Fizames, C., Borgel, A., Morcillo, F., ... & Tregear, J. (2005). Analysis of expressed sequence tags from oil palm (Elaeis guineensis). *FEBS letters*, *579*(12), 2709-2714.
- Kalpage, F.S.C.P. and Wong, H. H. (1978) "Studies on Phosphorus in Malaysia Soils : 1. Characterization of Soil P." M alAppl.Biol. 7(1):73- 80.
- ISBRAM (1985). Report of the hangest of the Cause of the Cause of the Cause of the Constitution of the Acid Tropical Sols Management, Bangkok, P

Henmindonal Boord for Soli Research and Management, Bangkok, P

Henmindonal Kamilova, F., Lamers, G., & Lugtenberg, B. (2008). Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. *Environmental microbiology*, *10*(9), 2455- 2461.
	- Lan, M., Comerford, N. B., & Fox, T. R. (1995). Organic anions' effect on phosphorus release from spodic horizons. *Soil Science Society of America Journal*, *59*(6), 1745-1749.
	- Le, P. T. T., & Boyd, C. E. (2012). Comparison of phenate and salicylate methods for determination of total ammonia nitrogen in freshwater and saline water. *Journal of the world aquaculture society*, *43*(6), 885- 889.
	- Lehr, J. R. (1967). Crystallographic properties of fertilizer compounds. *Chemical engineering bulletin*.
	- Ling, N., Raza, W., Ma, J., Huang, Q., & Shen, Q. (2011). Identification and role of organic acids in watermelon root exudates for recruiting

Paenibacillus polymyxa SQR-21 in the rhizosphere. *European Journal of Soil Biology*, *47*(6), 374-379.

- Lynch, J. (1995). Root architecture and plant productivity. *Plant physiology*, *109*(1), 7.
- McDowell, R., A. Sharpley, P. Brookes and Poulton, P.(2001). Relationship between soil test phosphorus and phosphorus release to solution. Soil Sci., 166: 137-149.
- McHaffie, I. W., & Buckley, R. W. (1995). Industrial minerals and rocks of Victoria. Geological Survey Report 102. *Energy and Minerals Victoria*.

McKelvey, V. E. (1967), Phosphate deposits: U.S. Geol. Survey Bull. 1252-D, p. D1-D21.

- Mench, M. and Martin, E.(1991). Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. - Plant Soil132: 187-196.
- Millet M, Wortham H, Sanusi A and Mirabel P 1997 Low molecular weight organic acids in fogwater in an urban area: Strasbourg (France). Sci. Tot. Env. 206, 57–65.
- Mohr, S., & Evans, G. (2013). Projections of future phosphorus production. *Philicacom*, *2013*.
- Mórrígan, T. (2010). Peak Phosphorus: A Potential Food Security Crisis. *University of California, Santa Barbara*.
- MPOB (2018). Malaysian Oil Palm Statistics 2017. 37th ed., MPOB, Bangi. 205pp.
- Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. *Analytica chimica acta*, *27*, 31-36.
- Lynch, J. (1995). Root and heater and plant productivity. Plant

MoDowell, R., A. Sharpley, P. Brookes and Poutino, P. (2001). Relationship

between soll fiels (1997). Prosphenus and phosphorus release to solution.

Soll Nagi, J., Ahmed, S. K., & Nagi, F. (2008). Palm biodiesel an alternative green renewable energy for the energy demands of the future. In *International Conference on Construction and Building Technology, ICCBT* (pp. 79-94).
	- Ng SK (1986) Phosphorus nutrition and fertilisation of oil palm. Oleagineux 41:307-313
	- Ng, S. K., Hardter, R., & von Uexkull, H. (2003). *Botanical aspects for the oil palm relevant to crop management* (No. L-0515). PPI.
- Nietupski, M., P. Sowinski, W. Sadej and A. Kosewska, 2010. Content of organic C and pH of bog and post-bog soils versus the presence of ground beetles Carabidae in Stary Dwor near Olsztyn. J. Elementol., 15: 581-591.
- Ohwaki, Y., & Hirata, H. (1992). Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. *Soil Science and Plant Nutrition*, *38*(2), 235-243.
- Olsen, S.R., Cole, C.V., Watanabe, F.S. & Dean, L.A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939, US Government Printing Office, Washington DC
- Omoti, U. (1989). Fertilizer use economy in the oil palm in Nigeria through nutrition recycling. Proceeding of the International Conference on Palm and Palm Products, NIFOR 21st – 25th November, pp. 218- 231.
- Owen, G. (1947). Retention of phosphates by Malayan soils. I. The nature of phosphate retention in different soil types. *J. Rubber Res. Inst. Malaya*, *12*, 1-26.
- Owen, G. (1953) "Deten tion of Available Nutrients in Malayan Soils," J. Rubb.Res. Inst Malaya. 14: 109-120
- Chwaki, Y., & Hirala, H. (1992). Differences in carboxylic acid exudation

contents in pant itssues and prospholiple level in roots. Sol Science

contents in pant itssues and prospholiple level in roots. Sol Science

Cont Pearse, S. J., Veneklaas, E. J., Cawthray, G., Bolland, M. D., & Lambers, H. (2006). Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere. *New Phytologist*, *169*(3), 515-524.
	- Phillips, R. P., Erlitz, Y., Bier, R., & Bernhardt, E. S. (2008). New approach for capturing soluble root exudates in forest soils. *Functional Ecology*, *22*(6), 990–999.
	- Pohlman, A. A. and McColl, J. G. (1986). Kinetics of metal dissolution from forest soils by soluble organic acids. J. Environ. Qual. 15, 86–92.
	- Raghothama, K.G. and Karthikeyan, A.S. (2005). Phosphate acquisition. Plant and Soil, 274, 37-49.
	- Rajan S S S, Gillingham A G O, O'Connar, M B, Percival N A and Gray M G., (1987) "Ground phosphate rocks as fertilizers for pastures" In : The use of reactive phosphate rocks and their derivatives as fertilizers. Ed. by White, R. E. and Currie, L. D. Occassional Report No. 1, Massey University, Palmerston North, New Zealand, pp .78-83.
- Rajan, S S S, Watkinson J H and Sinclair A G., (1996) "Phosphate rocks for direct application to soils" Advances in Agronomy, vol.57, pp. 77- 159
- Razman, A. R., Mohd, H. T., Ooi, L. H., & Tang, M. K. (1999). Fertiliser requirements and practices of the plantation industry in Malaysia. *Agro-Chemicals News in Brief*, *22*(4), 31-38.
- Rosemarin A, De Bruijne G, CaldwellI (2009) Peak phosphorus: the next in conve-nient truth. The Broker; Available from:http://www.thebrokeronline.eu/Articles/Peak-phosphorus
- Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Rootsecreted malic acid recruits beneficial soil bacteria. *Plant physiology*, *148*(3), 1547-1556.
- Ryan P R, Delhaize E and Jones D L 2001 Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 527–560
- Sallade, Y.E. and Sims, J.T. (1997). Phosphorus transformations in the sediments of Delaware's agricultural dranageways: II Effect of reducing conditions on phosphorus release. Journal of Environmental Quality, 26, 1579-1588.
- Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). *Update on Phosphorus Uptake Phosphorus Uptake by Plants: From Soil to Cell*.
- Schollenberger, C. J., & Simon, R. H. (1945). Determination of exchange capacity and exchangeable bases in soil—ammonium acetate method. *Soil Science*, *59*(1), 13-24.

Schorr, M. and Lin, J. J. (1997). Industrial Minerals. Ind. Miner. 355, 61.

Schultes, R E (1990). Taxonomic nomenclature and ethnobotanic notes on Elaeis. Elaeis, 2: 172-187.

Shamshuddin, J., & Fauziah, C. I. (2010). Weathered tropical soils: the ultisols and oxisols. UPM Press, Serdang.

- Raman, A. R., Mohd, H. T., Ooi, L. H., & Tang, M. K. (1999). Fertiliser requirements and proceduces of the plantition industry in Music Concernent and proceduces of the plantitic metal from this power metallity (2009). Pea Shamshuddin, J., Che Fauziah, I. and Sharifuddin, H.A.H. (1991). Effects of limestone and gypsum application to a Malaysian Ultisol on soil solution composition and yields of maize and groundnut. Plant and Soil, 134, 45-52.
	- Shamshuddin, J., Sharifuddin, H.A.H. and Bell, L.C. (1998). Longevity of magnesium limestone applied to an Ultisol. Communications in Soil Science and Plant Analysis, 29, 1299-1313.
- Sharpley, A., Foy, B., & Withers, P. (2000). Practical and Innovative Measures for the Control of Agricultural Phosphorus Losses to Water: An Overview. *Journal of Environment Quality*, *29*(1), 1.
- SIRIM. (1995) Method for the determination of phosphorus. In The Analysis of Fertilizers, Part 4; Malaysian Bureau of Standards: Kuala Lumpur, Malaysia
- Sklodowski, J., 2009. Interpreting the condition of the forest environment with use of the SCP/MIBmodel of carabid communities (Coleoptera: Carabidae). Baltic J. Coleopterol., 9: 89-100.
- Sui, Y., M.L. Thompson and C.W. Mize, 1999. Redistribution of biosolidsderived total phosphorus applied to a Mollisol. J. Environ. Q., 28: 1068-1074.
- Syahputra, M. E. (1997). Comparative Efficacy Of Various Sources And Rates Of Phosphate Rocks To Oil Palm Seedlings. *MSc Thesis, Universiti Putra Malaysia*.
- Tan, N. P., Zaharah, A. R., Akma, A. S. N., & Jamaluddin, N. (2010). Evaluating the variability of Gafsa phosphate rock uptake by oil palm genotypes at nursery stage. *Editorial Board*, *33*(2), 223-231.
- Tessens, E. and Shamshuddin, J.(1983) Quantitative Relationship Between Mineralogy and Properties of Tropical Soils. UPM Press, Serdang, Selangor, Malaysia. p 190.
- Turner, P. D., & Gillbanks, R. A. (1974). Oil palm cultivation and management.
- Ullrich-Eberius, C. I., Novacky, A., & Van Bel, A. J. E. (1984). Phosphate uptake inLemna gibba G1: energetics and kinetics. *Planta*, *161*(1), 46-52.
- Van Kauwenbergh, S. J. (2010). World phosphate rock reserves and resources (p. 48). Muscle Shoals: IFDC.
- SIRM. (1995) Metrical for the determination of phosphorus. In The Internation of the SCMM and the Umpur, Mathysia Breadway, and the SCMM Since Sixteen Veneklaas, E. J., Stevens, J., Cawthray, G. R., Turner, S., Grigg, A. M., & Lambers, H. (2003). Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. *Plant and Soil*, *248*(1-2), 187-197.
	- Wilson, G.V., Rhoton, F. E. and Selim, H.M. (2004). Modeling the impact of ferrihydrite on adsorption-desorption of soil phosphorus. Soil Science, 169, 271-281.
- Withers, P.J.A., A.C. Edwards and R.H. Foy. (2001). Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use Manage., 17: 139-149.
- Wouterlood, M., Cawthray, G. R., Scanlon, T. T., Lambers, H., & Veneklaas, E. J. (2004). Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. *New Phytologist*, *162*(3), 745-753.
- Zaharah, A. R., Zulkifli, H., & Sharifuddin, H. A. H. (1996). Evaluating the efficacy of various phosphate fertiliser sources for oil palm seedlings. *Nutrient Cycling in Agroecosystems*, *47*(2), 93-98.
- Zaharah, A.R. and Sharifuddin, H.A.H. (1979). Residual effect of applied phosphates on performance of Hevea brasiliensis and Pueraria Phaseoloides. Journal of Rubber Research Institute Malaysia, 25(3), 101-108.
- Zaharah, AR. (1979) "Phosphate Adsorption by Some Malaysia Soil." Pertanika 2(2): 78-83
- Zhang, F. S., Ma, J., & Cao, Y. P. (1997). Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raghanus satiuvs L.) and rape (Brassica napus L.) plants. *Plant and Soil*, *196*(2), 261-264.
- Wedderiord. M., Cawthray, G. R., Scanson, T. T., Lambers, H., & Venelckiae, E. J. (2004). Carologyine contrations in the computation in the principal ratios disting (absolute contration) in the membershinder in the relatio Zin, Z. Z., Foong, S. F., Jamaludin, N., Lee, C. T., Hamdan, A. B., Tarmizi, A. M., & Khalid, H. (2001). Evaluation of various sources of phosphate fertilizer for mature oil palm in Peninsular Malaysia. In *Cutting-edge technologies for sustained competitiveness: Proceedings of the 2001 PIPOC International Palm Oil Congress, Agriculture Conference, Kuala Lumpur, Malaysia, 20-22 August 2001* (pp. 272-281). Malaysian Palm Oil Board (MPOB).

APPENDICES

Appendix 1 :

Depending Variable : Bray II Extractable P

		Appendix 1 :		
The Release of P in Acid Soil After Incubated with Different Types of MPR		With Time		
Depending Variable : Bray II Extractable P				
Source	DF		Type III SS Mean Square F Value Pr > F	
Soil	1	22747.3563	22747.3563	11.60 0.0010
Type	3	15968.5041	5322.8347	2.71 0.0498
Time		7 123896.9778	17699.5683	9.02 <.0001
Rep	2	158.6459	79.3229	0.04 0.9604
Soil*Type	3	1630.7689	543.5896	0.28 0.8418
Soil*Time	7	38562.5502	5508.9357	2.81 0.0111
Type*Time	21	44296.2761	2109.3465	1.08 0.3893
Error	86	168699.2334	1961.6190	
Corrected Total 130 432494.4708				
Depending Variable : Munchong series soils				
Source of variation DF Sum Square Mean Square F Value Pr > F				
Type	3	4613.6837	1537.8946	0.64 0.5963
Time		7 135855.9042	19407.9863	8.03 < 0001
Rep	$\overline{2}$	2293.1333	1146.5667	0.47 0.6259
Type*time	21	44457.6371	2117.0303	0.88 0.6191
Error	39	94286.8665	2417.6120	
Corrected Total		72 289443.8445		
Depending Variable Bungor series soils				
Source of variation DF Sum Square Mean Square F Value Pr > F				
Type		3 15248.35562	5082.78521	3.39 0.0344
Time	7°	35914.33012	5130.61859	3.42 0.0111

Depending variable: Olsen's Extractable P

Depending variable: Olsen Munchong soil series

Depending Variable Bungor series soils

Depending variable: pH Munchong soil series

Depending variable: pH Bungor soil series

** Values followed by a different letter (ab) in a column indicate that means are significantly different between different types of phosphate rock within each week while values without letter indicate that means are not significantly different (P<0.05). Data are mean ± standard deviation

** Values followed by a different letter (ab) in a column indicate that means are significantly different between different types of phospahte rock within each week while values without letter indicate that means are not significantly different (P<0.05). Data are mean ± standard deviation.

The result of soil pH on Munchong and Bungor series soils.

** Values followed by a different letter (ab) in a column indicate that means are significantly different between different types of phospahte rock within each week while values without letter indicate that means are not significantly different (P<0.05). Data are mean ± standard deviation.

Appendix 2.

The Effect of Different Rates and Types of PRs application on N, P, K, Ca and Mg Uptake by Different Oil Palm Genotypes

Effect of Different Rate of PR Application on Dry weight Source of variation DF Sum Square Mean Square F Value Pr > F Gen 1 1682.8989 1682.8989 0.42 0.5224 **Rate** 4 197840.4276 49460.1069 12.22 <.0001 **Block** 3 52707.9090 17569.3030 4.34 0.0092 **Gen*Rate** 4 58577.3407 14644.3352 3.62 0.0124 **Gen*Block** 3 12158.6194 4052.8731 1.00 0.4011

Rate*Block 12 83463.3996 6955.2833 1.72 0.0953

Error 44 178055.1075 4046.7070

Corrected Total 71 558410.6400

Effect of Different Rate of PR Application on P uptake

Effect of Different Rate of PR Application on K uptake

Effect of Different Rate of PR Application on Ca uptake

Effect of Different Rate of PR Application on Mg uptake

Effect of Different Rate of PR Application on Bole Diameter

Effect of Different Rate of PR Application on SPAD Meter

Effect of Different Rate of PR Application on Plant Height

Effect of Different Type of PR on Dry Weight

Effect of Different Type of PR on N uptake

Effect of Different Type of PR on K uptake

Effect of Different Type of PR on Ca uptake

Effect of Different Type of PR on Mg uptake

Effect of Different Type of PR on Plant Height

Effect of Different Type of PR on Bole Diameter

Effect of Different Type of PR on SPAD Meter

BIODATA OF STUDENT

Painang She began the primary school in Selocial Keckupaca Felix Methods
in 1999. Later she extended her secondary education in Selocial Methods
recognite CoDS She furthered her secondary education of Agricultural Science Norakmal Binti Khairuanuar was born on 1st of March 1992 in Kuantan, Pahang. She began her primary school in Sekolah Kebangsaan Felda Neram 1 in 1999. Later she extended her secondary education in Sekolah Menegah Kebangsaan Lembah Bidong (LeBEST) in 2005 and completed her SPM in 2009. She furthered her study in Foundation of Agricultural Science for one year at Universiti Putra Malaysia and continued with her Bachelor Degree in Agricultural Science. She obtained her Bachelor Degree in 2015 and straighforward enrolled to her Master Degree study majors in Soil Science at Department of Land Management, Faculty of Agriculture, UPM with the scholarships from MyMaster by Kementerian Pelajaran Malaysia (KPM). During her study period, she has participated as poster presenter in 10th International Symposium on Plant-Soil Interactions at Low pH (25-28 June 2018).

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : <u>Second Semester 2022/2023</u>

TITLE OF THESIS / ROBOCT REPORT :

EVALUATION OF DIFFERENT TYPES OF MOROCCAN PHOSPHATE ROCK ON

PHOSPHORUS AND

-
-

(Signature of Student) New IC No/ Passport No.: (Signature of Chairman of Supervisory Committee) Name:

Date:

Date:

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]