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Predicting wheat yield from 2001 
to 2020 in Hebei Province 
at county and pixel levels based 
on synthesized time series images 
of Landsat and MODIS
Guanjin Zhang 1,2, Siti Nur Aliaa Binti Roslan 1*, Helmi Zulhaidi Mohd Shafri 1, Yanxi Zhao 3, 
Ci Wang 4 & Ling Quan 2

To obtain seasonable and precise crop yield information with fine resolution is very important for 
ensuring the food security. However, the quantity and quality of available images and the selection 
of prediction variables often limit the performance of yield prediction. In our study, the synthesized 
images of Landsat and MODIS were used to provide remote sensing (RS) variables, which can fill 
the missing values of Landsat images well and cover the study area completely. The deep learning 
(DL) was used to combine different vegetation index (VI) with climate data to build wheat yield 
prediction model in Hebei Province (HB). The results showed that kernel NDVI (kNDVI) and near-
infrared reflectance (NIRv) slightly outperform normalized difference vegetation index (NDVI) in yield 
prediction. And the regression algorithm had a more prominent effect on yield prediction, while the 
yield prediction model using Long Short-Term Memory (LSTM) outperformed the yield prediction 
model using Light Gradient Boosting Machine (LGBM). The model combining LSTM algorithm and 
NIRv had the best prediction effect and relatively stable performance in single year. The optimal 
model was then used to generate 30 m resolution wheat yield maps in the past 20 years, with higher 
overall accuracy. In addition, we can define the optimum prediction time at April, which can consider 
simultaneously the performance and lead time. In general, we expect that this prediction model can 
provide important information to understand and ensure food security.
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Food security is related to many important issues (e.g., the stability of society and economy), which is very 
important for the  county1,2. Crop yield can affect the overall supply chain in the agricultural economy, which is 
closely related to food  security3,4. Crop growth estimation and yield prediction are helpful to formulate reasonable 
management measures for farmers to ensure the stability of the grain  market5. Wheat is the main grain crops in 
China, and the supply of wheat is vital to the stability of food  market6,7. Therefore, to obtain timely and accurate 
wheat yield information is an important part of ensuring food security.

Surface observation method can obtain the most accurate crop yield information. However, the method is 
time-consuming and costly, and it is difficult to apply in the large level  areas8. Satellite images can provide plenty 
of information about crop growth and yield in large area from the variables such as vegetation index (VI) and 
soil moisture (SM)9,10. The correlation of variables and crop yield can be used to build yield prediction  model11. 
Among them, NDVI is the most widely used remote sensing (RS)  variable12,13. It is important for the accuracy 
of yield prediction model to select the optimal RS  variable14. The solar-induced chlorophyll fluorescence (SIF) 
is a reemission of energy from plants within the wavelengths ranging from 600 to 800 nm, which has been used 
as a proxy of  photosynthesis15. The SIF data holds great potential in predicting crop  yield16. The SIF data has 
higher accuracy in the prediction of crop yield as compared with NDVI and  EVI17. Therefore, SIF products have 
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been applied to predict crop yield in many  studies18,19. However, the spatial resolution of most SIF products are 
generally  coarse20. This limits the application of SIF images in obtaining crop yield information with fine spatial 
resolution. Badgley et al.21 found that near-infrared reflectance (NIRv) processed by theoretical derivations can 
be as the effective substitution of SIF. In some studies, NIRv has been used to assess crop  yield22,23. On the other 
hand, there is stronger correlation between emerging kernel NDVI (kNDVI) and some independent products 
(e.g., SIF) than NDVI and  NIRv24. Amin et al.25 found that kNDVI outperforms NDVI in prediction precision 
and timeliness. The selection of optimal RS variable is an issue that cannot be ignored in crop yield prediction. 
However, there have been no studies to compare the capacity of emerging VIs in the yield prediction.

Linear regression algorithm is the most generally used statistical algorithm for building yield prediction 
 model26,27. However, considering the large spatial heterogeneity of meteorological conditions and management 
measures in large-level region, the respond of crop to external environment conditions is  nonlinear28–30. This 
increases the uncertainty of yield prediction model. Compared to linear regression algorithm, machine learning 
(ML) can capture the nonlinear respond of crop to environment variables in yield  prediction31–33. Deep learn-
ing (DL) model is the more advanced ML model that transform raw input data over stacked nonlinear layers to 
improve model  performance34–36. Among them, long short-term memory (LSTM) has wide application and better 
performance in yield prediction  researches12,37,38. However, ML and DL have a large demand for training samples, 
and it is costly to obtain enough data samples in the large  region7,39. Many studies have used statistical yield data 
and ML algorithms to predict different crop yield at county  level40–42. Nevertheless, the level inconsistency will 
affect the stability of the model when the model is used to crop yield prediction at pixel  level6,43. Therefore, to 
develop a robust yield prediction model at multi-level is a challenging issue, especially in the dominant region 
of peasant economy.

Moreover, long-term high resolution crop yield data is helpful to exploring the effects of climate change on 
agricultural  production7,44. The satellite images from Landsat can cover past decades. However, due to the limita-
tions of revisit period and rainy weather conditions, it is difficult to obtain high-quality time series images from 
Landsat during crop growth  period45. Sentinel-2 can only provide RS images with higher temporal and spatial 
resolution after 2015. On the other hand, MODIS can provide high temporal resolution satellite images after 
2000, but with low spatial resolution. Therefore, the integration of satellite images from Landsat and MODIS has 
great potential in studying time series change of crop yield.

This study aims to: (1) reconstruct time series images with high spatial resolution by integrate Landsat and 
MODIS satellite images; (2) compare the effects of NDVI and emerging VIs in yield prediction; (3) develop yield 
prediction model to obtain robust prediction at county level and pixel level.

Data and research methods
Study area
Hebei Province (HB) is located in North China Plain (NCP), which is the study area in our study (Fig. 1). The 
plain is concentrated in the southeast of Hebei Province, and the west and north of HB are mainly mountainous. 
The crops planted in the plain of HB include wheat, maize and cotton. The major cropping system is double-
cropping system of winter wheat-summer maize, and wheat is usually planted in late September or early October 
and harvested in late May or early  June46.

Data
The data mainly include satellite data, climate data, statistics yield data at county level and observed yield data 
at site level.

Satellite data
In this study, we selected three VIs to build the yield prediction model, including NDVI, kNDVI and NIRv. We 
can extract the VIs during 2001–2020 from both Landsat and MOD09A1 products. Among them, the temporal 
and spatial resolution of Landsat images were 16 d and 30 m, while the temporal resolution and spatial resolution 
of MOD09A1 images were 8 d and 500 m. The formulas are as follows:

where RED and NIR represent red band, near infrared band, respectively.

Climate data
The five climate variables was selected as auxiliary data to build the yield prediction model, including precipita-
tion (Pr), maximum temperature (Tmax), minimum temperature (Tmin), vapor pressure deficit (VPD) and soil 
moisture (SM). The above climate data from 2001 to 2020 are obtained from TerraClimate dataset (the temporal 
resolution and spatial resolution were monthly and ~ 4 km)47, which can be download in the GEE platform. The 
dataset has the advantages of low error and high precision as compared to other climate datasets.

(1)NDVI = (NIR− RED)/(NIR+ RED),

(2)NIRv = (NDVI− 0.08) ∗NIR,

(3)kNDVI = tanh
(

NDVI2
)

,
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Yield data
The statistics yield data at county level for wheat can be gained from the China Agricultural Statistical Yearbook 
(CASY). More than 2000 yield data for 107 selected counties from 2001 to 2020 were applied to train and validate 
yield prediction models. The observed yield data at 13 agro-meteorological sites (including Luancheng, Huanghua 
and so on) during 2001–2010 was gained from China’s Meteorological Administration (CMA), which was used 
to validate the performance of yield prediction model at pixel level.

Research methods
The architecture of data processing and yield prediction model was shown in Fig. 2.

Data processing
First, we calculated VIs from Landsat images. Then we obtained cloud-free satellite images by cloud masking. 
These cloud-free images were aggregate as monthly intervals (from October to the following May) using the 
maximum synthesis method. However, because of the low temporal resolution and the influence of cloudy and 
rainy weather condition, it is difficult for the cloud-free satellite images to continuously cover the study area. 
MODIS image products have high temporal resolution, and some studies have shown that MODIS products can 
be used as effective auxiliary data to reconstruct high-quality Landsat  data45. In this study, we selected MOD09A1 
images as auxiliary data. We generated MODIS cloud-free satellite images by using cloud masking. The tempo-
ral interpolation was used to fill the missing values in the MODIS images. The cloud-free MODIS images were 
aggregate as monthly intervals (from October to the following May) like Landsat. Savitzky-Golay (SG) filter was 
used to smooth the time series images to reduce the effect of noise. To fill gaps of Landsat images, MODIS images 
were resampled to 30 m spatial resolution based on the bilinear resampling method. Finally, the synthesized 
time series images was generated and the SG filter was used to smooth the time series. The synthesized NIRv 
time series curve of Landsat and MODIS after reconstruction was shown in Fig. 3. The synthesized images can 
fill the missing values of Landsat images well and cover Hebei Province completely (Fig. 4).

On the other hand, the monthly climate data was resampled to 30 m resolution. The satellite images and cli-
mate data were masked based on wheat classification result, which can be obtained from the study of Zhao et al.7. 
Finally, all input data were aggregated to a mean for each county after being masked by wheat planting areas.

Yield prediction model
In this study, satellite images, climate data and statistics yield data at county level were applied to build yield 
prediction model. Among them, statistics yield data was defined as the target variable in yield prediction model, 
while other data was set as predictive variable. All of the data samples were randomly split into 70% for train-
ing and 30% for validation. The ten-fold cross validation was used to optimize the parameters, and wheat yield 

Figure 1.  The study area and boundary of the selected counties in Hebei Province.
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prediction model was built by using input parameters with the best effect. To study the performance of selected 
VIs in the yield prediction model, this study set three sets of data input combinations for comparison, namely: 
(1) NDVI combined with climate data (NDVI); (2) NIRv combined with climate data (NIRv); (3) kNDVI com-
bined with climate data (kNDVI).

LSTM algorithm is essentially specific form of Recurrent Neural Network (RNN)48. LSTM can solve the short-
term memory problem of RNN by adding Gates, which makes RNN can effectively make use of the time series 
information. Many studies have shown that LSTM model has a good performance in crop yield  prediction12,18. 
Furthermore,  LGBM49,50 was defined as the benchmark model to compare with LSTM. LGBM is an improved 
algorithm using the traditional Gradient Boosting Decision Tree (GBDT). As compared with Extreme Gradient 
Boosting, LGBM has faster speed, higher computing efficiency and greater performance.

Figure 2.  The architecture of data processing and yield prediction model.

Figure 3.  The synthesized NIRv time series curve of Landsat and MODIS after reconstruction for a pixel in 
Hebei Province, 2020.
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The study compared the influence of different VIs and regression methods in the yield prediction model. 
The root mean square error (RMSE) and coefficient of determination  (R2) between predicted and statistical data 
were used to evaluate performance. We selected the optimal prediction model after the comparison. Then “leave 
one year out” experiment was implemented to assess the performance of the optimal model in each year. The 
“leave one year out” experiment is that the data of single year is used as test dataset, and the data of other years 
is used as training dataset. The RMSE and  R2 between predicted and statistical data in single year were applied to 
evaluate performance of the optimal model. In addition, the relative error (RE) between predicted and statisti-
cal data in single year was used to study spatial distribution of prediction errors. Moreover, the optimal model 
was applied to generate wheat yield maps in HB during 2001–2020 at pixel level, while the RMSE and  R2 were 
between predicted and observed yield (including statistical data and observed yield data at site level) calculated 
to assess the accuracy of prediction model at pixel level. Finally, we investigated the contribution of time series 
data during different growth periods for yield prediction model and analysed the optimum prediction time.

Results
Model performances
Performances of yield prediction model developed using different combination of input variables and regression 
algorithms using the yield data during 2001–2020 were shown in Fig. 5. Compared with NDVI  (R2 was between 
0.53 and 0.62, RMSE was between 614.8 and 700.1 kg/ha), the effect of the emerging VIs (NIRv and kNDVI) 
was slightly better (NIRv:  R2 was between 0.56 and 0.65, RMSE was between 610.9 and 693.4 kg/ha; kNDVI:  R2 
was between 0.54 and 0.64, RMSE was between 609.8 and 697.1 kg/ha). The improvement was not significant. 
Meanwhile, NIRv and kNDVI have similar performances in yield prediction. On the other hand, the optimal 
selection of regression model was more significant for the improvement of yield prediction model than selection 
of VIs. The yield prediction model using LSTM algorithm outperformed the model using LGBM (LSTM:  R2 was 
between 0.62 and 0.65, RMSE was between 609.8 and 614.8 kg/ha; LGBM:  R2 was between 0.53 and 0.56, RMSE 
was between 693.4 and 700.1 kg/ha). Therefore, the yield prediction model built by combining NIRv and LSTM 
algorithm was defined as the optimal model, which was used for further study.

Performance of the optimal model
Moreover, we evaluated performance of the optimal model for yield prediction in single year using “leave one 
year out”. The comparisons of predicted yield based on the optimal model and statistical data in HB during 
2001–2020 were shown in Fig. 6. In general, the  R2 values in the single year were between 0.32 and 0.61, while 
the RMSE values in the single year were between 541.3 and 1165 kg/ha. Taking year 2012 as the dividing line, 
the performance of the optimal model after 2012  (R2 was from 0.5 to 0.61, RMSE was from 541.3 to 787.6 kg/
ha) was relatively better than the performance of the optimal model before 2012  (R2 was from 0.32 to 0.51, 
RMSE was from 674.2 to 1165 kg/ha). This may be because of the limitation for the quantity and quality of early 
cloud-free images from Landsat.

Figure 4.  Comparison of original NIRv images from Landsat and the synthesized NIRv images of Landsat and 
MODIS after reconstruction in Hebei Province on March 5, 2020.
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In addition, the RE index was used to study the spatial distribution pattern of uncertainty in yield predic-
tion using the optimal model. The spatial distribution pattern of RE values between predicted yield using the 
optimal model and statistical data during 2001–2020 was shown in Fig. 7. We can find that there is an obvious 
overestimation (RE > 20%) in the northeast of Hebei Province during 2001–2020. This area is mainly rainfed 
agriculture, while other areas are irrigated agriculture. The uneven distribution of training samples may be the 
main reason. On the other hand, there is widespread underestimation in the central region of Hebei Province 
for some years prior to 2012. However, RE values between predicted yield and statistical data in most regions 
after 2012 roughly ranged from −20 to 20%.

Wheat yield maps during 2001–2020 in HB
The optimal model was used to generate 30 m resolution yield maps at during 2001–2020 in HB (Fig. 8). Wheat 
yield maps revealed the heterogeneity in the different regions of HB. Wheat yield was higher in the central and 
southern regions of HB where wheat planting area was more concentrated, while the yield was lower in the north-
eastern regions where wheat planting area was more dispersed. This is consistent with the spatial distribution 

Figure 5.  Performances of yield prediction model developed using different combination of input variables and 
regression algorithms based on random splitting validation (7:3) for the yield data during 2001–2020.
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pattern of statistical data. In addition, we can find the increase of wheat yield in HB during the past 20 years, 
especially in the central-south of HB.

Furthermore, we used statistics yield data at county level and observed data at site level to assess the quality 
of wheat yield maps with 30 m spatial resolution (Fig. 9). Compared with the reference data at site level, the yield 
maps had an overall an  R2 of 0.38 and RMSE of 1180 kg/ha (Fig. 9a). Furthermore, we used the statistical data 
at county level to assess the yield maps aggregated to county level. Compared to the statistical data at county 
level, the yield maps had an overall an  R2 of 0.55 and RMSE of 868 kg/ha (Fig. 9b). In general, the performance 
in yield prediction at county level using the optimal model was better than that in yield prediction at pixel level. 
This indicated that the training samples at different levels and regression algorithms will appear precision loss 
to some extent when the yield prediction was in the multi-level application.

The optimum prediction time
The yield prediction model must measure the accuracy and prediction time. The performance for predicted yield 
using forward month-based data based on the optimal model was shown in Fig. 10. In this study, we found that 
the model accuracy increased as wheat growth period approached harvest time, especially after February. The 
increase of growth information reflected by VIs was conducive to the improvement of yield prediction model 
due to the acceleration of wheat growth after February. However, the growth rate of model accuracy slowed down 
after May as wheat approached maturity. The yield prediction in April can take into account the accuracy and 
advance prediction time, which was the optimum prediction time.

Discussion
Landsat satellites can provide the most abundant public free historical RS images with 30 m  resolution45, which 
has great potential for long time-series crop yield mapping. However, 16 d temporal resolution and the cloud-
rain weather can limit the usage of Landsat images in large  areas7. In our study, the missing values of Landsat 
images were filled by using MODIS series products with coarse spatial resolution, which have been smoothed and 
resampled. Then SG filter was used to remove the noise of synthesized images to reconstruct time series curve. 
The synthesized images can effectively fill in the missing value of original images from Landsat, and the study 
area can be completely covered. Furthermore, the synthetic images were applied to the generation of wheat yield 
maps with long time series in HB, and the overall accuracy of the yield maps was high. In addition, the accuracy 
of synthetic images can be further improved with the further development of data fusion method.

NDVI is the most widely used RS variable in yield  prediction12,13. However, NDVI has a saturation effect when 
the green biomass is high. As a result, many improved VIs have been developed. As compared with NDVI, the 
emerging kNDVI and NIRv showed better performance in evaluating crop traits, phenology and  yield24,25. In 
this study, the performance of yield prediction model combined with the emerging VIs has improved compared 

Figure 6.  Comparisons of the predicted yield using the optimal model and statistical data in HB during 
2001–2020.
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with that based on NDVI, but this improvement was not prominent. The additional input variables such as SIF 
products or extreme climate index data can be incorporated in yield prediction model to improve the accuracy 
of the models in some  studies41,51. However, the spatial resolution of the additional data was usually lower, which 
was not convincing when the data was used to obtain crop yield information with high spatial  resolution52. The 
development of more effective RS variables and auxiliary data with higher spatial resolution has great potential 
in the future study of yield prediction.

Relatively speaking, the regression algorithms have more prominent influence on the performance of yield 
prediction model as compared with the input variables. ML algorithms can capture the nonlinear respond of crop 
to climate and environment conditions, which outperformed traditional linear regression algorithms in yield 
 prediction8,53. Deep learning algorithms can effectively process complicated time series  data54,55. The accuracy 
of yield prediction model based on deep learning algorithms was better and more stable than that based on 
ML  algorithms41,56. In our study, the accuracy of yield prediction model based on LSTM algorithm and NIRv 
was significantly higher than that using LGBM algorithm and NIRv. Meanwhile, the optimal model also has 
stable performance in predicting wheat yield for single year. Considering that deep learning algorithms have a 
large demand for data  samples57, obtaining more data samples can improve the performance of deep learning 
algorithms further.

The farmers usually cultivated crops on small plots in the peasant economy. Due to the constraints of technol-
ogy and funds, the production level of the peasant economy was relatively low, and the ability to resist natural 
disasters was  weak58. Therefore, the spatial heterogeneity of crop growth and yield in the peasant economy domi-
nant regions was  large59. This increased the uncertainty of yield prediction on both temporal and spatial levels. 
Hebei Province was a traditional peasant economy dominant regions, and the spatial differences of management 

Figure 7.  Spatial distribution pattern of RE between predicted yield using the optimal model and statistical 
data in HB during 2001–2020.
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measures were  obvious17. The northeastern region of Hebei Province was rainfed agriculture, while other areas 
were typically  irrigated7. In our study, the optimal model significantly overestimated wheat yield in the rainfed 
agricultural regions. The data samples of irrigation county occupied a relatively large proportion in the total 
sample dataset, while the uneven distribution of input data may be the main reason for the error. In the next 
study, we can improve the robustness of the yield prediction model by optimizing the input  dataset39.

Conclusion
We used LSTM algorithm to integrate VIs and climate data to map wheat yield with 30 m resolution in HB 
during 2001–2020. The synthesized images of Landsat and MODIS were used to provide RS variables for yield 
prediction model. The performance of yield prediction model combined with the emerging VIs has improved 
slightly compared with that using NDVI. The optimal selection of regression model was more significant for the 
promotion of yield prediction model than the selection of VIs. The yield prediction model built by combining 
NIRv and LSTM algorithm was defined as the optimal model, which performed well in single year. The optimal 
model was applied to generate 30 m resolution wheat yield maps at during 2001–2020, and the yield maps had a 
higher overall accuracy. In addition, April was the optimum prediction time, which can consider simultaneously 
the precision and lead time. The multi-level wheat yield prediction framework provided in our study has great 
prospects for practical applications in the peasant economy dominant regions.

Figure 8.  Spatial distribution pattern of predicted yield at pixel level based on the optimal model in HB during 
2001–2020.
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Data availability
The experimental research and pixel studies on plants (either cultivated or wild) were in accordance with relevant 
institutional, national, and international guidelines and legislation. The statistics yield data at county level for 
wheat can be gained from the China Agricultural Statistical Yearbook (CASY). The observed yield data at site 
level from 2001 to 2010 was gained from China’s Meteorological Administration (CMA). The datasets generated 
and analysed during the current study available from the corresponding author on reasonable request.
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