

UNIVERSITI PUTRA MALAYSIA

CLONING AND EXPRESSION OF THE HAEMAGGLUTININ-NEURAMINIDASE (HN) GENE FROM NEWCASTLE DISEASE VIRUS (NDV) STRAIN AF2240 IN BACULOVIRUS (AcMNPV)

ALAN ONG HAN KIAT

FSAS 1999 26

CLONING AND EXPRESSION OF THE HAEMAGGLUTININ-NEURAMINIDASE (HN) GENE FROM NEWCASTLE DISEASE VIRUS (NDV) STRAIN AF2240 IN BACULOVIRUS (AcMNPV)

By

Alan Ong Han Kiat

Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

September 1999

ACKNOWLEDGEMENTS

It gives me great pleasure to express my deepest appreciation and gratitude to Assoc Prof Dr Khatijah Mohd Yusoff, Assoc Prof Dr Abdul Manaf Ali and Dr Abdul Rahman Omar for their advice, guidance and support in supervising this project

With all its challengers and complexity, this PhD thesis would not have come true had it not been for the love, understanding and encouragement of my family, love one and friends

My gratitude also goes out to a number of kind and helpful people who have played a major role in the course of the project especially Assoc Prof Kazuaki Takehara, Assoc Prof Dr Abdullah Sipat and Dr Tan Wen Siang for their advice, Mr Poh Yang Ming for conducting part of the EM and optimisation studies and not forgetting Prof Dr Anni Ideris, Dr K Ganapathy and the Staff of Vaccine lab for their support in the field trial experiment

It has also been a great experience and a joy working with my colleagues in Lab 143, 202 of the Department of Biochemistry and Microbiology as well as the Animal Tissue Culture Lab in the Department of Biotechnology I am also very grateful for the technical assistance rendered by staffs from the Department of

Biochemistry and Microbiology, Virology Lab and Electron Microscopy Unit in the Faculty of Veterinary Medicine.

Mr. Ng Chong Sin, Mr. Julian Lim from Bio-Diagnostic, Madam Kee Ng form Life Technologies, Mr. Law from BioSyntax and Mr. Yeo Wee Kiat from Boehringer Mannheim have also contributed significantly in terms of technical advice and support.

Finally, I would like to thank God for His spiritual guidance and for blessing me with all those wonderful people mention above as well as many more who have contributed one way or another.

This study was supported by the Malaysian Ministry of Science, Technology and Environment IRPA Grant no. 01-02-04-0107.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF PLATES	xi
LIST OF ABBREVATIONS	xiii
ABSTRACT	XV
ABSTRAK	xvii

CHAPTER

Page

Page

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	5
	Newcastle Disease Virus	5
	Taxonomic Classification	5
	History and Distribution of NDV	6
	Newcastle Disease Virus and the Malaysia Scenario	6
	Disease Control of NDV and the Challenges it	Ũ
	Poses in Malaysia	7
	NDV Genome Encoded Protein and Virion	'
	Structure	0
	NDV Strain AF2240	11
	NDV Stialii Ar 2240 Dethogenia Marshalagy and Malagylar	11
	Characteristics	11
	Characteristics	11
	The Molecular Characteristics of the	
	Haemagglutinin-Neuraminidase (HN) Glycoprotein	10
	of NDV Strain AF2240	13
	The Significance of the HN Glycoprotein	16
	The Role of the HN Surface Glycoprotein in the	
	Viral Life Cycle (Infection)	16
	Role of the HN Surface Glycoprotein in the Host	
	Immune Response	17
	Immunological Implications of the HN	
	Glycoprotein	19
	The Immunological Importance of Glycosylation in	
	the HN Protein of NDV	21

The Biology of Baculovirus	23
Baculovirus Classification	23
Baculovirus Virion and Genome Structure	24
Effects of Serial Passage of Virus	25
Baculovirus Expression Vector System (BEVS)	28
Principles of BEVS	28
Advantages of The BEVS	29
Baculovirus Transfer Vectors	31
Insect Cell Spodoptera frugiperda (Sf9) Culture	32
Characteristics of Insect Cell Lines	33
Insect Cell Culture Medium	33
Maintenance of Sf9 Insect Cells	35
Co-Transfection of Baculovirus DNA and the	
Transfer Vector into Insect Cells	35
The Recombinant Subunit Vaccine For the Potential	
Control of Newcastle Disease Virus	37
Current Vaccines	37
Recombinant Subunit Vaccine	39
MATERIALS AND METHODS.	41
General Procedures	41
Viruses	41
Bacteria	42
Cell lines	42
Virus Cultivation and Purification	43
Newcastle Disease Virus (NDV)	43
Wild type (wt) Baculovirus (AcMNPV)	43
Nucleic Acid Extraction	44
Viral RNA Extraction of NDV	44
Viral DNA Extraction from Infected Sf9 Insect	
Cells	44
Concentration and Purity of Extracted Nucleic Acids	46
Polymerase Chain Reaction (PCR) Procedures	47
Primers Used	47
RT-PCR Amplification	48
Cloning Procedures	51
Purification of RT-PCR Products	51
Ligation of RT-PCR Products and The Transfer	50
Vector (pCR Bac 4.8 kb)	52
Iransformation of The Recombinant Transfer	50
vector into Competent <i>E. con</i> Cells	55
Subalaring of the Insert from TOPO Vector TOP	23
2 Linto Deculouirus Transfer Vector PCK	56
2.1 Into baculovilus Transfer vector pCK Bac 4.8	30

III

Screening and Verification of Putative Recombinant	
Clones	58
Small Scale Plasmid Extraction (Plasmid Miniprep)	58
Restriction Enzyme Analysis	59
Polymerase Chain Reaction (PCR)	60
DNA Sequencing	60
Co-Transfection of the Recombinant Transfer Vector and	
the Linearised Baculoviral (AcMNPV) DNA into Sf9	
Insect Cells	62
S79 Cells	62
Transfection Mixture	62
Co-transfection into 5/9 Cells	63
Harvesting	63
Identification and Verification	64
Viral Plaque Assay	64
	65
Partial Sequencing at the End Terminals of the	~ ~ ~
Recombinant Viral DNA	60
View (real DIA E2240) Stock	
Virus (TechivAr 2240) Stock	00 66
Determination of D2 Virus Titor	67
Electron Microscony of SfD Colls and Vizus	67
Negative Staining of Viral Samples	67
TEM of Viral Infected St0 Cells	68
Secological Test	60
Processing of Viral Samples form Infected St9	0)
Cells	69
Haemagglutinin Activity (HA)	70
Hemadsorption Activity	71
Neuraminidase Activity (NA)	71
Haemagglutination Inhibition (HI)	72
Hemadsorption Inhibition	72
Indirect Immunofluorescence (IIF)	72
Protein Analysis	73
Sodium Dodecyl Sulphate-Polyacrylamide Gel	
Electrophoresis (SDS-PAGE)	73
Western Blotting	75
Immuno Detection of Transferred Proteins on	
PVDF Membranes	76
Time Course Study for the Production of Recombinant HN	
Protein	77
Small Scale Optimisation Study on the Recombinant	70
Protein Expression	/8
Large Scale Production of Recombinant HN Protein	79

	Preliminary Field Trial Immunisation Study of the	
	Recombinant HN Subunit Vaccine	79
	Preparation and Quantification of the Subunit	
	Vaccine	80
	Layout of the Vaccination Field Trial	82
	Collection of Sera from Vaccinated and	
	Unvaccinated Chickens	84
	Challenge Procedure	86
	Analysis of the Immune Response from Vaccinated Birds	86
	HI Test	86
	Enzyme Link Immunoabsorbent Assay (ELISA)	87
IV	RESULTS AND DISCUSSION	89
	Reverse Transcriptase - Polemerase Chain Reaction (RT-	
	PCR) of Viral RNA	89
	Optimised One-Step RT-PCR for Cloning	91
	Cloning of the HN Gene into a Baculovirus Transfer	
	Vector	94
	Screening and Verification of Putative Recombinant	
	Clones	95
	Plasmid Extraction and Restriction Enzyme	95
	Analysis.	07
	PCR Verification.	97
	Partial End Terminal Sequencing of the Putative	100
	Recombinant Plasmid	100
	TOPO Cloning for Sequencing and Sub-Cloning	102
	Common Morphology of 5/9 Insect Cell Culture	104
	Co-Transfection into 379 Insect Cells	104
	Visual Confirmation	104
	Lesse Seele Dreposition of Decombinent Virus	105
	Electron Microscopy of the Virus and Sfl Cells	114
	Election Microscopy of the virus and 5/9 Cens	114
	EN of the Wild Type (wt) and Recombinant	114
	(recHNAF2240) Baculovirus	114
	Expression of the HN Recombinant Baculovirus in St9	114
	Cells	124
	Serological Test	124
	Inhibition Assays	129
	Protein Analysis with SDS-PAGE and Western	
	Blotting	132
	Time Course Study for the Production of	
	Recombinant HN Protein	136
	Small Scale Optimisation Study on the Recombinant	
	Protein Expression	142

	Large Scale Production of Recombinant HN Protein	148	
	Preliminary Field Trial Immunisation Study	151	
	Quantification of Subunit Vaccine	151	
	Immunisation Trials	151	
	Analysis of the Immune Response from Experiment 1 and		
	Experiment 2	154	
	HI Test	154	
	Challenge Experiment	155	
	ELISA	161	
	Western Blot Analysis	165	
	Overall Discussion	171	
V	CONCLUSION	176	
REFERENC	CES	178	
APPENDIX			
А		212	
B-1		213	
B-2		215	
VITA	VITA 21		

LIST OF TABLES

Table		Page
1	The Concentration and Purity of the Extracted Nucleic	
	Acids	46
2	List of Primers Used for RT-PCR, PCR Analysis and	
	Sequencing	48
3	Worksheet for the Vaccination of Experiment 1	84
4	Worksheet for Immunization of Chickens in Experiment 2	88
5	Names of Cloning Vectors and Recombinant Plasmids	
	Generated from the Various Cloning Methods	107
6	Quantification of Viral and Total Protein Sample from WT	
	and Recombinant Subunit Vaccine Preparation for	
	Experiment 1	158
7	Quantification of Viral and Total Protein Sample from WT	
	and Recombinant Subunit Vaccine Preparation for	
	Experiment 2	159
8	Mean HI (Log ₂) of Serum Samples Taken from Experiment	
	1	162
9	HI Titers (Log ₂) of Serum Samples form Chickens	
	Vaccinated with the Recombinant Subunit Vaccine	
	(RecHNAF2240) taken from Experiment 2	163
10	Mean ELISA Absorbance Values with NDV Precoated	
	Plates (KPL) of Serum ^a from the 1 st Experiment	168
11	Mean ELISA Absorbance Values with NDV Precoated	
	Plates (KPL) of Serum ^a from the 2nd Experiment	169
12	ELISA Absorbance Values with NDV Strain AF2240*	
	Coated Plate of Serum [*] Taken from Each Group	172
13	ELISA Absorbance Values with the Recombinant	
	Baculovirus (recHNAF2240)* Coated Plate of Serum*	
	Taken from Each Group	173

LIST OF FIGURES

Figure		Page
1	Comparison of Production, Consumption and Prices of	
	Local Meat Source	2
2	Schematic Diagram of a Paramyxoviridae	10
3	Schematic Diagram of a) Budded Virus (BV) and b)	
	Occlusion Virus (OV) of AcMNPV	26
4	The Infection Cycle of the Baculovirus BV and OV in	
	Insect Cells	27
5	The pCR Bac 4 8 Baculovirus Transfer Vector with the TA	
	Cloning and the Multiple Cloning Sites	53
6	Schematic Diagram of the Cloning Strategy.	54
7	The pCR 2 1 TOPO TA Cloning Vector Containing the	
	Topoisomerase (TI) and the Related Multiple Cloning	
	Sites	59
8	Schematic Diagram Showing the <i>Hin</i> dIII Site of the	
	Cloned HN Gene Amplified from Viral RNA and the	
	Transfer Vector	102
9	Homologous Recombination of the Linearized Bac-N-Blue	
	Baculovirus DNA and the Baculovirus Transfer Vector	118
10	Growth of S19 Insect Cells in TNM-FH Medium with 5%	
	FBS	149
11	Expression of the Recombinant Protein in terms of HAU at	
	Two Different Time of Infection Corresponding to Various	
	moi Values	150

LIST OF PLATES

Plate		Page
1	Administration of Vaccines through the Intranasal Route	81
2	Administration of Subunit Vaccines through the Intra Muscular Route	81
3	Amplified RT-PCR Products Using Various Primer	
	Combinations Detected on a 0 8% Agarose Gel	92
4	Plasmid that have been Digested with <i>Bam</i> HI and <i>Eco</i> RI	96
5	Restriction Enzyme Analysis of the Putative Recombinant	
	Plasmid with <i>Hin</i> dIII	99
6	End Terminal Sequencing on Positive Clones from the	
-	Directional Cloning	101
7	Morphology of Transfected 579 Insect Cells at Various	100
0	Time Point	106
8	Plaque Assay Showing Putative Blue Recombinant Viral	107
0		107
9	Viral DNA Extraction from Infected 579 Cell Cultures	100
10	Used for the PCK Verification	109
10	A Negative Staining Electron Microscope Picture of NDV	110
11	EM of Cross Section from Infected and Uninfected Sfl	11/
12	Calls	1 10
13	EM of Cross Section from Cells Infected with wt and	117
15	Recombinant Virus at 2 d n j	120
14	FM of Cross Section from Cells Infected with with	120
1 '	Baculovirus at 4 d n i Showing the Presence of the	
	Polyhedrin Sturcture (P)	121
15	EM of Recombinant Viral Infected Cells Showing	121
	Circular-Like Cansids	122
16	Haemagglutinin Activity (HA) Test with 1% Chicken RBC	125
17	NA Test on the Infected Cell Samples	126
18	Hemadsorption Assay with Chicken Red Blood Cells	127
19	Inhibition Assays	130
20	Immunofluorescence (IIF) of wt and Recombinant Infected	
	Cells	131
21	A 12% SDS-PAGE Gel Stained with Coomassie Blue	
	Comparing Banding Patterns of Infected Cell Lysates	133
22	Western Blot Analysis of Various Virus Infected Cell	
	Lysates Using NDV Polyclonal Anti-sera	134

23	An Autoradiogram of [³⁵ S] Methionine-Labeled Samples Showing the Time Course of Vral Protein Synthesis in the	
	Person binant (P) and Wild Type AcMNBV (WT)	
	Recombinant (R) and who Type Acivity (WT)	127
	Baculovirus ini ected Cells. r_{3501}^{3501} A statistic in the statistic	13/
24	An Autoradiogram Showing [35] Methionine-Labeled	
	Samples of Infected Cell Lysates of Recombinant	
	Baculovirus (recHNAF2240) and Wild Ttype Baculovirus	
	at 48 h.p.i. with and without the Treatment of	
	Tunicamycin	138
25	Clinical Signs of Viral Infection Observed on Chickens	
	Challenge with the VVNDV Strain AF2240	159
26	Obvious Signs of NDV Strain AF2240 Viral Infection	160
27	Western Blot Analysis Using the Anti-sera from	
	Recombinant Vaccinated Birds of the 2 nd Experiment on	
	the Various Virus Infected Cell Lysates	168
	5	

LIST OF ABBREVIATIONS

AcMNPV	-	Autographa californica multiple nuclear polyhedrosis
		Virus
BEVS	-	Baculovirus Expression Vector System
BV	-	Budded virus
cDNA	-	complementary deoxyribonucleic acid
DNA	-	deoxyribonucleic acid
dNTP	-	deoxynucleotide triphosphate
ddNTP	-	dideoxynucleotide triphosphates
EDTA	-	Ethylenediaminetetraacetic acid disodium salt
EM	-	Electron Microscope
F	-	fusion protein
HA	-	haemagglutinin activity
HN	-	haemagglutinin-neuraminidase
kb	-	kilobase
kDa	-	kilodalton
MAb	-	monoclonal antibody
Mr	-	molecular weight
NA	-	neuraminidase activity
NDV	-	Newcastle disease virus
OV	-	occlusion virus

ORF	-	Open reading frame
PBS	-	phosphate buffer saline
PCR	-	polymerase chain reaction
RBC	-	red blood cells
RNA	-	ribonucleic acid
RT-PCR	-	reverse transcriptase-polymerase chain reaction
SDS-PAGE	-	sodium dodecyl sulphate-polyacrylamide gel
		electrophoresis
Sf9	-	Spodoptera frugiperda
Taq	-	Thermus aquaticus
TBE	-	Tris-boric-EDTA buffer
VVNDV	-	viscerotropic-velogenic NDV
wt	-	wild type

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

CLONING AND EXPRESSION OF THE HAEMAGGLUTININ-NEURAMINIDASE (HN) GENE FROM NEWCASTLE DISEASE VIRUS (NDV) STRAIN AF2240 IN BACULOVIRUS (AcMNPV)

By

Alan Ong Han Kiat September 1999

Chairman : Assoc. Prof. Khatijah Mohd. Yusoff, Ph.D.

Faculty : Science and Environmental Studies

Newcastle disease virus strain AF2240 is a major threat to the poultry industry as it causes 100% mortality to susceptible flocks The haemagglutininneuraminidase (HN) gene encodes for the HN surface glycoprotein which is known for virus attachment and contains immunogenic properties Therefore, the HN gene was cloned into a Baculovirus Expression Vector system (BEVS) for the development of a subunit vaccine against NDV as well as to study its expression in isolation from the other NDV structural genes

The approach taken involved the amplification (RT-PCR) of the 18 kb HN gene, from NDV strain AF2240 genomic RNA and cloning it into a BEVS The

recombinant baculovirus protein RecHNAF2240 expressed in *Sf9* cells was shown to be positive for the haemagglutinin test (HA), neuraminidase test (NA), indirect immunofluorescence (IIF) as well as in SDS-PAGE Western blot analysis indicated the distinct ~ 63 kDa and ~ 75 kDa protein bands as HN specific which corresponded to the unglycosylated and glycosylated HN glycoproteins respectively This observation was confirmed by a time course study using pulsed-labeled [³⁵S] methionine of the HN glycoprotein in the recombinant virus infected cells with tunicamycin The recombinant protein was expressed not only on the surfaces of the infected cells and the viral coat protein but also appears to be biologically active and functional The physical nature of the viruses was also studied using electron microscopy (EM) and it indicated various physical differences

Optimisation study on the recombinant protein RecHNAF2240 production showed that a late log phase infection of the recombinant virus (recHNAF2240) at an m o i of 1 was the most appropriate Based on HI, ELISA and western blot analysis the recombinant subunit vaccine was able to elicit a protective immune response The route of vaccination and a second dose were crucial to illicit an immune response from the chickens However, this protective feature of the recombinant subunit vaccine remains inconclusive and more work should be carried out to bring about the fullest potential of this recombinant subunit vaccine

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia untuk memenuhi keperluan ijazah Doktor Falsafah

PENGKLONAN DAN PENGEKSPRESAN GEN HEAMGGLUTININ-NEURAMINIDASE (HN) DARIPADA VIRUS PENYAKIT NEWCASTLE (NDV) STRAIN AF2240 KE DALAM BACULOVIRUS (AcMNPV)

Oleh

Alan Ong Han Kiat September 1999

Pengerusi : Prof. Madya Khatijah Mohd. Yusoff, Ph.D.

Faculti : Sains and Pengajian Alam Sekitar

Virus penyakit Newcastle strain AF2240 merupakan penyakit virus utama dalam industri penternakan ayam kerana boleh menyebabkan 100% kematian ayam Gen HN yang mengkodkan glikoprotein permukaan HN memainkan peranan dalam perlekatan virus dan juga mempunyai nilai-nilai keimunan Oleh itu, gene HN telah diklonkan dalam Sistem pengekspresan vektor Baculovirus (BEVS) untuk penghasilan vaksin subunit terhadap NDV dan juga untuk mengkaji pengekspresan gen HN berasingan dengan gen-gen NDV yang lain

Pendekatan yang digunakan adalah dengan melibatkan gen HN (1 8 kb) yang telah diamplifikasikan daripada jujukan RNA (RT-PCR) dan diklonkan ke dalam

xvii

BEVS. Protein rekombinan baculovirus RecHNAF2240 yang diekpreskan dalam sel *Sf9* menunjukkan keputusan yang positif untuk ujian hemaglutinin (HA), neuraminidase (NA), imunopendarfluoran (IIF) serta SDS-PAGE. Analisis "western blot" pula menunjukkan jalur protein ~ 63 kDa dan ~ 75 kDa sebagai specifik kepada protein HN yang bersamaan dengan glikoprotein HN yang masing-masing tidak mengalami glikosilasi dan yang mengalami glikosilasi. Keputusan tersebut juga telah didapati dengan menggunakan protein rekombinan yang dilabelkan dengan [³⁵S] methionin dengan kehadiran antibiotic tunikamisin. Penemuan sedemikian membuktikan bahawa protein rekombinan diekspreskan pada permukaan sel-sel yang dijangkiti virus rekombinan, pada permukaan protein perlindung virus dan adalah aktif secara biologikal serta berkebolehan berfungsi. Ciri-ciri fizikal virus yang berlainan juga telah dikaji dengan bantuan mikroskop electron (EM).

Jangkitan virus rekombinan recHNAF2240 pada fasa log akhir pada m.o.i. 1 merupakan nilai yang paling sesuai untuk penghasilan protein yang optimum. Penghasilan tindakan keimunan oleh vaksin subunit berdasarkan ujian HI, ELISA and analisis "Western blot" menunjukkan bahawa tempat vaksin disuntik and penggunaan dos kedua adalah perlu untuk menghasilkan tindakbalas imun daripada ayam-ayam yang dikaji. Namun demikian, ujian awal ini memberi maklumat yang penting tentang persoalan perlindungan ayam daripada jangkitan virus NDV dan ujian yang lebih menyeluruh adalah digalakan supaya dapat meningkatkan potensi vaksin rekombinan yang dihasilkan.

CHAPTER I

INTRODUCTION

The production of chicken in Malaysia ranks among the highest in the world in proportion to its population A 1992 survey reported in Asiaweek (20 April, 1994) on the various poultry producing countries in Asia, put Malaysia in 4th placing after China, India and Indonesia, the three highest populated countries in Asia Furthermore, the 1990 livestock statistics prepared by the Department of Veterinary Services (DVS) showed that the consumption and production of chicken was the highest among animal products (Figure 1a) The popularity of poultry products lies mainly on their nutritive values as both poultry meat and eggs production with regards to energy is similar to milk and is low in saturated fats Also, in Malaysia, the price of chicken among other common food sources appears to be the lowest (Figure 1b)

The poultry industry in Malaysia was worth 1 5 billion ringgit in 1992 (more than 55% of the total value of livestocks) and in 1997, it rose to 4 5 billion ringgit With the intensification of the poultry industry, Malaysia is currently self-sufficient in poultry eggs and meat but at the same time, is exposed to the inevitable increase in the prevalence of disease and loses

Figure 1: Comparison of Production, Consumption and Prices of Local Meat Sources. a) Production and Consumption of Animal Products in 1990 (DVS Livestock Statistics, 1992) and b) Prices of Common Food Source in 1998 (The Star, 1998).

The greatest threat in the poultry industry, not only in Malaysia but also in Asia is Newcastle disease virus (NDV) that is responsible for 314 outbreak cases recorded in Malaysia between 1985 to 1987. In 1976, NDV caused the US a loss of around 215 million US dollars wherelse in Malaysia between 1973 to 1977, 9% of all mortality costing the country 3.88 million ringgit annually was due to NDV.

Vaccination appears to be the main control of poultry viral disease in Malaysia and other developed as well as developing countries but NDV being endemic in this region, still poses a threat despite routine vaccination programmes which cost 18 to 50 % of the DVS annual budget (1992). It cannot be denied that current vaccines (live attenuated or killed) and local feed-delivered vaccines for village chickens; a common source of NDV epidemics as well as the readily available poultry health like vaccines and production technology from overseas have contributed towards improving the control of the disease. Nevertheless, these approaches alone may prove inadequate for Asia's rapid developing poultry industry to achieve long term stability and self-sustainability.

Therefore, efforts are being made with the aide of the ever advancing recombinant DNA technology and molecular biology for the development of more suitable vaccines derived from local NDV strains which would further complement the needs of the country's poultry industry. The approach would also cater for a more effective improvement of viral disease control through research by utilising available local resources. The growing interest and application of this technology has made possible the identification of specific sites on the surface of the virus which are crucial for inducing protective immune response. Taking advantage of this fact,

the production of vaccines from infectious agent which would not replicate as the pathogenic agent but able to induce immunity without causing any risk of increased or altered pathogenicity upon exposure to infection may bring about a more effective vaccine

In this study, a subunit vaccine was developed through the cloning of the HN gene from NDV strain AF2240, isolated from the viral genomic nucleic acid, into a Baculovirus Expression Vector System (BEVS) The BEVS is capable of expressing high levels of recombinant viral protein complete with post-translational modification in insect cells It will also facilitate the study of the HN gene expression in isolation from the rest of the NDV structural genes Thus the objectives of this study are -

- 1 to isolate the HN gene using PCR methods,
- 2 to clone the HN gene into BEVS,
- 3 to express the recombinant HN protein in SF9 insect cells, and
- 4 to determine the functionality of the recombinant protein

CHAPTER II

LITERATURE REVIEW

Newcastle Disease Virus

Taxonomic Classification

Newcastle disease virus (NDV) is the aetiological agent of the Newcastle disease, one of the most serious infectious disease of poultry in many parts of the world including Malaysia The reclassification of virus taxa in 1993 by the International Committee in the Taxonomy of Viruses (ICTV) grouped the NDV species into the *Rubulavurus* genus of the *Paramyxovurulae* family in the order of *Mononegavurales* (Murphy *et al.*, 1995, Pringle, 1998) The other genera under the *Paramyxovurulae* family are the *Morbulavurus* and the *Paramyxovurus* where NDV was earlier classified together with mammalian parainfluenza virus type 1-5 and mumps virus NDV is the prototype of the genus and is the only member of the avian paramyxovurus -1 (PMV-1) serotype Various other groups which are serologically distinguishable from NDV have been isolated from avian species and grouped into eight other serotypes called PMV-2 to PMV-9 (Alexander, 1986)

History and Distribution of NDV

The first outbreak of NDV is known to occur in 1926 on the island of Java, Indonesia called Batavia showing high mortality (Brandly, 1964) At the same period, Doyle (1927) and Konno *et al* (1929) (cited in Brandly, 1964) reported a similar disease in Korea and in Newcastle-on-Tyne, where the common name of the disease was coined. Three years later, NDV spread throughout the entire Southeast Asia (Lancaster, 1966) where it is now endemic (Aini, 1993), Australia (Johnstone, 1931) and India (Brandly, 1964) Within 10 years, ND had been reported in Japan, Africa and subsequently in various other countries such as the Middle East as well as in Europe (Lancaster, 1966) Apparently, ND was only first reported in the US in 1944 (Beach, 1944), Canada in 1948 and in South America in the 1950s (cited in Beard, 1984)

Newcastle Diease Virus and the Malaysia Scenario

In Peninsular Malaysia, the incidence of an ND outbreak was reported at Parit Buntar, Perak in 1934 causing high mortalities in susceptible chickens with necrotic lesions, respiratory signs, diarrhoea and eventually death (Whitworth, 1934, cited 1n Lim, 1994) Within a few years, it had spread to other states like Selangor, Melaka, Kedah and Johor (Wallace, 1939, cited in Lim, 1994) In contrast, the virulent ND is known to be associated with two sources namely wild bird species like psittacine birds and chickens The highly virulent virus termed as velogenic viscerotropic Newcastle disease (VVND) virus is from the earlier source that killed domestic chickens within 2 to 4 days upon exposure (Lim, 1994) Pearson *et al* (1975) (cited

