

CONSTRUCTION OF RECOMBINANT NEWCASTLE DISEASE VIRUS EXPRESSING GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR

By

NUR ZAFIRAH BINTI FIKRI OOI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2022

FBSB 2022 18

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

C

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Master of Science

CONSTRUCTION OF RECOMBINANT NEWCASTLE DISEASE VIRUS EXPRESSING GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR

By

NUR ZAFIRAH BINTI FIKRI OOI

January 2022

Chair : Associate Professor Chia Suet Lin, PhD Faculty : Biotechnology and Biomolecular Sciences

Cancer continues to surpass human intervention for decades. The cancer mortality rate increases every year and there is neither a single treatment that is suitable for all tumours at different stages nor it could eliminate tumour completely. Clearly, alternative treatments to accommodate the demanding disease are anticipated. One of such treatments is oncovirotherapy – the use of virus as a therapeutic agent for cancer. Newcastle disease virus (NDV) is a promising anti-cancer agent because it selectively infects and replicates in cancer cells without harming the normal cells. To further enhance the oncolytic activity, NDV can be manipulated via reverse genetics to harbour and express immunomodulatory gene in NDV-infected cancer cells. The aim of this study was to construct two recombinant NDVs (rNDV) that express human and murine granulocyte-macrophage colony-stimulating factor (hGM-CSF and mGM-CSF). These genes were amplified from lipopolysaccharide (LPS)-induced human myeloid leukaemia cells and murine colorectal carcinoma cells, respectively, and were cloned into NDV antigenome plasmid, pOLTV5 (rAF-GFP). The plasmids were cotransfected with helper plasmids (pCIneoNP, pCIneoP, and pCIneoL) into BSR T7/R5 cells to produce the recombinant NDVs, designated as rAF-GFP/hGM-CSF and rAF-GFP/mGM-CSF. Genomes of the viruses were extracted and verified by DNA sequencing followed by a large-scale propagation of the virus using 9-day old embryonated egg. The expression of both GM-CSF genes was determined via ELISA. High hGM-CSF and mGM-CSF glycoproteins were expressed by both rAF-GFP/hGM-CSF and rAF-GFP/mGM-CSF virus during viral infection in human colorectal carcinoma cells. In migration assay, human myeloid leukaemia cells and mouse macrophage cells that were seeded on top of collagen matrix gel were shown to be attracted towards the human colorectal carcinoma infection supernatant containing hGM-CSF and mGM-CSF in 24 hours and 12 hours, respectively. In conclusion, rAF-GFP/hGM-CSF and rAF-GFP/mGM-CSF virus produced in this study successfully express hGM-CSF and mGM-CSF genes upon infection and they are biologically active as verified through migration assay. This warrant a further investigation for their potential to be used for cancer treatment.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PEMBINAAN VIRUS PENYAKIT NEWCASTLE REKOMBINAN YANG MENGEKSPRESIKAN FAKTOR PERANGSANG KOLONI MAKROFAJ GRANULOSIT

Oleh

NUR ZAFIRAH BINTI FIKRI OOI

Januari 2022

Pengerusi : Profesor Madya Chia Suet Lin, PhD Fakulti : Bioteknologi dan Sains Biomolekul

Kanser terus mengatasi intervensi manusia selama beberapa dekad. Kadar kematian disebabkan kanser meningkat setiap tahun dan tidak ada satu pun rawatan yang sesuai untuk semua tumor pada tahap yang berbeza dan tidak dapat menghilangkan tumor sepenuhnya. Jelaslah, rawatan alternatif untuk merawat penyakit yang rumit tersebut diharapkan. Salah satu rawatan tersebut adalah oncovirotherapy - penggunaan virus sebagai agen terapeutik untuk kanser. Virus penyakit Newcastle (NDV) adalah agen anti-kanser yang menjanjikan kerana ia secara selektif menjangkiti dan mereplikasi selsel kanser tanpa membahayakan sel-sel normal. Untuk meningkatkan lagi aktiviti onkolitik, NDV dapat dimanipulasi melalui genetik terbalik untuk menyimpan dan mengekspresikan gen imunomodulator dalam sel kanser yang dijangkiti NDV. Tujuan kajian ini adalah untuk membina dua NDV rekombinan (rNDV) yang mengekspresikan faktor perangsang koloni makrofag granulosit manusia dan tikus (hGM-CSF dan mGM-CSF). Gen-gen ini diperkuat dari sel leukemia mieloid manusia yang diaruhi oleh lipopolysaccharide (LPS) dan sel karsinoma kolorektal tikus, masing-masing, dan diklon ke dalam plasmid antigenom NDV, pOLTV5(rAF-GFP). Plasmid tersebut telah ditransfeksi bersama dengan plasmid penolong (pCIneoNP, pCIneoP, dan pCIneoL) ke dalam sel BSR T7/R5 untuk menghasilkan NDV rekombinan, yang dinamkan sebagai rAF-GFP/hGM-CSF dan rAF-GFP/mGM-CSF. Genom virus diekstraksi dan diverifikasi dengan urutan DNA diikuti dengan pembiakan virus secara besar-besaran menggunakan telur embrio berusia 9 hari. Ekspresi kedua-dua gen GM-CSF ditentukan melalui ELISA. Glikoprotein hGM-CSF dan mGM-CSF yang tinggi diekspresi oleh kedua-dua virus rAF-GFP/hGM-CSF dan rAF-GFP/mGM-CSF semasa jangkitan virus pada sel karsinoma kolorektal manusia. Dalam ujian migrasi, sel leukemia mieloid manusia dan sel makrofag tikus yang diletakkan di atas gel matriks kologen telah menunjukkan tertarik ke arah supernatan jangkitan karsinoma kolorektal manusia yang mengandungi hGM-CSF dan mGM-CSF, masing-masing dalam 24 jam dan 12 jam. Kesimpulannya, virus rAF-GFP/hGM-CSF dan rAF-GFP/mGM-CSF yang dihasilkan dalam kajian ini berjaya mengekspresikan gen hGM-CSF dan mGM-CSF apabila dijangkiti dan mereka aktif secara biologi seperti yang disahkan melalui ujian migrasi.

Ini memerlukan penyelidikan lebih lanjut mengenai potensi mereka untuk digunakan untuk rawatan kanser.

ACKNOWLEDGEMENTS

First and foremost, thanks to God for leading me into this journey, giving me the strength and perseverance to complete this project. I would like to sincerely express my appreciation to my parents, siblings and Nebi. Thank you for loving and supporting me throughout my life.

Many thanks to my main supervisor, Assoc. Prof. Dr. Chia Suet Lin, who had spent his time and energy advising, helping and guiding me these years. I would also like to express my gratitude to Prof. Datin Paduka Khatijah Yusoff and Dr. Saila Ismail for their comments and suggestions during the study.

I would like to express my special thanks of gratitude to my friends, Ummu, May Ling, Nadrah and Aimi, who had always been there for me whenever I need them. Thank you also to my seniors and members of Virology Laboratory for their helpful thoughts and opinions.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the Degree of Master of Science. The members of the Supervisory Committee were as follows:

Chia Suet Lin, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Khatijah Mohd Yusoff, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Saila Ismail, PhD

Senior lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF,PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 May 2023

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _

Date:

Name and Matric No.: Nur Zafirah Binti Fikri Ooi

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of Chairman of Supervisory	
Committee:	Assoc. Prof. Dr. Chia Suet Lin
Signature:	
Name of Member of Supervisory	
Committee:	Prof. Datin Paduka Dr. Khatijah Mohamad Yusoff
Signature:	
Name of Member of Supervisory Committee:	
	Dr. Saila Ismail

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iv
APPROVAL	V
DECLARATION	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xvii

CHAPTER

1

2

3

INTRO	ODUCTIO	ON		1
LITE	RATURE	REVIEW		3
2.1	Cancer			3
2.2	Oncolyt	ic virus		4
2.3		tle disease v	virus	6
2.4	Newcast	tle disease v	virus as an oncolytic agent	8
MATH	ERIALS A	ND METH	HODOLOGY	11
3.1		als and reag		11
	3.1.1		on of Roswell Park Memorial	
			1640 medium	11
	3.1.2	Preparati	on of complete RPMI 1640	
		media		11
	3.1.3	Preparati	on of complete Glasgow	
		Modified	Essential Media	11
	3.1.4	Preparati	on of 1× phosphate-buffered	
		saline		12
	3.1.5	Preparati	on of Luria-Bertani broth and	
		Luria-Be	rtani agar	12
	3.1.6	Preparati	on of Super Optimal broth with	
		Catabolit	e repression medium	12
3.2	Bacteria	and Cell C	ulture	13
	3.2.1	Preparati	on of DH10-β competent	
		Escherich	nia coli cells	13
	3.2.2	Cell lines		13
	3.2.3	Proliferat	ion and maintenance of cells	14
3.3	Amplifi		M-CSF gene from cells	15
	3.3.1	hGM-CS	F	15
		3.3.1.1	Induction of hGM-CSF	
			expression in U937 cells	15
		3.3.1.2	RNA extraction	17
		3.3.1.3	Amplification of hGM-CSF	
			from U937 cells	17
		3.3.1.4	Agarose gel electrophoresis	
			and purification of amplified	

			hGM-CSF	19
	3.3.2	mGM-CS	SF	19
		3.3.2.1	Optimization of LPS	
			induction on CT26 cells	19
		3.3.2.2	Amplification of mGM-CSF	
		5.5.2.2	from CT26 cells	20
		3.3.2.3		20
		5.5.2.5	Gel electrophoresis and	
			purification of amplified	01
			mGM-CSF gene from CT26	21
			cells	
3.4	Construe		LTV5 (rAF-GFP) with GM-CSF	22
	3.4.1	Preparati	on of hGM-CSF and mGM-CSF	
		inserts		23
		3.4.1.1	Extraction of pOLTV5(rAF-	
			GFP) plasmid	23
		3.4.1.2	Amplification and purification	
		5.1.1.2	of individual fragments for	
			insert	24
		2412		24
		3.4.1.3	Overlapping PCR of	0.0
			fragments for insert	26
		3.4.1.4	Cloning of purified insert of	
			rNDV into pJET cloning	
			vector	28
		3.4.1.5	Colony PCR of	
			pJET(F1F2F3) transformant	28
		3.4.1.6	Verification of pJET(F1F2F3)	
			plasmid	29
	3.4.2	Cloning	of rNDV with GM-CSF gene	29
	5.1.2	3.4.2.1	Single restriction enzyme	
		5.4.2.1	digestion of backbone and	
				20
		2 4 2 2	insert	29
		3.4.2.2	Ligation and cloning of	•
			backbone and insert	30
		3.4.2.3	Colony PCR of	
			pOLTV5(rAF-GFP/hGM-	
			CSF) and pOLTV5(rAF-	
			GFP/mGM-CSF) transformant	31
		3.4.2.4	Verification of pOLTV5(rAF-	
			GFP/hGM-CSF) and	
			pOLTV5(rAF-GFP/mGM-	
			CSF) plasmids	31
3.5	Pecover	v of recom	binant NDV from plasmids	32
5.5	3.5.1		n of helper plasmids for	52
	5.5.1			22
	252	transfecti		32
	3.5.2	Transfect		32
	3.5.3		ion and purification of rNDV	33
		3.5.3.1	Small scale propagation of	
			rAF-GFP and rAF-GFP/GM-	
			CSF virus	33
		3.5.3.2	Verification of allantoic fluid	
			of rAF-GFP and rAF-	

 \bigcirc

			GFP/GM-CSF virus	33
		3.5.3.3	Large-scale propagation and	
			purification of rAF-GFP and	
			rAF-GFP/GM-CSF virus	35
		3.5.3.4	Verification of purified rAF-	
			GFP and rAF-GFP/GM-CSF	
			virus	35
3.6	Plaque a	ssav		36
3.7	MTT	ssuy		36
3.8		-linked imm	unosorbent assay	37
3.9	Migratio		lunosorbent assay	38
5.9	wingradio	ii assay		50
RESUI	LTS			39
4.1		ction of GM	I-CSF insert	39
	4.1.1		ion of hGM-CSF insert	39
		4.1.1.1	Amplification of hGM-CSF	
			from U937 cells	39
		4.1.1.2	Amplification of individual	
			fragments for insert with	
			hGM-CSF gene	41
		4.1.1.3	Overlapping PCR of	
			fragments for insert with	
			hGM-CSF gene	42
		4.1.1.4	Colony PCR of	12
		7.1.1.7	pJET(F1F2F3) with hGM-	
			CSF gene transformant	43
	4.1.2	Construct	ion of mGM-CSF insert	44
	7.1.2	4.1.2.1	Amplification of mGM-CSF	
		4.1.2.1	gene from CT26 cells	44
		4.1.2.2	Amplification of individual	
		4.1.2.2	fragments for insert with	
			mGM-CSF gene	45
		4.1.2.3	Overlapping PCR of	45
		4.1.2.5		
			fragments for insert with	46
		4124	mGM-CSF gene	40
		4.1.2.4	Colony PCR of	
			pJET(F1F2F3) with mGM-	47
1.2	Constant	tion of a AT	CSF gene transformant	47
4.2		cuon of rAF	F-GFP with GM-CSF gene	40
	plasmid 4.2.1			48
	4.2.1		rAF-GFP/hGM-CSF) plasmid	48
		4.2.1.1	Single restriction enzyme	
			digestion of backbone and	40
		4010	insert with hGM-CSF gene	48
		4.2.1.2	Colony PCR of	
			pOLTV5(rAF-GFP/hGM-	40
		01 771-	CSF) transformant	49
	4.2.2	-	rAF-GFP/mGM-CSF) plasmid	50
		4.2.2.1	Single restriction enzyme	
			digestion of backbone and	
			insert with mGM-CSF gene	50

xi

			4.2.2.2 Colony PCR of pOLTV5(rAF-GFP/mGM-		
			CSF) transformant	51	
		4.2.3	Verification of pOLTV5(rAF-GFP/hGM-		
			CSF) and pOLTV5(rAF-GFP/mGM-		
			CSF) plasmid	52	
	4.3	Recover	y and rescue of recombinant NDV	53	
		4.3.1	Transfection of recombinant plasmids in		
			BSR-T7/R5 cells	53	
		4.3.2	Small-scale propagation of rNDV with		
			hGM-CSF gene	56	
		4.3.3	Small-scale propagation of rNDV with		
			mGM-CSF	57	
		4.3.4	Large-scale propagation and purification		
			of rNDV	58	
		4.3.5	Plaque assay	59	
		4.3.6	MTT assay	63	
	4.4	Biologic	cal and Functional Activity of recombinant		
		GM-CSI		65	
		4.4.1	Expression of GM-CSF	65	
		4.4.2	Chemoattractant of GM-CSF	69	
5	DISCUS	SION		73	
6	CONCL	USION	AND RECOMMENDATIONS FOR	80	
	FUTUR	E RESE	ARCH		
REFERENCE	REFERENCES/BIBLIOGRAPHY 81				
APPENDICES				89	
BIODATA C		ENT		96	
PUBLICATION 97					
IUDLICATI) (

G

LIST OF TABLES

Table		Page
1	Examples of oncolytic viruses based on their genome	5
2	PMA induction and optimization of LPS induction on U937 cells	16
3	Preparation of cDNA conversion from RNA of U937 cells	18
4	Thermocycling conditions of cDNA conversion from RNA of	
	U937 cells	18
5	Preparation of hGM-CSF gene amplification from cDNA of U937 cells	18
6	Thermocycling conditions of hGM-CSF gene amplification from	
	cDNA of U937 cells	18
7	Optimization of LPS induction on CT26 cells	20
8	Preparation of cDNA conversion from RNA of CT26 cells	20
9	Thermocycling conditions of cDNA conversion from RNA of	21
	CT26 cells	
10	Preparation of mGM-CSF gene amplification from cDNA of CT26 cells	21
11	Thermocycling conditions of mGM-CSF gene amplification from	21
10	cDNA of CT26 cells	25
12	Preparation of F1 and F3 amplification from purified	25
	pOLTV5(rAF-GFP) plasmid	
13	Thermocycling conditions of F1 and F3 amplification from	25
	purified pOLTV5(rAF-GFP) plasmid	
14	Preparation of overlapping F1, F2 and F3	27
15	Thermocycling conditions for the overlap PCR reaction of F1, F2	

	and F3	27
16	Preparation of colony PCR of pJET(F1F2F3) transformant	28
17	Thermocycling conditions of colony PCR of pJET(F1F2F3)	
	transformant	28
18	Preparation of single restriction enzyme digestion of	
	pOLTV5(rAF-GFP) and pJET(F1F2F3) plasmid	30
19	Preparation of colony PCR of pOLTV5(rAF-GFP/hGM-CSF) and	
	pOLTV5(rAF-GFP/mGM-CSF) transformant	31
20	Thermocycling conditions of colony PCR of pOLTV5(rAF-	
	GFP/hGM-CSF) and pOLTV5(rAF-GFP/mGM-CSF) transformant	31
21	Preparation of cDNA conversion of rNDV genome	34
22	Thermocycling conditions of cDNA conversion of rNDV genome	34
23	Preparation of rNDV fragment amplification	34
24	Thermocycling conditions of rNDV fragment amplification	34
25	Preparation of purified rNDV fragment amplification	37

6

LIST OF FIGURES

Figure		Page
1	General mechanisms of oncolytic virus eliminating tumour	4
2	Schematic diagram of NDV	6
3	General mechanisms of rNDV expressing cytokine eliminating tumour	9
4	Schematic diagram of pOLTV5(rAF-GFP), pOLTV5(rAF-GFP/hGM-CSF) and pOLTV5(rAF-GFP/mGM-CSF) plasmid	22
5	Schematic diagram of individual fragments for insert construction	24
6	Schematic diagram of complete insert constructed by overlapping PCR	26
7	Schematic diagram of pOLTV5(rAF-GFP) plasmid and complete insert	30
8	Amplified hGM-CSF gene from differentiated U937 cells post LPS-induction	40
9	Amplification of F1, F2 and F3 fragments for insert with hGM- CSF gene	41
10	Overlapping PCR of fragments for insert with hGM-CSF gene	42
11	Colony PCR of pJET(F1F2F3) with hGM-CSF gene transformants	43
12	Amplified mGM-CSF gene from CT26 cells post LPS induction	44
13	Amplification of F1, F2 and F3 fragments for insert with mGM-CSF gene	45
14	Overlapping PCR of fragments for insert with mGM-CSF gene	46
15	Colony PCR of pJET(F1F2F3) with mGM-CSF gene transformants	47
16	Single restriction enzyme digestion of backbone and insert with hGM-CSF gene	48
17	Colony PCR of pOLTV5(rAF-GFP/hGM-CSF) transformants	49
18	Single restriction enzyme digestion of backbone and insert with mGM-CSF gene	50

 \bigcirc

19	Colony PCR of pOLTV5(rAF-GFP/mGM-CSF) transformant	51
20	Verification of pOLTV5(rAF-GFP/hGM-CSF) and pOLTV5(rAF-GFP/mGM-CSF) plasmid	52
21	Presence of fluorescent detected in BSR-T7/R5 cells three days post-transfection	54
22	Presence of fluorescent detected in BSR-T7/R5 cells fourteen days post-transfection	55
23	Verification of small-scale rAF-GFP/hGM-CSF virus propagation	56
24	Verification of small-scale rAF-GFP/mGM-CSF virus propagation	57
25	Verif <mark>ication of purified rAF-GFP</mark> , rAF-GFP/hGM-CSF, rAF- GFP/mGM-CSF virus	58
26	A representative plaque assay of the purified rAF-GFP virus	60
27	A representative plaque assay of purified rAF-GFP/hGM-CSF virus	61
28	A representative plaque assay of purified rAF-GFP/mGM-CSF virus	62
29	Percentage of viable cells at several time points after infected with rAF-GFP,rAF-GFP/hGM-CSF and rAF-GFP/mGM-CSF at MOI=1	64
30	Detection of hGM-CSF expressed by rAF-GFP and rAF-GFP/hGM-CSF during infection	66
31	Detection of mGM-CSF expressed by rAF-GFP and rAF-GFP/mGM-CSF during infection	68
32	The presence of U937 cells migrated 12 h post-incubation	70
33	The presence of U937 cells migrated 24 h post-incubation	71
34	The presence of RAW264.7 cells migrated 12 h post- incubation	72

LIST OF ABBREVIATIONS

%	Percent
×g	times gravity
°C	degree celsius
μg	Microgram
μL	Microliter
μm	micrometre
∞	Infinity
ANTRX1	anthrax toxin receptor 1
bp	base pair
CAR	coxsackievirus and adenovirus receptor
CD	cluster of differentiation
CD14	cluster of differentiation 14
cDNA	complementary deoxyribonucleic acid
CO ₂	carbon dioxide
CSF2	colony stimulating factor 2
DAF	decay-accelerating factor
ddH ₂ O	double-distilled water
DNA	deoxyribonucleic acid
E. coli	Escherichia coli
EDTA	ethylenediaminetetraacetic acid
ELISA	enzyme-linked immunosorbent assay
F	Fusion
F1	fragment 1

	F2	fragment 2
	F3	fragment 3
	FBS	foetal bovine serum
	g	gram
	GE	gene end
	GM-CSF	granulocyte-macrophage colony-stimulating factor
	GM-CSFR	granulocyte-macrophage colony-stimulating factor receptor
	GS	gene start
	h	hour
	hGM-CSF	human granulocyte-macrophage colony-stimulating factor
	HN	haemagglutinin-neuraminidase
	hpi	hour-post induction
	IG	intergenic
	JAK-2	janus kinase 2
	JAM-A	junctional adhesion molecule A
	L	litre/large
	LOD	limit of detection
	LPS	lipopolysaccharide
	М	matrix
G	mg	miligram
	mGM-CSF	murine granulocyte-macrophage colony-stimulating factor
	min	minute
	mL	millilitre
	MOI	multiplicity of infection
	MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

	NDV	newcastle disease virus
	ng	Nanogram
	NP	nucleocapsid
	OD	optical density
	Р	phosphoprotein
	PBS	phosphate buffered saline
	PCR	polymerase chain reaction
	Pfu/mL	plaque forming units/millilitre
	PMA	phorbol 12-myristate 13-acetate
	RNA	ribonucleic acid
	rNDV	recombinant newcastle disease virus
	RNP	ribonucleoprotein
	S	Second
	SOC	super optimal broth with catabolite repression
	ssRNA	single-stranded ribonucleic acid
	STAT5	signal transducer and activator of transcription 5
	TfR	transferrin receptor
	TLR4	toll-like receptor 4
	v/v	volume/volume
	w/v	weight/volume
	α	Alpha
	β	Beta
()	γ	Gamma
U		

xix

CHAPTER 1

INTRODUCTION

Cancer has caused approximately 10 million deaths globally and the number of mortalities in 2030 and 2040 are estimated to be 12.9 million and 16.3 million, respectively (World Health Organization, 2021). Despite the availability of cancer treatments, the estimated number of cancer mortalities is increasing. Cancer is formed by the accumulation of genetic abnormalities of the normal cells that may be induced by several factors such as unhealthy lifestyle, viruses, exposure to ultraviolet radiation and many more (National Cancer Institute, 2021 & World Health Organization, 2021). Such genetic abnormalities affect the homeostasis of the normal cells resulting in unregulated replication and eventually tumours formation (National Cancer Institute, 2021).

Cancer can be treated through surgery, radiotherapy, chemotherapy or a combination of them depending on the tumour type and patients' health condition. Although they are the gold standard treatment in many hospitals, these treatments are not potent enough to eliminate tumours completely (Kelly & Russell, 2007; Schirrmacher, 2019). Consequently, innovative intervention using biological agents for cancer treatment such as immunotherapy and virotherapy is continuously investigated in many preclinical and clinical studies (Schirrmacher, 2019). In virotherapy, virus that possesses oncolytic activity is manipulated and used as the anti-cancer agent (Russell & Peng, 2018). A virus that is suitable to be an oncolytic virus must possess certain traits. It must be non-pathogenic to humans and is able to lyse cancer cells without affecting the normal cells. The oncolytic virus can gain the oncolytic ability naturally or through genetic modification (Maroun et al., 2017; Russell & Peng, 2018). Out of the many oncolytic viruses available, Newcastle disease virus (NDV) has gained the researchers' interest to be used as an anti-cancer agent.

NDV is an avian pathogen that causes Newcastle disease in the avian species (Kaleta & Baldauf, 1988). It is an RNA virus with a genome that is non-segmented, singlestranded, and negative-sensed $(3^{\prime} \rightarrow 5^{\prime})$ (Yusoff & Tan, 2001; Song et al., 2019). Its RNA genome consists of six genes encoding for six structural proteins and two nonstructural proteins (Wilde et al., 1986; Yusoff & Tan, 2001). NDV is classified into three groups based on its pathogenicity; non-virulent (lentogenic strain), moderately virulent (mesogenic strain) and highly virulent (velogenic strain) (Ganar et al., 2014). Although it is an infectious avian virus, it is non-pathogenic to human causing only mild flu-like symptoms (Kaleta & Baldauf, 1988). The virus is a promising anti-cancer because it can specifically lyse cancer cells without going through any genetic modification (Zamarin & Palese, 2012). In addition, NDV oncolytic activity could also be enhanced via reverse genetics for genetic manipulation (Bukreyev & Collins, 2008). Integration of immunostimulatory gene in the NDV genome has been proven to improve the elimination of cancer cells (Janke et al., 2007; Cheng et al., 2016). In 2015, talimogene laherparepvec (T-VEC) is the first viroimmunotherapy that was approved by the U.S. Food and Drug Administration (FDA) to be used on patients with non-resectable metastatic melanoma (Fountzilas et al., 2017). T-VEC is genetically modified herpes simplex virus-1 (HSV-1) that express human granulocyte-macrophage colony-stimulating factor (GM-CSF) which is an immunostimulatory gene and it was proven to be clinically benefit in a randomized phase III with an acceptable safety profile in patients with advanced melanoma (Fountzilas et al., 2017; Bommareddy et al., 2018).

The approval of T-VEC by FDA as a treatment for melanoma patients has shown that viroimmunotherapy is a dark horse in cancer treatment and this sparked researchers' interest to develop more biological anti-cancer agents including Cheng et al. (2016). They generated recombinant NDV that express human GM-CSF using NDV-73T mesogenic strain even though the strain is classified as selective agents. This is due to the correlation of NDV strains and their oncolytic ability which, the more virulent it is, the better it can lyse cancer cells (Kalyanasundram et al., 2018). The addition of the human GM-CSF gene with the mesogenic strain of NDV-73T enhanced immune cells infiltration without affecting its ability to lyse cancer cells (Cheng et al., 2016).

Currently, there is no report on the recombinant velogenic strain of NDV expressing GM-CSF even though it has the best oncolytic ability out of other NDV strains and the immunogenic effects after the integration of GM-CSF in the velogenic viral genome also remain unknown. This study aimed to generate recombinant NDV expressing human and murine granulocyte-macrophage colony-stimulating factors, rAF-GFP/hGM-CSF and rAF-GFP/mGM-CSF, respectively, from NDV rAF-GFP velogenic strain. It was hypothesised that upon infection of the viruses in the cancer cells, they would be able to release GM-CSF to attract macrophages. To achieve the objective, three sub-objectives were derived:

- 1. To clone human and murine GM-CSF gene into pOLTV5(rAF-GFP) plasmids
- 2. To recover the recombinant NDV harbouring the GM-CSF gene
- 3. To verify the expression and biological activity of GM-CSF during infection

REFERENCES

- Aghi, M., Visted, T., Depinho, R. A., & Chiocca, E. A. 2008. Oncolytic herpes virus with defective ICP6 specifically replicate in quiescent cells with homozygous genetic mutations in p16. *Oncogene* **27(30)**: 4249-4254.
- Alexander, D. J. 1989. Newcastle disease and other avian paramyxoviruses. *A Laboratory Manual for Isolation and Identification of Avian Pathogens* (pp. 114-120). American Association of Avian Pathologists, Philadelphia.
- Alexander, D. J. 1997. Newcastle disease and other avian Paramyxoviridae infections. *Diseases of Poultry* (pp. 541-569).
- Alexander, D. J. 1998. Newcastle disease and other avian paramyxoviruses. In: Swayne, D.E., Glisson, J., Jackwood, M. W., Pearson, J. E., Reed, W. M. (Eds.), A Laboratory Manual for the isolation and Identification of Avian Pathogens. American Association of Avian Pathologists, Philadelphia.
- Alexander, D. J. 2000. Newcastle disease and other avian paramyxoviruses. *Revue Scientifique Et Technique* **19(2)**: 443-462.
- Arifin, M., Mel, M., Abdul Karim, M. L., & Ideris, A. 2010. Production of Newcastle disease virus by Vero cells grown on Cytodex 1 Microcarriers in a 2-Litre Stirred Tank Bioreactor. *Journal of Biomedicine and Biotechnology* 586363: 1-7.
- Ayllon, J., Garcia-Sastre, A., & Martinez-Sobrido, L. 2013. Rescue of Recombinant Newcastle Disease Virus from cDNA. *Journal of Visualized Experiments* 80: 50830.
- Babiker, H. M., Riaz, I. B., Husnain, M., & Borad, M. J. 2017. Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma. *Oncolytic Virotherapy* 6: 11-18.
- Becher, B., Tugues, S., & Greter, M. 2016. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. *Immunity* 45: 963-973.
- Bergkessel, M., & Guthrie, C. 2013. Colony PCR. *Methods in Enzymology* **529**: 299-309.
- Bhattacharya, P., Thiruppathi, M., Elshabrawy, H. A., Alharshawi, K., Kumar, P., & Prabhakar, B. S. 2015. GM-CSF: An immune modulatory cytokine that can suppress autoimmunity. *Cytokine* **75**: 261-271.
- Bommareddy, P. K., Peters, C., Saha, D., Rabkin, S. D., & Kaufman, H. L. 2018. Oncolytic Herpes Simplex Viruses as a Paradigm for the Treatment of Cancer. *Annual Review of Cancer Biology* **2**: 155-173.
- Bretscher, C., & Marchini, A. 2019. H-1 Parvovirus as a Cancer-Killing Agent: Past, Present, and Future. *Viruses* **11(6)**: 562-582.

- Bukreyev, A., & Collins, P. L. 2008. Newcastle disease virus as a vaccine vector for humans. *Current Opinion in Molecular Therapeutics* 10(1): 46-55.
- Burgess, A. W., & Metcalf, D. 1980. The nature and action of granulocyte-macrophage colony stimulating factors. *Blood* 56: 947-958.
- Cao, L., Zhang, R., Liu, T., Sun, Z., Hu, M., Sun, Y., Cheng, L., Guo, Y., Fu, S., Hu, J., Li, X., Yu, C., Wang, H., Chen, H., Li, X., Fry, E. E., Stuart, D. I., Qian, P., Lou, Z., & Rao, Z. 2018. Seneca Valley virus attachment and uncoating mediated by its receptor anthrax toxin receptor 1. *The Proceedings of the National Academy of Sciences* 115(51): 13087-13092.
- Chan, W. T., Verma, C. S., Lane, D. P., & Gan, K. E. 2013. A comparison and optimization of methods and factors affecting the transformation of *Escherichia coli. Bioscience Reports* 33(6): 931-937.
- Chanput, W., Peters, V., & Wichers, H. 2015. THP-1 and U937 Cells. In: Verhoeckx K. et al. (Eds), *The Impact of Food Bioactives on Health*. Springer, Cham.
- Cheng, X., Wang, W., Xu, Q., Harper, J., Carroll, D., Galinski, M. S., Suzich.J., & Jin, H. 2016. Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy. *Journal of Virology* **90**: 5343-5352.
- Cheow, P. S., Tan, T. K., Song, A, A., Yusoff, K., & Chia, S. L. 2020. An improved method for the rescue of Newcastle disease virus. *BioTechniques* 68: 96-100.
- Chia, S. L., Yusoff, K., & Shafee, N. 2014. Viral persistence in colorectal ancer cells infected by Newcastle disease virus. *Virology Journal* 11: 91-98.
- Chiswick, E. L., Duffy, E., Japp, B., & Remick, D. 2012. Detection and Quantification of Cytokines and Other Biomarkers. *Methods in Molecular Biology* 844:15-30.
- Coffey, M. C., Strong, J. E., Forsyth, P. A., & Lee, P. W. 1998. Reovirus therapy of tumors with activated Ras pathway. *Science* 282(5392): 1332-1334.
- Cuoco, J.A., Rogers, C.M., Mittal, S. 2021. The oncolytic Newcastle disease virus as an effective immunotherapeutic strategy against glioblastoma. Neurosurgical Focus **50**(2): 1-9
- Eggert, J. 2017. Cancer Basics (2nd ed.). Pittsburgh, PA: Oncology Nursing Society.
- Elankumaran, S., Rockemann, D., & Samal, S. K. 2006. Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. *Journal of Virology* **84(8)**: 3835-3844.
- Engeland, C. E., & Ungerechts, G. 2021. Measles Virus as an Oncolytic Immunotherapy. *Cancers* 13: 544-562.
- Engel-Herbert, I., Werner, O., Teifke, J. P., Mebatsion, T., Menttenleiter, T. C., & Romer-Oberdorfer, A. 2003. Characterization of a recombinant Newcastle disease virus expressing the green fluorescent protein. *Journal of Virological Methods* **108:** 19-28.

- Errington, W., & Emmerson, P. T. 1997. Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein. *Journal of General Virology* **78**(**9**): 2335-2339.
- Ferlay, J., Laversanne, M., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., & Bray, F. 2020. *Global Cancer Observatory: Cancer Tomorrow*. Lyon, France: International Agency for Research on Cancer.
- Filley, A. C., & Dey, M. 2017. Immune System, Friend or Foe of Oncolytic Virotherapy?. *Frontiers in Oncology* **7**: 106-113.
- Fountzilas, C., Patel, S., & Mahalingam, D. 2017. Review: Oncolytic virotherapy, updates and future directions. *Oncotarget* **8**(**60**): 102617-102639.
- Ganar, K., Das. M., Sinha. S., & Kumar. S. 2014. Newcastle disease virus: current status and our understanding. *Virus Research* **184**: 71-81.
- Garcia, A., Serrano, A., Abril, E., Jimenez, P., Real, L.M., Canton, J., Garrido, F., & Ruiz-Cabello, F. 1998. Differential effect on U937 cell differentiation by targeting transcriptional factors implicated in tissue-or stage-specific induced integrin expression. *Experimental Hematology* 27(1999): 353-364.
- Geisler, A., Hazini, A., Heimann, L., Kurreck, J., & Fechner, H. 2021. Coxsackievirus B3-Its Potential as an Oncolytic Virus. *Viruses* 13: 718-741.
- Ginting, T. E., Suryatenggara, J., Christian, S., & Mathew, G. 2017. Proinflammatory response induced by Newcastle disease virus in tumor and normal cells. *Oncolytic Virotherapy* **6**: 21-30.
- Griffin, J. D., Cannistra, S. A., Sullivan, R., Demetri, G. D., Ernst, T. J& Kanakura, Y. 1990. The biology of GM-CSF: regulation of production and interaction with its receptor. *The International Journal of Cell Cloning* 8: 35-45.
- Hamilton, J. A. 2002. "GM-CSF in inflammation and autoimmunity". *TRENDS in Immunology* **23(8)**: 403-8.
- Hass, R., Bartels, H., Topley, N., Hadam, M., Kohler, L., Goppelt-Strube, M., & Resch, K. 1989. TPA-induced differentiation and adhesion of U937 cells: changes in ultrastructure, cytoskeletal organization and expression of cell surface antigens. *European Journal of Cell Biology* **48**: 282.
- Hassanpour, S. H., & Dehghani, M. 2017. Review of cancer from perspective of molecular. *Journal of Cancer Research and Practice* 4: 127-129.
- Hercus, T. R., Thomas, D., Guthridge, M. A., Ekert, P. G., King-Scott, J., Parker, M. W., & Lopez, A. F. 2009. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signalling and its role in disease. *Blood* 114: 1289-1298.
- Howells, A., Marelli, G., Lemoine, N. R., & Wang, Y. 2017. Oncolytic Viruses Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer. *Frontiers* in Oncology 7: 195-210.

- Huang, C., Kuo, K., C, T., Chuang, C., Kao, C., Hsieh, Y., Cheng, K., Wang, J., Cheng, C., Chen, C., & Cheng, T. 2015. Development of Membrane-Bound GM-CSF and IL-18 as an Effective Tumor Vaccine. *PLOS ONE* 10(7): 1-13.
- Huang, Y., Wan, H. Q., Liu, H. Q., Wu, Y. T., Liu, X. F. 2004. Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese: a novel six nucleotide insertion in the non-coding region of the nucleoprotein gene. *Virology Journal* 149(7): 1445-1457.
- Ishizuka, T., Hirata, I., Adachi, M., Kurimoto, F., Hisada, T., Dobashi, K., & Mori, M. 1995. Effects of Interferon-γ on Cell Differentiation and Cytokine Production of a Human Monoblast Cell Line, U937. *Inflammation* 19(6): 627-636.
- Janke, M., Peeters, B., de Leeuw, O., Moorman, R., Arnold, A., Fournier, P., & Schirrmacher, V. 2007. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy. *Gene Therapy* 14(23): 1639-1649.
- Kaleta, E. F., & Baldauf, C. 1988. Newcastle Disease in Free-Living and Pet Birds. In: Alexander D. J. (Eds), Newcastle Disease (Developments in Veterinary Virology). Springer, Boston, MA.
- Kalyanasundram, J., Hamid, A., Yusoff, K., & Chia, S. L. 2018. Newcastle disease virus strain AF2240 as an oncolytic virus: A review. Acta Tropica 183: 126-133.
- Kaufman, H. L., Ruby, C. E., Hughes, T., and Slingluff, Jr. C. L. 2014. Current status of granulocyte-macrophage colony-stimulating factor in immunotherapy of melanoma. *Journal of ImmunoTherapy of Cancer* 2: 11.
- Kelly, E., & Russell, S. J. 2007. History of Oncolytic Viruses: Genesis to Genetic Engineering. *The American Society of Gene Therapy* 15(4): 651-659.
- Krishnamurthy, S., Huang, Z., & Samal, S. K. 2000. Recovery of a virulent strain of Newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation. *Virology* 278: 168-182.
- Lamb, R. A., & Kalokofsky, D. 1996. *Paramyxoviridae*: the viruses and their replication. In B. N Fields, D. M. Knipe & P. M. Howley (Eds.) *Fields virology* (pp. 1177-1203). Philadelphia, PA: Lippincott-Raven.
- Lamb, R. A., & Parks, G. D. 2007. Paramyxoviridae: the viruses and their replication. In B. N. Fields, D. N. Knipe, & P. M. Howley (Eds.), *Fields virology* (5th ed., pp. 1449-1496). Lippincott, Williams, and Wilkins.
- Lawler, S. E., Speranza, M. C., Cho, C.F., & Chiocca, A. 2017. Oncolytic Viruses in Cancer Treatment. JAMA Oncology 3(6): 841-849.
- Lodish, H., Berk, A., Zipursky, S. L., Matrudaira, P., Baltimore, D., & Darnell, J. 2000. *Molecular Cell Biology* (4th ed.). New York: W. H. Freeman.

- Luo, J., Maeda, S., Hsu, L., Yagita, H., & Karin, M. 2004. Inhibition of NF-_kB in cancer cells convert inflammation-induced growth mediated by TNFα to TRAIL-mediated tumor regression. *Cancer cell* **6**: 297-305.
- Maroun, J., Munoz-Alia, M., Ammayappan, A., Schulze, A., Peng, K. W., & Russell, S. 2017. Designing and building oncolytic viruses. *Future Virology* 12(4): 193-213.
- McGinners, L. W., Pantua, H., Reitter, J., & Morrison, T. G. 2006. Newcastle disease virus: propagation, quantification and storage. *Current Protocols in Microbiology* (chapter 15:15F.2.1-15F.2.18).
- McGinnes, L., McQuain, C., & Morrison, T. 1988. The P protein and non-structural 38 and 29kDa proteins of Newcastle disease virus are derived from the same open reading frame. *Virology* **164**: 256-264.
- Meng, F., & Lowell, C. A. 1997. Lipopolysaccharide (LPS)-induced Macrophage Activation and Signal Transduction in the Absence of Src-Family Kinases Hck, Fgr, and Lyn. *Journal of Experimental Medicine* 185(9): 1661-1670.
- Metcalf, D. 1984. The hemopoietic Colony Stimulating Factors. Amsterdam: Elsevier Science Publishers.
- Mui, A. L., Wakao, H., O'Farrell, A. M., Harada, N., & Miyajima, A. 1995. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. *The EMBO Journal* 14: 1166– 75.
- Muller, L., Berkeley, R., Barr, T., Ilett, E., & Errington-Mais, F. 2020. Past, Present and Future of Oncolytic Reovirus. *Cancers* 12: 3219-3245.
- Nakaya, T., Cros, J., Park, M., Nakaya, Y., Zheng, H., Sagrera, A., Villar, E., Garcia-Sastre, A., & Palese, P. 2001. Recombinant Newcastle disease virus as a vaccine vector. *Journal of Virology* 75: 11868-11873.
- National Cancer Institute. 2021. What Is Cancer?. Retrieved August 1 2021, from https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
- Nebiker, C. A., Han, J., Eppenberger-Castori, S., Lezzi, G., Hirt, C., Amicarella, F., Cremonesi, E., Huber, X., Padovan, E., Angrisani, B., Droeser, R. A., Rosso, R., Bolli, M., Oertli, D., Holzen, U., Adamina, M., Muraro, M. G., Mengus, C., Zajac, P., Sconocchia, G., Zuber, M., Tornillo, L., Terracciano, L., & Spagnoli, G. C. 2014. GM-CSF Production by Tumour Cells Is Associated with Improved Survival in Colorectal Cancer. *Clinical Cancer Research* 20(12): 3094-3106.
- Ngkelo, A., Meja, K., Yeadon, M., Adcock, I., & Kirkham, P. A. 2012. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and G_iα dependent PI-3kinase signalling. *Journal of Inflammation* **9**: 1-7.
- Parajuli, B., Sonobe, Y., Kawanokuchi, J., Doi, Y., Noda, M., Takeuchi, H., Mizuno, T., & Suzumura, A. 2012. GM-CSF increases LPS-induced production of

proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. *Journal of Neuroinflammation* **9**: 268-280.

- Peeples, M. E., Bratts. M. A. 1984. Mutation in the matrix protein of Newcastle disease virus can results in decreased fusion glycoprotein incorporation into particles and decreased infectivity. *Journal of Virology* 51(1): 81-90.
- Peeters, B. P. H., de Leeuw, O. S., Koch, G., & Gielkens, A. L. J. 1999. Rescue of Newcastle Disease Virus from Cloned cDNA: Evidence that Cleavability of the Fusion Protein Is a Major Determinant for Virulence. *Journal of Virology* 73(6): 5001-5009.
- Pelet, T., Delenda, C., Gubbay, O., Garcin, D., & Kolakofsky, D. 1996. Partial characterization of a Sendai Virus Replication promoter and the rule of six. *Virology* 224 (2): 405-414.
- Quelle, F. W., Sato, N., Witthuhn, B. A., Inhorn, R. C., Eder, M., Miyajima, A., Griffin, J. D., & Ihle, J. N. 1994. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. *Molecular and Cellular Biology* 14: 4335–4341.
- Rajagopalan, L. E., & Malter, J. S. 1994. Modulation of Granulocyte-Macrophage Colony-stimulating Factor mRNA Stability *in Vitro* by the Adenosine-Uridine Binding Factor. *The Journal of Biological Chemistry* 269(39): 23882-23888.
- Rajagopalan, L. E., Burkholder, J. K., Turner, J. T., Culp, J., Yang, N., & Malter, J. S. 1995. Granulocyte-Macrophage Colony-Stimulating Factor mRNA Stabilization Enhances Transgenic Expression in Normal Cells and Tissues. *Blood* 86(7): 2551-2558.
- Rao, P. L., Gandham, R. K., & Subbiah, M. 2020. Molecular evolution and genetic variations of V and W proteins derived by RNA editing in Avian Paramyxoviruses. *Scientific Reports* 10: 9532-9548.
- Ravindra, P. V., Tiwari, A. K., Sharma, B., & Chauhan, R. S. 2009. Newcastle disease virus an oncolytic agent. *The Indian Journal of Medical Research* 130(5): 507-513
- Ros, C., Bayat, N., Wolfisberg, R., & Almendral, J. M. 2017. Protoparvovirus Cell Entry. Viruses 9: 313-333.
- Russell. L., & Peng, K. W. 2018. The emerging role of oncolytic virus therapy against cancer. *Chinese Clinical Oncology* **7**(2):16-28.
- Santry, L. A., McAusland, T. M., Susta, L., Wood, G. A., Major, P. P., Petrik, J. J., Bridle, B. W., & Wootton, S. K. 2018. Production and Purification of High-Titer Newcastle Disease Virus for use in Preclinical Mouse Models of Cancer. *Molecular Therapy: Methods & Clinical Development* 9: 181-191.

- Schirrmacher, V. 2019. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). *International Journal of Oncology* **54**: 407-419.
- Shi, Y., Liu, C. H., Roberts, A. I., Das, J., Xu, G., Ren, G., Zhang, Y., Zhang, L., Yuan, Z. R., Tan, H. S. W, Das, G., & Devadas, S. 2006. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know. *Cell Research* 16: 126-133.
- Shi, Y., Zhao, Q., Liu, X., Dong, S., E, J., Li, X., Liu, C., & Wang, H. 2019. Toll-like receptor 4 regulated spontaneous intestinal tumorigenesis by up-regulating IL-6 and GM-CSF. *Journal of Cellular and Molecular Medicine* 24: 385-397.
- Shinohara, H., Yano, S., Bucana, C. D., & Fidler, I. J. 2000. Induction of Chemokine Secretion and Enhancement of Contact-Dependent Macrophage Cytotoxicity by Engineered Expression of Granulocyte-Macrophage Colony-Stimulating Factor in Human Colon Cancer Cells. *The Journal of Immunology* **164**: 2728-2737.
- Song, H., Zhong, L. P., He. J., Huang, Y., & Zhao, Y. X. 2019. Application of Newcastle disease virus in the treatment of colorectal cancer. World Journal of Clinical Cases 7(16): 2143-2154.
- Stephens, T. A., Nikoopour, E., Rider, B. J., Leon-Ponte, M., Chau, T. A., Mikolajczak, S., Chaturvedi, P., Lee-Chan, E., Flavell, R. A., Haeryfar, S. M. M., Madrenas, J., & Singh, B. 2008. Dendritic Cell Differentiation Induced by a Self-Peptide Derived from Apolipoprotein E. *Journal of Immunology* 181: 6859-6871.
- Stojdl, D.F., Lichty, B., Knowles, S., Marius, R., Atkins, H., Sonenberg, N., & Bell, J.
 C. 2000. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. *Nature Medicine* 6(7):821-825.
- Subramaniam, R., Hillberry, Z., Chen, H., Fletcher, K., Neuenschwander, P., & Shams,
 H. 2015. Delivery of GM-CSF to Protect against Influenza Pneumonia. *PLoS* ONE 10(4): e0124593.
- Tanimoto, A., Murata, Y., Wang, K. Y., Tsutsui, M., Kohno, K., & Sasaguri, Y. 2007. Monocyte Chemoattractant Protein-1 Expression is Enhanced by Granulocyte-Macrophage Colony-Stimulating Factor via Jak2-Stat5 Signalling and Inhibited by Atorvastatin in Human Monocytic U937 Cells. *Journal of Biological Chemistry* **283(8)**: 4643-4651.
- Thorens, B., Mermod, J., & Vassalli, P. 1987. Phagocytosis and inflammatory Stimuli Induce GM-CSF mRNA in Macrophages through Posttranscriptional Regulation. *Cell Press* **48**: 671-679.
- Van-Meerloo, J., Kaspers, G.J.L., & Cloos, J. 2011. Cell sensitivity assays: the MTT assay. *Methods in Molecular Biology* 731: 237-245.
- Wang, X., Ni, S., Chen, Q., Ma, L., Jiao, Z., Wang, C., & G, J. 2017. Bladder cancer cells induce immunosuppression of T cells by supporting PD-L1 expression in tumour macrophages partially through interleukin 10. *Cell Biology International* 41:177-186.

- Wang, Y., Han, G., Wang, K., Liu, G., Wang, R., Xiao, H., Li, X., Hou, C., Shen, B., Guo, R., Li, Y., & Chen, G. 2013. Tumor-Derived GM-CSF Promotes Inflammatory Colon Carcinogenesis via Stimulating Epithelial Release of VEGF. *Cancer Research* 74(3): 716-726.
- Wilde, A., McQuain, C., & Morrison, T. 1986. Identification of the sequence content of four polycistronic transcripts synthesized in Newcastle disease virus infected cells. *Virus Research* 5:77-95.
- World Health Organization. 2021. Cancer Tomorrow. Retrieved August 1 2021, from <u>https://gco.iarc.fr/tomorrow/en/dataviz/isotype?types=1&single_unit=500000&years=2040</u>.
- World Health Organization. 2021. Cancer. Retrieved August 1 2021, from https://www.who.int/news-room/fact-sheets/detail/cancer.
- Yan, P., Zeng, Y., Shen, W., Tuo, D., Li, X., & Zhou, P. 2020. Nimble Cloning: A Simple, Versatile, and Efficient System for Standardized Molecular Cloning. *Frontiers in Bioengineering and Biotechnology* 7(460): 1-10.
- Yoon, S. J., Heo, D. S., Kang, J. O., Lee, S. G., Kim, C. D., Sung, M., & Kim, N. K. 1998. Synergistic Anti-tumor Effects with co-expression of GM-CSF and IFN-γ in Murine Tumors. *The International Journal of Cancer* **77**: 907-912.
- Yucel, G., Zhao, Z., El-Battrawy, I., Lan, H., Lang, S., Li, X., Buljubasic, F., Zimmermann, W., Cyganek, L., Utikal, J., Ravens, U., Wieland, T., Borggrefe, M., Zhou, X., & Akin, I. 2017. Lipopolysaccharides induced inflammatory response and electrophysiological dysfunctions in human-induced pluripotent stem cells derived cardiomycytes. *Scientific reports* 7: 2935-2948.
- Yurchenko, K., Zhou, P., Kovner, A. V., Zavjalov, E. L., Shestopalova, L. V., & Shestopalov, A. M. 2018. Oncolytic effect of wild-type Newcastle disease isolated in cancer cell lines in vitro and in vivo on xenograft model. *PLOS ONE* 13(4): 1-19.
- Yusoff, K., & Tan, W. S. 2001. Newcastle disease virus: Macromolecules and opportunities. Avian Pathology 30(5): 439-455.
- Zamarin, D., & Palese, P. 2012. Oncolytic Newcastle Disease Virus for cancer therapy: old challenges and new directions. *Future Microbiology* **7**(**3**): 347-367.