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Abstract: The accurate estimation of forest above-ground biomass (AGB) is crucial for sustainable
forest management and tracking the carbon cycle of forest ecosystem. Machine learning algorithms
have been proven to have great potential in forest AGB estimation with remote sensing data. Though
many studies have demonstrated that a single machine learning model can produce highly accurate
estimations of forest AGB in many situations, efforts are still required to explore the possible improve-
ment in forest AGB estimation for a specific scenario under study. This study aims to investigate the
performance of novel ensemble machine learning methods for forest AGB estimation and analyzes
whether these methods are affected by forest types, independent variables, and spatial autocorrelation.
Four well-known machine learning models (CatBoost, LightGBM, random forest (RF), and XGBoost)
were compared for forest AGB estimation in the study using eight scenarios devised on the basis of
two study regions, two variable types, and two validation strategies. Subsequently, a hybrid model
combining the strengths of these individual models was proposed for forest AGB estimation. The
findings indicated that no individual model outperforms the others in all scenarios. The RF model
demonstrates superior performance in scenarios 5, 6, and 7, while the CatBoost model shows the
best performance in the remaining scenarios. Moreover, the proposed hybrid model consistently
has the best performance in all scenarios in spite of some uncertainties. The ensemble strategy
developed in this study for the hybrid model substantially improves estimation accuracy and exhibits
greater stability, effectively addressing the challenge of model selection encountered in the forest
AGB forecasting process.

Keywords: above-ground biomass; ensemble model; CatBoost; machine learning

1. Introduction

The forest ecosystem, as an important carbon sink and carbon source on land, plays
a major role in the global carbon cycle [1]. Accurate and robust forecasts of forest above-
ground biomass (AGB) can improve our understanding of the global carbon cycle to achieve
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effective carbon reduction strategies, sustainable forest management, and forest ecosystem
productivity monitoring [2]. Two approaches are available for forest AGB estimation on
a regional scale: field measurements and remote sensing estimation. Generally speaking,
regional forest AGB estimation with field measurements is extremely expensive, time-
consuming, difficult, and even destructive. It is necessary to combine field survey data and
remote sensing techniques to estimate AGB for carbon science and policy.

Three strategies have been utilized to improve forest AGB estimation accuracy through
remote sensing [2,3]. The first is to combine multi-source remote sensing data, such as opti-
cal, hyperspectral, and Light Detection and Ranging (Lidar) [3,4]. It has been demonstrated
that a combination of multiple remote sensing data sources could effectively improve the
accuracy of forest AGB estimation [5,6]. However, the high cost of hyperspectral and
Lidar remote sensing data restricts their extensive applications to forest AGB estimation
at regional scale. The second is to select the optimal features for the estimation. Since
different remote sensing data have their own features in both spectral and spatiotemporal
dimensions, several features can be extracted or computed from multisource remote sensing
data. The successful selection of these features can often improve forest AGB estimation
accuracy. Therefore, it is important to develop suitable feature-rich prediction models for
AGB estimation, which generally requires an effective way to screen out the most important
and useful information from numerous variables and eliminate redundant or irrelevant
variables involved in multiple remote sensing data [5]. Obvious advances have been made
in reducing model over-fitting and computation risks for forest AGB estimation [7]. Vari-
able selection using random forests (VSURF), recursive feature elimination (RFE), and least
absolute shrinkage and selection operator (LASSO) as feature selection methods have been
applied in forest AGB estimation [8,9]. The third is to adopt an appropriate estimation
algorithm for a specific scenario [10,11]. As is well known, a good model is very important
to have an accurate estimation of forest AGB in any scenario. Several models have been
developed for the estimation, ranging from simple linear regression to advanced machine
learning, such as random forest (RF), support vector machine (SVM), and artificial neural
networks (ANN).

Machine learning algorithms have been proven to be more effective than parameter-
ized methods that use linear models for AGB estimation [12–14]. The exploration of new
machine learning algorithms represents a direction to improve forest AGB forecast accuracy.
Ensemble learning is a branch of machine learning that can mainly be divided into Bagging
and Boosting algorithms [15]. RF is a popular technique in the Bagging algorithm widely
used in different forecasting fields [16–19]. Boosting algorithms include adaptive boosting
(AdaBoost), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost),
light gradient boosting machine (LightGBM), and categorical boosting (CatBoost). It has
been demonstrated that the boosting algorithms (XGBoost, CatBoost, LightGBM, and
GBDT) can provide significant improvements in estimation accuracy; hence, they have
been widely used in such studies in biology [20] and climate science [21]. Although several
efforts have attempted to use these algorithms to construct forest parameter models from
remote sensing data [8,22], the new ensemble learning algorithms XGBoost, CatBoost, and
LightGBM have only been recently introduced to forest AGB estimation. Few studies
have been reported comparing their performance in forest AGB estimation at a regional
scale. The CatBoost and XGBoost algorithms have been applied in our previous forest AGB
study [8], showing their great potential in application to forest AGB estimation at a regional
scale. Since these algorithms have their strengths and weaknesses, none of them have been
demonstrated to be the best for forest AGB estimation.

Hybrid models have been commonly recognized as an effective strategy to improve
the predictive performance of individual models and have been widely used in many
forecasting issues [23]. This is because hybrid models have the ability to make maximal
use of the available information involved in various single-forecast results, hence avoiding
effective information waste and reducing the influence of random factors on forecast results.
These strengths of hybrid models give them the best accuracy in estimation and allow them
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to produce the most stable forecast results in comparison with the prediction by individual
models. Several studies have demonstrated that hybrid models can enhance prediction
accuracy for applications in energy [24], climate [25], and soil [26]. The performance of
four individual machine learning algorithms (RF, quantile regression forest, cubist, and
fuzzy logic) and two hybrid methods (random forest-ordinary kriging and quantile random
regression forest-ordinary kriging) were compared in Matinfar et al. [27] to predict soil
organic carbon. The results demonstrated that hybrid models outperformed individual
models. Zhao et al. [28] developed a hybrid model by integrating ANN and a modified
Penman-Monteith equation for latent heat flux estimation. Their results revealed that
the hybrid model had better performance in extrapolation than the individual machine
learning model. Machine learning integration models have not been explicitly tested for
forest AGB forecasting, and studies using this model have not been seen in the literature of
forest AGB estimation. Therefore, on the basis of our previous study [8], we would like to
explore the capability of hybrid models in improving forest AGB prediction accuracy.

Forest AGB estimation with the above models generally ignores the important issue
of spatial autocorrelation (SAC), which refers to the potential interdependence in the
observation data of the variables within the same group. The presence of SAC violates the
assumption of independence among the variables used to establish the models for forest
AGB estimation. Therefore, ignoring SAC would make the models prone to result in a
biased estimation. The best approach to account for SAC is through setting the SAC as a
separate (weighing) variable or removing it from the observations, for example, by selecting
a non-correlated subset for the model establishment [29]. Another effective approach for the
consideration of SAC in model construction is to use a spatial cross-validation strategy, i.e.,
to conduct spatial clustering to the evaluation partitions in the cross-validation procedure
so that the underestimation of the model due to SAC can be corrected [30]. Spatial cross-
validation was used in Mayr et al. [31] to solve the SAC between two parameters in their
study of a burned forest area and the number of fire occurrences. The results showed
that the lower but more realistic model performances were retrieved from spatial cross-
validation. Meyer et al. [32] pointed out that spatial cross-validation was essential in
preventing an overoptimistic model when predicting leaf area index and land coverage.
Spatial cross-validation, however, is yet to be explored in forest AGB models.

The objective of this study is to develop a framework for the accurate estimation of
forest AGB, including the procedures from data input and modeling to validation. The
performance of four individual machine learning models (CatBoost, LightGBM, RF, and
XGBoost) will be compared for eight scenarios composed of two distinct study areas,
two variable types, and two validation strategies. The effects of forest types, indepen-
dent variables, and spatial autocorrelation on the forest AGB estimation accuracy will be
analyzed. Consequently, a hybrid model will be developed for forest AGB estimation.
Spectral variables, vegetation indexes, red-edge vegetation indexes, and texture measures
of Sentinel-2 will be calculated to maximize the potential information between the derived
remote sensing data and AGB. Moreover, VSURF was selected to screen out effective fea-
tures to participate in establishing the forest AGB model. The influence of SAC on the
forest AGB model will be evaluated by comparing random cross-validation and spatial
cross-validation. Therefore, the structure of the study will be as follows: Material and
Methods will be presented in Section 2, followed by the Results and Analysis given in
Section 3. Finally, Sections 4 and 5 will be used to present the Discussion and Conclusion of
the study.

2. Materials and Methods
2.1. Methodological Framework

Theoretically, forest AGB can be viewed as the total dry materials in weight under
a unit of acreage that the forest has above the ground surface. In terms of the temporal
dimension, this is the summation of the forest’s growth during its life cycle [1]. Many
variables play an important role in the formation of forest AGB during the forest life cycle.
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Difficulties are obvious for a precise estimation of forest AGB on a regional scale. Direct
measurement through felling all the trees in the forest to scale their weight would be the
ideal way to obtain the most accurate data on forest AGB. However, this is destructive,
highly costly, and time consuming. Thus, this approach is generally not viewed as the
proper method for forest AGB estimation. With the development of modern technology,
especially for remote sensing and data processing, a number of novel approaches have been
developed for forest AGB estimation [3,10]. The most practical one with wide applications
is to obtain a sample representing the various conditions of a forest and to develop a model
with the samples for forest AGB estimation. In recent decades, machine learning algorithms
have been widely used in many study fields including forest AGB estimation [7,13,16]. Due
the advantages in spatial dimensions, remote sensing has also been widely applied for forest
AGB estimation on a regional scale. Therefore, the combination of machine learning with
remote sensing represents a new direction for the study of forest AGB estimation [23,28].
The basic hypothesis for this combination is that remote sensing could provide a best way
to simultaneously obtain the required information about the ground that directly related to
the forest growth conditions and hence the biomass of the forest under study.

In order to perform this combination approach for forest AGB estimation, a number of
studies have been devoted to investigating the methods for model establishment, variable
selection, data processing, sampling implementation, and so on that relate to the process
of forest AGB estimation from data input to final result output. In this study, we intend
to compare the performance of four well-known machine learning models for forest AGB
estimation under eight different scenarios. Therefore, the methodological framework of
this study can be represented by Figure 1, which indicates that the framework will mainly
consist of four steps: (1) data preprocessing, (2) feature extraction, (3) feature selection, and
(4) modeling and validation.
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hybrid model under the spatial cross-validation and random cross-validation based on Sentinel-2
images and filed survey data.

2.2. Study Regions

This study was carried out in two typical forest regions of China, i.e., east Jilin (JL) and
central Guangxi (GX) (Figure 2), representing different climate conditions, forest structure,
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and species composition. The JL region has an area of 12.60 × 104 km2. The landscape
of the JI region mainly features with low mounts and hills. The elevation of the region
ranges from 200 m to about 1000 m. The climate of the region is the type of temperate
continental monsoon, with an average air temperature below −11 ◦C in winter and above
23 ◦C in summer. The forest under study is mainly the natural forest in the region, with
a few planted forests. Mixed broad-leaved forest dominates the forest type of the region,
and the main tree species in the forest are Pinus koraiensis Siebold et Zuccarini, Larix olgensis
Henry, and Juglans mandshurica Maxim.

1 
 

 
Figure 2. Geographical location of the two study regions in China: east Jilin (A) and central
Guangxi (B). In blue is the study area, in red are the sample points, and in green is the forest area.

The GX region is an area of 2.21 × 104 km2. The landform of the region is dominated
by plains and hills, with an elevation ranging from 80 m to about 400 m above sea level.
The climate of the GX region is mainly a pattern of humid subtropical monsoon, with an
annual average temperature of 21.6 ◦C. The type of forest under study is mainly the planted
forest, with the main tree species being Pinus massoniana Lamb., Eucalyptus robusta Smith,
and Cunninghamia lanceolata (Lamb.) Hook.

2.3. Field Data and Preprocessing

In the JL region, the required field AGB data of forest plot samples were obtained
from the 9th National Forest Continuous Inventory datasets of Jilin Province, which were
generated from the forest inventory campaigns conducted in 2014. The plot samples had
an acreage of 0.06 hectares extracted with a fixed spatial grid of 4 km × 8 km. To obtain
the field AGB data in the JL region, we assumed that potential changes in forest AGB due
to temporal differences between field inventories and remote sensing data acquisitions in
2018 would have very limited effects on the estimated results from the modeling in the
study. In the GX region, the field campaigns for forest AGB data were carried out during
2017 and 2018 with a plot size of 20 m × 30 m. The plots were representative and randomly
distributed, and non-forest areas were masked out. All living trees with a diameter at
breast height (DBH) larger than 5 cm in the sampling plot were measured to obtain the
information on species, tree height, canopy density, slope, aspect, slope position, and
coordinates. Furthermore, the field sampling plots either in non-forested areas (cropland,
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water, urban land, and bare land) or covered with clouds in the remote sensing images
were excluded.

The AGB of an individual tree was calculated using the general one-variable AGB
model [33,34] as follows:

M = a × D7/3 (1)

a = 0.3 × p (2)

where M (kg) is the AGB of a tree, D (cm) is the diameter at breast height of the tree, a is the
parameter of tree species, and p (g cm−3) is the basic wood density
(Table S1 in Supplementary Materials). The plot AGB was converted to per hectare
biomass (Mg ha−1).

2.4. Sentinel-2 Image Preprocessing and Variable Extraction

Image data used in the study for forest AGB modeling were Copernicus Sentinel-2
satellite imagery downloaded from the Google Earth Engine (GEE) platform
(https://earthengine.google.com/, accessed on 22 April 2024). Sentinel-2 MSI data contain
two products, Level-1C and Level-2A. The Level-2A product has been orthographically and
atmospherically corrected and geographically registered. To represent the best growing
status of forest for AGB estimation, the Normalized Difference Vegetation Index (NDVI)
maximum synthesis method, which uses the best observed value in adjacent time as the
filling value, was used to generate the composite images of the Level-2A product in 2018.
Then, the quality assessment band (QA60) was used for cloud masking based on cloudy
pixels identified. In addition, image splicing and image cropping were also performed on
the GEE platform.

To maximize information on forest AGB in the study regions, 10 of the 13 Sentinel-2
bands (4 visible, 4 red-edge, and 2 short-wavelength infrared (SWIR)) were extracted and
resampled to 10 m for the study. Consequently, a total of 125 predictive variables were
extracted (Table 1). A total of 22 widely-used vegetation indices and 13 red-edge vegetation
indices were also calculated for the study, and the specific description was presented in
reference [35]. Texture measures were extracted using the gray level co-occurrence matrix
method (GLCM), and eight GLCM measures with 5×5 window sizes were calculated from
the 10 spectral bands.

2.5. Selection of Variables Using VSURF

VSURF, a wrapper-based algorithm that uses random forests as the base classifier [36],
was used in the study to select the most discriminant features for the study. The feature
selection process consists of three stages, namely thresholding step, interpretation step,
and prediction step. Four parameters need to be set, including “ntree”, “nfor.thres”,
“nfor.interp”, and “nfor.pred”. Specific steps are as follows. First, feature variables were
ranked according to their relative importance, and low-scoring features were eliminated
to reduce the number of features. Second, the VSURF algorithm was used to produce
two separate subsets: a primary subset of important variables including redundancy,
and a small subset avoiding redundancy. Finally, the smallest subset with minimum
redundancy was selected as the input variables of the forest AGB estimation model in the
study. The procedures of VSURF algorithm were performed using the VSURF package
in R-4.0.5 [37]. Two datasets were outputted by the performance of VSURF procedures:
the first output dataset includes all the 125 variables, and the second output dataset only
includes 10 spectral variables.

https://earthengine.google.com/
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Table 1. Summary of predictor variables including Sentinel-2 spectral variables, vegetation indices,
red edge vegetation indices, and texture measures for AGB estimation.

Variable
Type

Variable
Number Variables Description

Spectral
variables 10

B2_ blue, B3_green, B4_red, B5_re1,
B6_re2, B7_re3, B8_NIR, B8a_nNir,

B11_SWIR1, B12_SWIR2

Band2-Blue, Band3-Green, Band4-Red, Band5-Vegetation red edge,
Band6-Vegetation red edge, Band7-Vegetation red edge, Band8-NIR,

Band8A-Narrow NIR, Band11-SWIR, Band12-SWIR

Vegetation
indices 22

DVI DVI = B8 − B4
Clg Clg = (B8/B3) − 1
NR NR = B4/(B8 + B4 + B3)

NNIR NNIR = B7/(B8 + B4 + B3)
NG NG = B3/(B8 + B4 + B3)
NLI NLI = (B82 − B4)/(B82 + B4)

RDVI RDVI = (B8 − B4)/(B8 + B4)0.5

SPVI SPVI = 0.4 × 3.7 × (B8 − B4) − 1.2 × (B3 − B4)
RI RI = (B4 − B3)/(B4 + B3)

EVI EVI = 2.5 × [(B8 − B4)/(B7 + (6 × B4) − (7.5 × B2) + 1)
GARI GARI = [B8 − (B3 − (B2 − B4))/(B7 + (B3 − (B2 − B4)]
VARIg VARIg = (B3 − B4)/(B3 + B4 − B2)
NDII NDII =(B8a − B11)/(B8a + B11)
NBR NBR =(B8a − B12)/(B8a + B12)

NMDI NMDI = [B8a − (B11 − B12)/(B8a + (B11 − B12)]
NDVI NDVI = (B8 − B4)/(B8 + B4)
RGR RGR =B4 − B3
SAVI SAVI = (B8 − B4)/(B8 + B4 + 0.5) × 1.5
RVI RVI = B8/B4

RVI54 RVI54 = B11/B4
RVI64 RVI64 = B12/B4

WDRVI WDRVI = [(0.02 × B8 − B4)/(0.02 × B8 + B4)] + [(1 − 0.02)/(1 + 0.02)]

Red edge
vegetation

indices
13

CIre CIre =(B8/B5) − 1
PSRI PSRI = (B4 − B3)/B6
MTCI MTCI =(B6 − B5)/(B5 − B4)

MCARI MCARI = [(B5 − B4) − 0.2 × (B5 − B3)] × (B5/B4)

MCARI2 MCARI2 = [1.5 × (2.5 × (B8 − B4) − 1.3 × (B8 − B3))/[(2 × B7 + 1)2 − (6 × B7
− 5 × B40.5) − 0.5]0.5

TCARI TCARI = [3 × (B5 − B4) − 0.2 × (B5 − B3)] × (B5/B4)]
TCARI2 TCARI2 = [3 × (B6 − B5) − 0.2 × (B5 − B3)] × (B5/B4)]

TVI TVI =0.5 × (120 × (B6 − B3) − 200 × (B4 − B3)

MTVI2 MTVI2 = [1.5 × (1.2 × (B8 − B3) − 2.5 × (B4 − B3))/[(2 × B7 + 1)2 − (6 × B7 −
5 × B40.5) − 0.5]0.5

IRECI IRECI = (B7 − B4)/(B5 + B6)
S2REP S2REP =700 + 35 × [(B8 − B4)/2 − B5]/(B6 − B5)

MSRren MSRren = [(B8a/B5) − 1]/[(B8a/B5)0.5 + 1]
WDRVIre WDRVIre = [(0.01 × B8 − B5)/(0.01 × B8 + B5)] + [(1 − 0.01)/(1 + 0.01)]

Texture
measures 80

Bi_Mea_5,Bi_Var_5,Bi_Hom_5,
Bi_Con_5, Bi_Dis_5, Bi_Ent_5,

Bi_ASM_5, Bi_Cor_5

10 spectral bands of Sentinel-2 texture measurement using gray-level
co-occurrence matrix based on 5 × 5 window size

Note: NIR is near infrared; SWIR is shortwave infrared. Bi_X_5 represents a texture image developed in Sentinel-2
10 spectral bands using the texture measure X with 5 × 5 pixels window, where Bi is band number, X is Mea
(Mean), Var is variance, Hom represents homogeneity, Con is the contrast, Dis is dissimilarity, Ent is entropy, ASM
is angular second moment, and Cor is correlation.

2.6. Spatial Cross-Validation

Since spatial autocorrelation exists among the variables used to estimate forest AGB in
our study, we intend to use two strategies for the spatial cross-validation of our estimation
results: random k-fold cross-validation and spatial k-fold cross-validation. The basic idea
of cross-validation is to repeatedly split a dataset into two subsets, the training subset
and the validation subset, where the training subset was used to train the above machine
learning algorithms (4 individual models and 1 hybrid model) for model establishment,
while the validation subset was used to validate the accuracy of the established model for
forest AGB estimation. Details on the spatial cross-validation of forest AGB estimation
with machine learning algorithms could be found in Kuhn and Johnson [38]. The only
difference between random cross-validation and spatial cross-validation is in their parti-
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tioning strategy of a sample dataset. In random cross-validation, the k-means clusters of
geographic coordinates were used to derive the validation subset from the sample dataset,
while in spatial cross-validation, a bias-reduced assessment was conducted for the model’s
predictive performance to enhance the stability of the model.

2.7. Development of Individual Models

The following four individual models belonging to the ensemble learning method
were used to develop the forest AGB estimation models in the study:

(1) Categorical Boosting (CatBoost). This model was developed by Dorogush et al. [39]
from the GBDT algorithm for gradient bias and prediction shift [40]. Building the
CatBoost model using the R language consists of four steps: data preprocessing,
model initialization, model training, and model evaluation. During model training,
depth, learning rate, and the number of iterations are the main parameters that need
to be adjusted to improve the accuracy of the CatBoost model, which is run in R-4.05
with the ‘catboost’ function.

(2) Light Gradient Boosting (LightGBM). This model was proposed by Ke et al. [41] on
the basis of the decision tree algorithm. An obvious advantage of the LightGBM
model is its computational speed and memory consumption [42]. Implementing
LightGBM involves several crucial steps, from data preparation to model evaluation
and interpretation. The initial phase in employing LightGBM within R involves careful
data preparation. This includes cleaning the dataset to handle missing values and
outliers and ensure data consistency. Feature engineering is also pivotal, involving the
transformation of categorical variables using one-hot encoding and the creation of new
features that can enhance model performance. The dataset is then split into training
and testing subsets to evaluate the model’s performance accurately. This model is also
run in R-4.0.5 using the ‘lightgbm’ package. The primary hyperparameters affecting
the model include learning rate, the number of iterations, and min-data.

(3) Random Forest (RF). This model has been widely used for many applications includ-
ing forest AGB estimation [43]. The running environment of the RF algorithm is also
the R package ‘randomForest’ using ‘ntree’ and ‘mtry’ parameters.

(4) Extreme Gradient Boosting (XGBoost). This model is a boosting algorithm based on
GBDT and RF approaches, which was first introduced by Chen and Guestrin [44] who
demonstrated that, in comparison with GBDT, the XGBoost model could significantly
improve multithreaded processing and the optimization function, which consequently
overcome the over-fitting problem [45]. The ‘xgboost’ package in R-4.0.5 was used
to run this model. Extended grid tuning was used to train the XGBoost model
on the training dataset, allowing for the investigation of different hyperparameter
combinations. In addition to the number of boosting iterations (nrounds = 200), the
hyperparameters also included the depth of the tree (max_depth = 2), learning rate
(eta = 0.3), and minimum loss reduction, namely gamma.

The ‘Caret’ package (version: 6.0-84) in R-4.0.5 was used to optimize the parameters
of the above models in the study.

2.8. Development of Hybrid Model

A hybrid model [46] is commonly defined as a model that combines the forecasting
advantages of several individual models so that the possible errors, bias, and uncertainty
caused by individual models can be maximally reduced. Therefore, it is believed that
a hybrid model provides one of the best ways to improve prediction accuracy and to
minimize the variance error between the predicted values. Every individual model has its
own uncertainty in modeling, hence unavoidably generating its own prediction errors when
subjected to the new data for modeling. The hybrid model used in this study integrated
the above four machine learning algorithms (Catboost, XGB, RF, and LightGBM) on the
basis of the entropy weighting method [47]. Thus, our hybrid model could be termed as



Forests 2024, 15, 975 9 of 23

the CLRX model. The prediction process of our hybrid model, i.e., the CLRX model, can be
outlined as follows:

Step 1: Calculate the prediction error eij of the individual model i (i = 1, 2, . . ., m, where
m = 4 in our study due to only 4 individual models being used in the study) for sample
j (j = 1, 2, . . ., n) in the training subset.

eij =


1, i f

|y j−ŷj(i)
∣∣∣

yj(i)
≥ 1,

|y j−ŷj(i)
∣∣∣

yj
, i f 0 ≤

|y j−ŷj(i)
∣∣∣

yj
< 1

(3)

where yj is the observed forest AGB, and ŷj(i) is the predicted forest AGB using the
individual model i.

Step 2: Normalize the prediction errors of each individual model i for sample j.

pij =
eij

∑n
j=1 eij

(4)

Step 3: Calculate the entropy weighting for each individual model.

hi = −k∑n
j=1 pijln pij (5)

where k = 1/ln(n).
Step 4: Calculate the weight coefficient for each individual model.

li =
di

∑m
i=1 di

(6)

where di = 1 − hi. The entropy weighting of the individual models in our hybrid model is
expected to decrease with the increasing variation in its prediction error.

Step 5: Compute the hybrid model (CLRX model) by summarizing the prediction
value of individual models with their weight coefficients.

ŷj = l1ŷj(1) + · · ·+ li ŷj(i) + · · ·+ lmŷj(m), j = 1, 2, . . . , n (7)

2.9. Model Evaluation

The sample dataset obtained from field investigation was divided into a training
subset (80%) and a validation subset (20%). In order to avoid the over-fitting of the model
for forest AGB estimation in our study, two cross-validations were performed: random
5-fold cross-validation and spatial 5-fold cross-validation. The estimation accuracy of the
forest AGB models was assessed with the independent validation subset to compute the
following four parameters that are generally used for validation: determination coefficient
(R2), root-mean-square error (RMSE), relative RMSE (RMSE%), and bias (Bias):

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (8)

RMSE =

√
∑n

i=1(yi − ŷi)
2

N
(9)

RMSE% =
RMSE

y
∗ 100 (10)

Bias = ∑n
i=1(yi − ŷi)

N
(11)
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where ŷi is the predicted value of forest AGB, yi is the observed value of forest AGB from
field investigation, y is the mean of the observed values, and N is the number of observations.

3. Results and Analysis
3.1. Forest AGB Characteristics in the Two Study Regions

Table 2 shows the forest AGB characteristics from field data in the two study re-
gions. The forest AGB value ranged from 39.50 Mg ha−1 to 235.70 Mg ha−1 in the JL
region and from 0.15 Mg ha−1 to 108.63 Mg ha−1 in GX region. Thus, it could be found
that forest AGB was much higher in the JL region (mean = 159.90 Mg/ha) than in GX
(mean = 53.40 Mg ha−1). This may be attributed to the fact that the forest in the JL region
is mainly the type of natural forest that has a long period of growing as a result of being a
conservation region, while the forest in the GX region was mainly the type of man-planted
economic forest that has relatively short period of growing due to its frequent chopping
down for economic income. Histograms of the measured forest AGB in the JL and GX
regions are depicted in Figure 3, which indicates that forest AGB was mainly distributed in
the range of 50–80 Mg ha−1 in the GX region and 150–200 Mg ha−1 in the JL region.

Table 2. Summary descriptive statistics of the field-measured forest AGB in the two study regions.

Study
Region

No. of
Sampling Plots

Min
(Mg ha−1)

Max
(Mg ha−1)

Mean
(Mg ha−1)

Standard
Deviation
(Mg ha−1)

JL 1812 39.50 235.70 159.90 34.69
GX 344 0.15 108.63 53.40 26.55
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3.2. Optimal Number of Variables for Modelling

As described in Section 2.5, the VSURF method was used to determine the optimal
number of variables for forest AGB modeling in the study. Therefore, the field datasets were
divided into two subsets using the VSURF method: two for the JL region and two for the GX
region. The first output subset, i.e., the primary subset, included all 125 variables, and the
second subset, i.e., the small subset, only contained 10 spectral variables. The parameters
are set as ntree = 500, nfor.thres = 50, nfor.interp = 25, and nfor.pred = 25. Table 3 shows
the variable selection results from using the VSURF method. GX dataset 2 is a primary
subset of the VSURF outputs to the field sample dataset in the GX region. Though the
dataset has 125 original variables at the threshold step (Figure 4a,b) of VSURF analysis,
only 54 variables and 17 variables were selected at the interpretation and prediction steps,
respectively (Figure 4c,d), after the VSURF analysis on GX dataset 2. Therefore, the dataset
containing 17 final variables would be used as the input dataset to establish the prediction
model for forest AGB estimation in the study of the GX region. Figure 4a shows the variable
ranking results based on the mean variable importance (VI). Figure 4b presents the standard
deviation change in VI (black curve), the prediction given by a CART (Classification and
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Regression Trees) fitted to the standard deviations (green curve), and the CART prediction’s
minimum value (dotted red line). Figure 4c shows the mean out-of-bag (OOB) error for
nested random forest models (black curve) and the smallest OOB error (red line) at the
interpretation step. Figure 4d presents the mean OOB error rate for embedded random
forest models at the prediction step. Similar results could also be obtained from the VSURF
analysis on the other datasets, such as JL dataset 2 and JL dataset 1 for the JL region.

Table 3. Results of VSURF feature selection method for four datasets.

Datasets Before Selection After Selection

JL Dataset 1 10 7
JL Dataset 2 125 18
GX Dataset 1 10 5
GX Dataset 2 125 17
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3.3. Variable Importance

In order to determine which variable is suitable for the final modelling of forest AGB in
the two study regions, the relative importance of the selected variables in each dataset was
computed for the four machine learning models (CatBoost, LightGBM, RF, and XGBoost)
under the spatial cross-validation. Since different variables may have different functions
in the formation of forest AGB in different regions, the selection of relatively important
variables for forest AGB modelling is very necessary for different regions. Figures 5 and 6
show the top 10 variables ranked in order of importance in primary datasets, i.e., JL dataset
2 and GX dataset 2, of the two study regions. Great variation can be seen in the ranking of
variable importance to the four machine learning models in the two study regions.
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In JL dataset 2, there were five variables (B4_red, MCARI2, RGR, B2_blue, and
B2_Mea_5) that were listed as the top three variables in the four machine learning models.
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These variables belong to two spectral variables (B4_red and B2_blue), one vegetation index
(RGR), one red-edge vegetation index (MCARI2), and one texture measure (B2_Mea_5). It
has been widely demonstrated that forest AGB estimation was affected by multiple features
rather than a single feature [48–50]. In our study of the JL region, we found that the spectral
variable B4-red was the most important factor in the CatBoost and XGBoost models, while
the vegetation variable RGR was the most needed predictor in the RF and LightGBM
models. The red-edge variable MCARI2 was also an important variable, indicating that the
red-edge band index has excellent potential in forest AGB estimation in our study regions.

Figure 6 shows the relative importance of variables for the four models in GX dataset 2.
It was found that the vegetation variable RVI54 was the most essential factor, ranking first
in the CatBoost and RF models and in the top three in the XGBoost and LightGBM models.
Meanwhile, the red edge vegetation index TCARI and vegetation index MCARI were also
found to be important to forest AGB models in the GX region. The relative importance
of TCARI in our forest AGB estimation in the GX region confirmed the superiority of
the red-edge band vegetation indices in forest AGB modeling. This may be attributed
to the fact that the spectral reflectance in the red edge range is highlysensitive to the
vegetation growth quality, thus affecting the biomass of the forest ecosystem over the
ground surface. Our study further confirms this well-known phenomenon in the remote
sensing of territory ecosystems, which stated that forest AGB estimates were remarkably
influenced by multiple remote sensing variables, and red-edge band vegetation indices
have a significant contribution to improving the accuracy of forest AGB prediction.

3.4. Scenarios for Comparison of the Individual Models and the Hybrid Model

With the above results, eight scenarios (Table 4) were constructed on the basis of two
study areas (JL and GX), two variable types (spectral and textural variables), and two
validation strategies (random cross-validation and spatial cross-validation) to compare
the performance of the four individual models and the hybrid model. Table 5 shows the
general capabilities of these five models (four individual models and one hybrid model) for
forest AGB prediction over the four scenarios of the JL region. The results of these models
over the four scenarios of the GX region are presented in Table 6. More detailed results of
this comparison are given in the Supplementary Materials. Specifically, the relative weights
of the four individual models in the hybrid model for forest AGB estimation are given in
Table S2 of the Supplementary Materials, while the key tuning hyper-parameters are given
in Table S3.

Table 4. Description of the eight scenarios used to compare the four individual models and the one
hybrid model for forest AGB estimation in our two study regions.

Scenario Dataset Validation Strategy Variable Type

Scenario 1 JL Dataset 1 Random cross-validation Spectral variables
Scenario 2 JL Dataset 1 Spatial cross-validation Spectral variables
Scenario 3 JL Dataset 2 Random cross-validation Spectral and textural variables
Scenario 4 JL Dataset 2 Spatial cross-validation Spectral and textural variables
Scenario 5 GX Dataset 1 Random cross-validation Spectral variables
Scenario 6 GX Dataset 1 Spatial cross-validation Spectral variables
Scenario 7 GX Dataset 2 Random cross-validation Spectral and textural variables
Scenario 8 GX Dataset 2 Spatial cross-validation Spectral and textural variables

Table 5. Forest AGB estimation accuracy assessment on the five selected models in the JL region.

Scenario Model R2 RMSE
(Mg ha−1)

Bias
(Mg ha−1)

Relative
RMSE (%)

Scenario 1

CatBoost 0.62 21.48 −0.08 13.43
LightGBM 0.61 21.80 0.04 13.63

RF 0.60 21.83 −0.31 13.64
XGBoost 0.60 21.91 −0.03 13.70

CLRX 0.63 21.40 −0.09 13.39
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Table 5. Cont.

Scenario Model R2 RMSE
(Mg ha−1)

Bias
(Mg ha−1)

Relative
RMSE (%)

Scenario 2

CatBoost 0.51 22.38 −0.75 14.40
LightGBM 0.49 22.78 −0.33 14.69

RF 0.49 22.96 −0.93 14.78
XGBoost 0.49 22.78 −0.64 14.66

CLRX 0.59 22.21 −0.10 13.92

Scenario 3

CatBoost 0.66 20.29 −0.12 12.69
LightGBM 0.64 20.72 −0.03 12.96

RF 0.66 20.36 −0.17 12.73
XGBoost 0.65 20.55 −0.08 12.85

CLRX 0.67 20.21 −0.10 12.63

Scenario 4

CatBoost 0.54 21.31 −0.83 13.67
LightGBM 0.53 21.51 −0.41 13.83

RF 0.54 21.32 −0.77 13.68
XGBoost 0.52 21.89 −1.1 14.05

CLRX 0.63 21.16 −0.36 13.23

Table 6. Forest AGB estimation accuracy assessment on the five selected models in the GX region.

Scenario Model R2 RMSE
(Mg ha−1)

Bias
(Mg ha−1)

Relative
RMSE (%)

Scenario 5

CatBoost 0.58 17.18 0.007 33.32
LightGBM 0.59 17.41 −0.008 32.79

RF 0.59 17.14 0.16 32.29
XGBoost 0.58 17.41 0.32 32.75

CLRX 0.60 16.80 0.12 31.61

Scenario 6

CatBoost 0.51 17.43 0.017 34.52
LightGBM 0.46 18.20 1.42 36.08

RF 0.51 17.42 0.13 34.46
XGBoost 0.47 18.38 −0.06 36.60

CLRX 0.55 17.28 −0.24 33.46

Scenario 7

CatBoost 0.64 15.89 0.05 29.86
LightGBM 0.64 15.88 0.24 29.84

RF 0.65 15.62 0.11 29.42
XGBoost 0.60 16.77 0.32 31.52

CLRX 0.66 15.59 0.18 29.34

Scenario 8

CatBoost 0.59 15.80 0.16 31.10
LightGBM 0.54 16.60 0.22 32.87

RF 0.58 15.95 −0.14 31.22
XGBoost 0.55 16.51 −0.09 32.29

CLRX 0.62 15.34 −0.18 30.72

3.5. Performance of the Individual Models and the Hybrid Model in JL Region

Table 5 compares the performance of the five models (four individual models and one
hybrid model) for forest AGB estimation with the four scenarios in the JL region. It can be
seen that all the five models have better performances in datasets 2 than in datasets 1, which
implies that the datasets containing both spectral and textural variables are more suitable
for forest AGB estimation than those with only spectral variables. In other words, forest
AGB estimation with more variables will produce a more accurate forest AGB estimation
than those only with a few spectral variables. Specifically, scenario 4, i.e., JL dataset 2 with
the hybrid model CLRX under spatial cross-validation, has R2 = 0.63, which is increased
by 6.78% in comparison to that of scenario 2 (R2 = 0.59), which is the JL dataset 1 in the JL
region. Scenario 3, which is composed of dataset 2 with the hybrid model CLRX under
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random cross-validation in the JL region, has an even greater determination coefficient
(R2 = 0.67) than scenario 4. Scenarios 1 and 2 are composed of JL dataset 1 under random
and spatial cross-validation, and they only have determination coefficients of R2 = 0.63 and
R2 = 0.59 for the hybrid model CLRX. Another feature of Table 5 for the JL region is that the
hybrid model has the highest R2 and lowest RMSE among the five models in comparison
to all the scenarios. This surely proves that the hybrid model has the capability to combine
the advantages of the four individual models constituting the hybrid model. Our finding
aligns with Ploton et al. [48], which confirms the high importance of texture features for
improving the precision of forest AGB estimation.

3.6. Performance of the Individual Models and the Hybrid Model in GX Region

Table 6 shows the performance of the five selected models for forest AGB estimation
with the four scenarios in the GX region. Similar results can be seen in the GX region.
Generally speaking, all five models have better performance in both scenarios 7 and 8 than
that in scenarios 5 and 6. This is because scenarios 7 and 8 are composed of both spectral
variables and textural variables, while scenarios 5 and 6 only involve the spectral variables.
Therefore, it can be said that more variables are better to increase the accuracy of forest
AGB estimation with the selected machine learning models in this study. Among the five
selected models, the hybrid model CLRX has the best performance in all scenarios. For
example, for scenario 7, the R2 of the hybrid model CLRX is 0.66, while it is 0.64, 0.64, 0.65,
and 0.60 for the individual models CatBoost, LightGBM, RF, and XGBoost, respectively.
The RMSE of the hybrid model is also the lowest among the five models in all the scenarios.
For example, the hybrid model CLRX has an RMSE of 15.34 Mg ha−1 for scenario 8, which
is composed of both spectral and textural variables under a spatial cross-validation strategy,
while the RMSEs of the other four individual models are 15.80, 16.60, 15.95, and 16.51 Mg
ha−1 for this scenario. The comparison of the four individual models indicates that the
model RF has the lowest RMSE in both scenarios 7 and 8, implying that RF would be the
best individual machine learning model for forest AGB estimation in GX region. However,
we also found that the R2 of all the models is not very high, and the greatest R2 is only
0.66 for the hybrid model in scenario 7. Since R2 is the determination coefficient indicating
the percentage of the dependent variable explained by the selected independent variables,
the relatively low R2 in the study also implies that forest AGB is determined by a number
of variables, as only about two-thirds of forest AGB variation in the GX region can be
predicted by the selected variables involved in the scenarios.

3.7. Comparison of the Two Cross-Validation Strategies

The forest AGB estimation accuracies of the five selected models also need to be
compared under spatial cross-validation and random cross-validation. The reason for
this comparison is that training and validation datasets through spatial cross-validation
are not mixed in the same space. Figure 7 shows the spatial visualization of the selected
validation and training observations for the random 5-fold cross-validation and spatial
5-fold cross-validation of one repetition in the JL region. As shown in Table 5 for the JL
region, R2 for individual machine learning models under spatial cross-validation has a
decrease within the range of 17.74%~20.00%, while the decrease range of this coefficient
is within 7.81%~22.03% in the GX region (Table 6), which is expected due to the SAC in
the observations. As for the hybrid model CLRX, the coefficient R2 was reduced by 6.35%
in JL dataset 1, which is higher than that in JL dataset 2 (5.97%). A similar decrease in
R2 is observed for the hybrid model in the GX region, which shows that the decrease in
R2 was 8.33% in GX dataset 1 and 6.06% in GX dataset 2. Since dataset 1 is with random
cross-validation while dataset 2 is under spatial cross-validation, it can be said that random
cross-validation has better performance than spatial cross validation for the models in
forest AGB estimation.
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Figures 8 and 9 present a detailed comparison of the five models for forest AGB
estimation under two cross-validation strategies in JL and GX regions, respectively. In the
JL region, as shown in Figure 8, though the general application of the models for forest AGB
estimation was observed, the strategy of random cross-validation is commonly better than
the spatial cross-validation strategy for all the models. However, this feature is not observed
in the GX region, where similar accuracy can be seen for all models in both the random and
spatial cross-validation strategies (Figure 9). Moreover, the performance of the models is
much better in the JL region than in the GX region. This may be attributed to the difference
in forest types in the two regions. Another important feature is that the overestimation
at low values and underestimation at high values can be found for all the models in the
two regions. In the JL region, as indicated in Figure 8, all models underestimate the forest
AGB for values > 200 Mg ha−1 and overestimate the forest AGB for values < 50 Mg ha−1.
In the GX region, an overestimation of forest AGB for the values < 20 Mg ha−1 is obviously
found (Figure 9). This overestimation at low value and underestimation at high value may
be a trend.
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3.8. Comparison of the Individual Models with the Hybrid Model for Forest AGB Estimation

The results in Tables 5 and 6 indicate that among the four individual models, the RF
model performs best in scenarios 5, 6, and 7, while the CatBoost model performs best in the
remaining scenarios. The CatBoost model yielded the highest predictive performance in
the JL region, with R2 = 0.66 and RMSE = 20.29 Mg ha−1 in random cross-validation and
R2 = 0.54 and RMSE = 21.31 Mg ha−1 in spatial cross-validation. The RF model showed the
best predicted performance in the GX region with R2 = 0.65 and RMSE = 15.62 Mg ha−1

in random cross-validation. However, in spatial cross-validation, the CatBoost model
(R2 = 0.59, RMSE = 15.80 Mg ha−1) was slightly better than the RF model (R2 = 0.58,
RMSE = 15.95 Mg ha−1), followed by the XGBoost and LightGBM models. Overall, no
single prediction model can always maintain excellent performance in the scenarios of
the study.

It can clearly be seen in Tables 5 and 6 that, in comparison with the four individual
models, the hybrid model resulted in more accurate predictions of forest AGB in our two
study regions, with the highest R2 and lowest RMSE in all the scenarios. For example, in
scenario 4 (Table 5), the R2 of the hybrid model CLRX has the ability to improve the forest
AGB estimation by 16.67% in comparison with the optimal individual model (CatBoost)
and by 21.15% in comparison with the worst individual model (XGBoost). One interesting
feature was that the improvement in the hybrid model for forest AGB estimation under the
spatial cross-validation strategy was more evident than that of the random cross-validation
strategy. In comparison with the CatBoost model, the R2 of the hybrid model is slightly
improved by 1.61% in scenario 1, while it is increased by 15.68% in scenario 2. Overall,
forest AGB estimation with the hybrid model in our study regions may result in a higher
accuracy than with individual models. This finding can provide some useful insights into
model selection for forest AGB estimation.

We used the hybrid model under the spatial cross-validation strategy to generate forest
AGB maps for 2018 at 100 m resolution in the JL and GX regions (Figure 10). The results
showed that high AGB values tended to be found in regions covered by dense forest. In the
JL region, the average value of AGB was 140.27 Mg/ha, with a minimum of 54.31 Mg/ha
and a maximum of 190.25 Mg/ha, indicating the presence of dense, carbon-rich forests in
this area. The considerable range in AGB values highlights the spatial heterogeneity across
the JL region. In the GX region, the average value of AGB was 55.58 Mg/ha. This difference
in mean AGB between the two regions may be attributed to factors such as climate, forest
type, and management practices.
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4. Discussion

In this study, the improvement in the forest AGB prediction accuracy was investigated
from three dimensions: model input (feature extraction and selection), modeling algorithm
(individual machine learning models and the hybrid model CLRX), and model performance
(spatial cross-validation and random cross-validation).

With the availability and accessibility of multiple-source remote sensing data, the
applications of machine learning algorithms in many practical issues including forest AGB
estimation have experienced dramatic development in recent decades [2,10,50]. However,
these applications have mainly been based on traditional machine learning models such
as ANN and RF. With the development of computational sciences, several new ensemble
learning algorithms such as CatBoost, XGBoost, and LightGBM have been developed and
demonstrated to have high potential for practical applications in issues in earth sciences
such as climate change modelling, AGB estimation, land use and land cover mapping, and
crop yield prediction [8,13,22]. However, the applicability of these new ensemble learning
algorithms for forest AGB estimation have not been reported. In this study, we compare
the three new ensemble learning algorithms (CatBoost, XGBoost, and LightGBM) with
the widely used machine learning model RF to determine their applicability for forest
AGB prediction in two typical Chinese forest regions: the JL region in northeastern China
and the GX region in southern China. On the basis of this comparison, we developed a
hybrid model to combine the advantages of these four individual models and compare the
performance of this hybrid model with the four individual models for forest AGB in the
two study regions.

To obtain a complete comparison of the selected four individual models and the hybrid
model for forest AGB estimation, we established eight scenarios from the available field
datasets according to the two study regions, the selected variables, and the cross-validation
strategies. The results showed that CatBoost was superior to other individual models
except in scenarios 5, 6, and 7. RF was slightly better than CatBoost, which might be due to
the smaller sample number and feature number in scenarios 5, 6, and 7. CatBoost showed
more obvious advantages in the datasets with large samples and many features. Thus, it
could be said that CatBoost has great potential to improve forest AGB estimates’ accuracy
in the two study regions. This finding is consistent with those presented in Zhang et al. [49]
and Zhao et al. [24]. CatBoost solves the problems leading to gradient bias and prediction
shift in modeling results and hence has the ability to improve the accuracy of our forest
AGB estimation. Moreover, the model can also be easy to generalize, hence making it
suitable for applications to many situations, especially in enhancing parameter estimation
accuracy for forest AGB modeling.

On the basis of the above four individual models, we developed in this study the
hybrid model CLRX for forest AGB prediction. Validation with the datasets in the two study
regions indicates that the hybrid model can result in a better performance than any indi-
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vidual model. The hybrid model CLRX is mainly affected by the choice of models and the
combined weighting method. RF has an advantage in anti-noise but is insensitive to outliers.
The model XGBoost can automatically use CPU multithreading for parallel computing to
improve the modelling accuracy. The model CatBoost can avoid over-fitting by adding
additional procedures to compute the leaf nodes when selecting the tree structures in forest
AGB estimation. The model LightGBM has apparent advantages in computational speed
and memory consumption. The better performance of our hybrid model on the basis of the
four individual models confirms the direction of improving forest AGB estimation accuracy
through the development of a hybrid model, which intends to extend the application of dif-
ferent machine learning algorithm combinations (such as kernel-based learners, tree-based
models, and linear-based learners) or the coupling of physical knowledge with machine
learning algorithms for the hybrid model. The investigation into innovative combination
techniques and fusion approaches presents substantial prospects for optimizing the perfor-
mance of hybrid models, facilitating their proficient utilization of diverse algorithms and
strategies. Additionally, the incorporation of novel variables, such as topography, and the
integration of emerging sensor technologies contribute significantly to the progress and
practicality of hybrid models.

Two strategies of cross-validation were applied in our study, and we found that the
spatial cross-validation was less optimistic than the random one. Our finding in the study
is consistent with previous investigations into forest fires [31] showing that random cross-
validation yielded higher performance than spatial cross-validation. The RMSEs of the
four machine learning models increased more apparently in the GX region than in the JL
region. This probably is due to the higher SAC in the GX region than in the JL region. To
the best of our knowledge, this is the first time that SAC has been considered in forest
AGB estimation. The lower but more realistic model performance was presented when
taking spatial effects into account [50]. This is especially problematic when there is strong
SAC in the sampling dataset and when training samples are clustered in space. It has been
commonly understood that over-optimistic forest AGB estimation may provide wrong
information when formulating guidance or policies in ecological decision-making processes
relating to terrestrial ecosystems [10,18]. However, in order to solve the problem of SAC,
we still recommend the general consideration of spatial cross-validation in assessing forest
AGB models. It is worth mentioning that the performance improvement in the hybrid
model under the spatial cross-validation strategy was more prominent than the random
one. Therefore, it is highly recommended to exploit the hybrid model combined with the
spatial cross-validation strategy, which may represent an interesting perspective for future
research on more realistic and accurate AGB estimation.

Though obvious improvements have been made in our hybrid model for forest
AGB estimation, the problem of overestimation at low values and underestimation at
high values still remains, as is reported in previous studies [51]. All the algorithms un-
derestimated the forest AGB observed values when the AGB values were greater than
~200 Mg ha−1 (Figure 8). As is well known, the factors affecting forest AGB estimation with
a remote sensing approach are complex [3,46,50]. The following three aspects are generally
considered for the estimation: (1) remote sensing data source and its spatial resolution;
(2) differences in the forest ecosystem itself and topographic changes in its distribution
area; and (3) prediction algorithms. This study mainly investigated the issues relating to
the third aspect, while those related to the first and second aspects were not fully explored.
On one hand, the pixel point saturation of vegetation indices exists in sampling blocks with
high forest AGB values in Sentinel-2 images [52]. On the other hand, spectral variables,
vegetation indices, red-edge band vegetation indices, and texture measures are considered
as the variables for the estimation of forest AGB in this study.

Our results in the study indicate that the determination coefficient R2 is not very high.
The best R2 is for the hybrid model was in scenario 3, with R2 = 0.67 (Table 5), implying
that the selected variables can only explain about two-thirds of the forest AGB variance
in this scenario, leaving about one-third unable to be predicted by the variables. This
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surely is due to the fact that many factors shape forest AGB, and our study to conduct
this estimation using a remote sensing approach only involved a few factors that could be
extracted from the selected remote sensing images. As is well known, many potentially
important variables affecting forest AGB prediction, such as canopy coverage, vegetation
type, and topography, may need to be included into the estimation [51]. The reflectance of
spectral bands is affected by ground vegetation and soil for plots with low AGB values [53].
Therefore, it is necessary to continue the exploration of the methodology for an accurate
estimation of forest AGB. One direction for this is the extension of combining multi-source
remote sensing images with a hybrid model under a spatial cross-validation strategy.

5. Conclusions

The improvement of forest AGB estimation was investigated in the study so that an ef-
fective and adaptive framework could be developed for this estimation, including variable
extraction, variable selection, model development, and model evaluation. The spectral vari-
ables, vegetation indices, red-edge vegetation indices, and texture measures were extracted
from the Sentinel-2 remote sensing images, and VSURF was used for feature selection.
The forecasts from four individual machine learning models (RF, XGBoost, LightGBM,
and CatBoost) were combined to create the hybrid model CLRX. The influence of SAC
on model evaluation was considered by comparing random cross-validation and spatial
cross-validation. The results showed that VSURF could provide an effective approach for
the selection of appropriate variables from a larger set of variables to participate in model
construction for forest AGB estimation. No single prediction model could always main-
tain excellent performance in every situation. The hybrid model CLRX could overcome
this deficiency and resulted in the most accurate predictions in comparison with the four
individual machine learning models. Both individual and hybrid models had relatively
lower performances under spatial cross-validation than under random cross-validation.
This is probably due to SAC in the dataset. It should be mentioned that the hybrid model
CLRX has greater potential to improve the accuracy of AGB estimation under spatial cross-
validation than under random cross-validation. This study contributes to investigating the
potential use of the hybrid machine learning method to estimate forest AGB. Meanwhile,
we underline the necessity of spatial cross-validation in forest AGB estimation.
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