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Abstract

Research has substantiated that the presence of outliers in data usually introduces addi-

tional errors and biases, which typically leads to a degradation in the precision of volatility

forecasts. However, correcting outliers can mitigate these adverse effects. This study cor-

rects the additive outliers through a weighting method and let these corrected values to

replace the original outliers. Then, the model parameters are re-estimated based on this

new return series. This approach reduces the extent to which outliers distort volatility esti-

mates, allowing the model to better adapt to market conditions and improving the accuracy

of volatility forecasts. This study introduces this approach for the first time to generalized

autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) mod-

els, so as to establish an additional outliers corrected GARCH-MIDAS model (AO-GARCH-

MIDAS). This pioneering approach marks a unique innovation. The research employs a

diverse array of evaluation methods to validate the model’s robustness and consistently

demonstrates its dependable performance. Findings unequivocally reveal the substantial

influence of outliers on the model’s predictive capacity, with the AO-GARCH-MIDAS model

exhibiting consistent superiority across all evaluation criteria. Additionally, while the GARCH

model showcases stronger estimation capabilities compared to the GARCH-MIDAS model,

the latter demonstrates heightened predictive prowess. Notably, regarding variable selec-

tion, the results underscore the greater predictive informational value inherent in realized

volatility over other low-frequency factors.

1. Introduction

Amidst the deepening facets of economic globalization and liberalization, the prominence of

financial markets has notably heightened within the contemporary market economy, particu-

larly evident in the ascendancy of stock markets. This trend manifests through the increasing

prevalence of index trading within stock markets, positioning these markets as pivotal and

highly coveted investment avenues within the global financial domain [1]. Concurrently, vola-

tility, serving as a fundamental metric of equity risk, assumes a pivotal role not solely within
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the investment sphere but also exerts substantial influence on asset valuation, risk mitigation

strategies, and the formulation of macroeconomic policies [2]. The adept comprehension and

precise prognostication of stock market volatility hold multifaceted significance and practical

implications. Notably, such endeavors can aid investors in devising astute investment frame-

works, furnish market participants with mechanisms to preclude market-related risks, and

equip policymakers with crucial benchmarks to ensure the smooth operation of the national

economy [3]. Especially for investors, reducing errors in forecasting stocks can reduce invest-

ment risk and increase profitability [4].

In the realm of prediction, the presence of outliers cannot be disregarded if heightened pre-

diction accuracy is sought. Outliers, denoting data points significantly deviating from the gen-

eral data sample [5]. Notably, these outlier observations may introduce inaccuracies in both

model parameter estimation and volatility prediction [6]. This occurrence emanates from the

model’s tendency to overly emphasize this anomalous information during estimation, conse-

quently resulting in forecasting overfitting and subsequently generating less reliable volatility

forecasts. Because of their inevitability, particularly within financial contexts such as time

series data of stock markets and asset prices, addressing the adverse effects arising from outli-

ers becomes imperative.

To tackle this challenge, researchers have embraced diverse methodologies in addressing

financial time series volatility forecasting. Franses and Ghijsels [7] introduce the additive out-

lier-corrected returns method within the Generalized Autoregressive Conditional Heteroske-

dastic (GARCH) model. Specifically, the time series model is first fitted, and the residual series

of the model is calculated (the residual series being the difference between the observed values

and the fitted values of the model). Then, the residual series is standardized, meaning the stan-

dardized residuals of the residuals are calculated. Statistical methods are utilized to detect out-

liers in the standardized residuals, identifying values that fall outside certain boundaries by

setting thresholds. Once the outliers are detected, they are corrected using a weighting method

that adjusts them according to their nature and magnitude of impact, thus reducing their influ-

ence on the volatility estimate. After all the additive outliers in the model have been corrected,

the model parameters are re-estimated based on this new return series. This approach dimin-

ishes the extent to which outliers distort volatility estimates, enhancing the stability of volatility

estimates and, consequently, improving the robustness of the model during forecasting,

thereby rendering the forecasts more reliable. Affirming its efficacy across four distinct stock

markets in enhancing stock volatility.

This study collectively underscore that the presence of outliers introduces bias in volatility

forecasting, necessitating their identification and rectification as pivotal. This study aims to

profoundly explore strategies for handling outliers, referencing the work of Franses and Ghij-

sels [7] extensively. Notably, this methodology is grounded in the GARCH model. Nonethe-

less, this model’s limitation in capturing volatility solely on a single time scale is evident [8]. To

overcome this limitation, the GARCH-MIDAS (Mixed Data Sampling) model, an extension

within the GARCH framework pioneered by Engle, Ghysels [9], compensates for this shortfall.

This model not only accommodates independent and dependent variables of different fre-

quencies but also retains the fidelity of high-frequency data without altering its native fre-

quency, preserving its realism and effectiveness. Additionally, the GARCH-MIDAS model

comprehensively captures both short-term and long-term components of aggregate stock mar-

ket volatility. However, akin to the GARCH model, it grapples with data featuring excessive

kurtosis. In essence, this limitation can result in models compromising their fitting accuracy to

sufficiently accommodate current values when encountering outliers. This is particularly evi-

dent when dealing with outliers such as additive outliers, which exert influence not only on the

individual observations they pertain to but also on surrounding data points [10,11]. In such
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scenarios, the efficacy of GARCH-MIDAS is constrained. Building upon the GARCH-MIDAS

model, this paper introduces a corrected outlier function inspired by the work of Franses and

Ghijsels [7], culminating in the additive outlier GARCH-MIDAS (AO-GARCH-MIDAS)

model. This innovative framework heralds a new era in volatility forecasting, aiming to rectify

distortions induced by outliers and augment forecasting precision.

Since the GARCH-MIDAS model is used to model the relationship between data of differ-

ent frequencies, only high-frequency stock data is not sufficient. Therefore, low-frequency

data also need to be introduced into the model to understand the mechanism of stock market

volatility more comprehensively. Without considering other influences, realized volatility

(RV) is usually chosen as the low-frequency data. RV is a measure of asset price movements

and represents the actual volatility over time. In addition to RV, a range of macroeconomic

variables can be selected as low-frequency data. These macroeconomic variables reflect

changes in the economic environment and may have a significant impact on stock market

volatility.

As an intricate derivative component of the real economy, stock market volatility manifests

as a complex interplay of diverse determinants. A multitude of empirical inquiries have yielded

substantive insights into the potential causative factors linked to macroeconomic variables

within the ambit of the stock market. Noteworthy contributions by Asgharian, Hou [12] and

Song, Tang [13] affirm the efficacy of macroeconomic variables in explicating stock market

volatility. Their research also underscores that the low-frequency macroeconomic data aug-

ments the prognostic potency of the model. The macroeconomic metric, money supply (M2),

being considered pivotal in impacting national income and stock prices [14]. In an empirical

analysis, Ma, Yang [15] assert that the M2 exhibits a significant and positive correlation with

stock market volatility in China, utilizing the GARCH-MIDAS model. Furthermore, Bhuiyan

and Chowdhury [16] employ Vector Error Correction and artificial neural networks models to

demonstrate the long-term cointegration of money supply with the US stock market, along

with a positive correlation. Notably, M2 exhibits robust predictive capabilities, as underscored

in the forecasting [17]. Similarly, the impact of exchange rates (ER) on stock markets has

piqued the interest of researchers. Aslam [18] confirms a causal relationship between ER and

stocks. Studies by Sensoy and Sobaci [19] and Endri, Abidin [20] further establish a positive

relationship between exchange rate and the stock market. However, some research indicates

that ER can exert a significant negative impact on stock returns [21,22]. Dai, Zhou [23] assert

the formidable predictive power of exchange rates within the framework of forecasting. These

findings collectively illuminate the intricate relationship between macroeconomic indicators,

particularly M2 and exchange rates, and stock market dynamics, constituting a noteworthy

area of scholarly investigation. Furthermore, economic policy uncertainty (EPU) has garnered

considerable scholarly attention in recent years. it is regarded as an influential indicator

explaining stock volatility [24]. The results of a large number of scholars support the conclu-

sion that EPU has a significant effect on stock volatility [25–27]. Therefore, these three vari-

ables are chosen as predictors of stock volatility in the present study. EPU also shows good

predictive ability in forecasting [26,28–30]. In alignment with the framework presented herein,

this study discerningly selects M2, ER, and EPU as pivotal drivers underpinning the examina-

tion of stock market volatility dynamics.

This study has opted to focus on the stock markets of China and Japan. The rationale

behind this choice is twofold. Firstly, these markets serve as pertinent reflections of the devel-

opmental trajectory and distinctive attributes inherent within the Asian economic landscape.

Secondly, the stock markets of China and Japan command significant stature not only within

the confines of the Asian region but also globally, thus warranting meticulous scholarly

attention.
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This study’s primary contribution lies in the novel application of a multivariate additive

outlier GARCH-MIDAS model, significantly enhancing the accuracy of stock volatility fore-

casting. The findings demonstrate robustness across diverse evaluation criteria, affirming the

model’s efficacy. On one hand, the novel model addresses the constraint that the correction

for additive outliers is restricted to GARCH models, by extending the methodology of Franses

and Ghijsels [7] to encompass GARCH-MIDAS models. On the other hand, it enhances the

robustness of the GARCH-MIDAS model introduced by Engle, Ghysels [9], enabling it to

more effectively manage the complex scenario of additive outliers. Additionally, based on the

MCS results, the result shows that the introduction of macroeconomic indicators into the

GARCH-MIDAS model can effectively improve the prediction of stock market volatility. Spe-

cifically, the forecasting performance using the GARCH-MIDAS-RV-X model is significantly

better than the GARCH-MIDAS-RV model alone. This finding further supports [12] that the

inclusion of low-frequency macroeconomic information in the GARCH-MIDAS model

improves the model’s forecasting accuracy. Song, Tang [13] also argue that both before and

after the introduction of macroeconomic variables, the model’s forecasting ability is signifi-

cantly improved. Notably, this study points out that the same economic indicator can have dif-

ferent impacts on the stock markets of different countries. Humpe and Macmillan [31] also

find this phenomenon when they investigate the performance of the U.S. and Japanese stock

markets on the same indicator, and they explain that this variability could be attributed to the

structure of the economies of the two countries, the policy environments, and the behaviors of

the market participants.

Following the introductory chapter, the remaining chapters of this study are organized as

follows. Chapter 2 details the construction process of AO-GARCH-MIDAS. Chapter 3 pres-

ents the descriptive statistics of the data and the results of the correlation tests. Chapter 4

describes the in-sample and out-of-sample experimental results. Finally, Chapter 5 concludes

the study.

2. Methodology

The pivotal innovation within this study hinges upon the pioneering work of Franses and

Ghijsels [7], which extends the application of additive outliers to the GARCH-MIDAS frame-

work. The GARCH-MIDAS model utilized in this study draws its foundation from the work

of Engle, Ghysels [9] and Engle and Rangel [32]. Assuming ri,t is the logarithmic rate of return

on day i of month t, the characterization of volatility within the framework of the GARCH-MI-

DAS model can be articulated as follows

ri;t � Ei� 1;tðri;tÞ ¼
ffiffiffiffiffiffiffiffiffi
ttgi;t
p

εi;t;Ei� 1;tðri;tÞ ¼ m;8i ¼ 1; 2; � � � ;Nt Eq 1

εi;tjci� 1;t � Nð0; 1Þ; s2

i;t ¼ tigi;t Eq 2

In Eq 1, the expression for volatility is decomposed into two components: the short-term

volatility gi,t, which satisfies to the GARCH (1, 1) model, and long-term volatility τi. Ei−1,t

denotes the conditional expectation while εi,t represents the random disturbance term,

assumed to follow a standard normal distribution. Nt signifies the number of days in month t.

ψi−1,t in Eq 2 delineates the information set pertaining to the i-1 day of the rate of return in

month t.

The long-term component τi is delineated through the incorporation of diverse low-fre-

quency variables, encompassing factors such as realized volatility (RV), M2, ER, and EPU. To

investigate the impact of these factors on long-term component, this study explores three spec-

ifications. The first specification of Eq 3 exclusively incorporates RV, denoted as
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GARCH-MIDAS-RV. The second specification includes three variables: M2, ER, and EPU,

designated as GARCH-MIDAS-X (see Eq 4). The third specification incorporates both RV and

all three macroeconomic variables, denoted as GARCH-MIDAS-RV-X (see Eq 5). These speci-

fications are formally articulated as follows:

tt ¼ mþ yRV
Xk

k¼1
φkðo1;o2ÞRVt� k Eq 3

tt ¼ mþ yM2

Xk

k¼1
φkðo1;o2ÞM2t� k þ yER

Xk

k¼1
φkðo1;o2ÞERt� k

þ yEPU

Xk

k¼1
φkðo1;o2ÞEPUt� k Eq 4

tt ¼ mþ yRV
Xk

k¼1
φkðo1;o2ÞRVt� k þ yM2

Xk

k¼1
φkðo1;o2ÞM2t� k

þ yER

Xk

k¼1
φkðo1;o2ÞERt� k þ yEPU

Xk

k¼1
φkðo1;o2ÞEPUt� k Eq 5

Where RVt represents the fixed time span RV at time t, which can be written as

RVt ¼
PNt

i¼1
r2
i;t. In addition, k denotes the maximum lag order of low-frequency variables,

selected by AIC and BIC information standards. φk(ω1,ω2) is the weight scheme of the Beta lag

structure [9], because it is more flexible and more commonly used to accommodate various

lag structures [33], the polynomial shows as below

φk o1;o2ð Þ ¼
ðk=KÞo1 � 1

ð1 � ðk=KÞo2� 1

PK
j¼1
ðj=KÞo1� 1

ð1 � j=KÞo2 � 1
Eq 6

Fix ω1 = 1, in order to ensure that the weight of the lag variable is in the form of attenuation.

In other words, the closer the distance to the current period, the greater the impact on the cur-

rent period (Yaya et al., 2022). The coefficient determines the attenuation speed of the impact

of low-frequency data on high-frequency data. Therefore, the polynomial can be simplified as

φk o2ð Þ ¼
ð1 � k=KÞo2 � 1

PK
j¼1
ð1 � j=kÞo2 � 1

Eq 7

The focus of this section is to combine AOs with GARCH-MIDAS model. The enhance-

ment of the conventional GARCH-MIDAS model through the rectification of Aos aims to

refine the model’s predictive capacity and accuracy within the realm of financial econometrics,

the equation can be rewritten as

r2
i;t

tt
¼ gi;t þ zi;t Eq 8

Et� 1ðzi;tÞ ¼ 0 Eq 9

Based on the above formula rewrite the Short-term volatility gi,t as

r2
i;t

tt
� zi;t ¼ 1 � a � bð Þ þ a

ðri� 1;t � mÞ
2

tt
þ b

r2
i;t

tt
� zi� 1;t

� �

Eq 10
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This formula corresponds to the paper of Franses and Ghijsels [7] on GARCH (1, 1) model

for r2
i;t.

Let fi;t ¼
r2
i;t

tt

ð1 � ðaþ bÞLÞfi;t ¼ ð1 � bLÞzi;t Eq 11

From this equation, ϕ(L) and θ(L) can be determined as below

�ðLÞ ¼ 1 � ðaþ bÞL Eq 12

yðLÞ ¼ 1 � bL Eq 13

According to the equation r∗t 2 ¼ ẑ∗t þ ĥt form Franses and Ghijsels [7], the formula of r∗i;t2
can be constructed as follow

r∗2i;t ¼ ttðz
∗
i;t þ gi;tÞ t ¼ n Eq 14

Hence, the AO-corrected returns can be constructed

r∗i;t ¼ ri;t t 6¼ n Eq 15

r∗i;t ¼ signðri;tÞ:ðr
∗
i;t2Þ

1=2 t ¼ n Eq 16

This expression shows that although ri,t is replaced, its sign is retained in r∗i;t, when t = ν.

Based on Chen and Liu [34] of AO-ARMA, the estimated residuals ε̂t can be represented

by

ε̂t ¼ pðLÞyt Eq 17

When

t < n; xt ¼ 0

t ¼ n; xt ¼ 1

t ¼ nþ iði > 0Þ; xtþi ¼ � pi

At time t = ν, the impact ρ of AO can be estimated as

r̂ nð Þ ¼

Pn
t¼n xtε̂tPn
t¼n x2

t

Eq 18

To test the significance of AO model, Chang, Tiao [35] propose to standardize r̂ðnÞ. It

requires an estimate of the variance of the residual process, this estimate should ideally not

contain too much bias because of outliers. This study uses the method of Chen and Liu [34]

the so-called ‘omit one’ to estimate a robust error variance. Based on this approach, we can get
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a standardized statistic

n̂ ¼
r̂ðnÞ

ŝa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

t¼n
x2
t

q

Eq 19

The influence of AO is significant when n̂ exceeds the value C. As Franses and Ghijsels [7]

mentioned, n̂ is asymptotically standard normal. As posited by Chen and Liu [34], it is impera-

tive to scrutinize the parameter C for values exceeding 3 when the dataset comprises more

than 200 observations. Although other choices for C are viable, this study has identified supe-

rior outcomes when C equals 4. When the value of n̂ exceeds the value C, and t = ν, the obser-

vation yt shall be substituted with AO-corrected y∗t , derived from Eq 18, and the additive

outlier model yt ¼ y∗t þ rItðnÞ.
In the dataset, to avoid the existence of multiple AOs, these steps need to repeat unless n̂

becomes insignificant. When there is no more additive outlier, the final step is to re-estimate

the model parameters based on all observations, where some of them have been corrected by

using AO model.

3. Data description and preliminary analysis

Our study is centered on the examination of the Chinese and Japanese stock markets, where

we have gathered data from daily closing prices of the Shanghai Stock Exchange Composite

Index, comprising 3,278 observations, and the Nikkei 225 with 3,298 observations. This data

spans from October 1, 2009, to March 31, 2023, and has been sourced from Yahoo Finance

(https://finance.yahoo.com). The log returns for the closing prices of these two stocks are com-

puted and labeled as SSE and N225, respectively. Additionally, monthly data encompassing

M2, exchange rates (ER), and Economic Policy Uncertainty (EPU) variables span from Octo-

ber 2009 to March 2023, each variable comprising 162 observations. Chinese money supply

data is obtained from the People’s Bank of China, while Japanese M2 data is sourced from the

Bank of Japan. Exchange rates (ER) data of China and Japan are retrieved from the Federal

Reserve Economic Data (FRED, https://fred.stlouisfed.org). The exchange rates are calculated

using the Renminbi (RMB) against the US dollar and the Japanese yen (JPY) against the US

dollar, respectively. It is noteworthy that the frequency employed for this indicator in this

study is monthly, primarily due to its application within the GARCH-MIDAS model, and

MIDAS polynomial, which is applied to macroeconomic or financial variables at monthly,

quarterly, or biannual frequencies [36]. Economic Policy Uncertainty (EPU) is constructed

through a systematic approach, involving the classification and tallying of articles containing

Fig 1. SSE和N225 stock return series.

https://doi.org/10.1371/journal.pone.0305420.g001
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keywords such as economics, policy, and uncertainty. This is complemented by the application

of a series of standardized steps, following the methodology outlined by [37]. The EPU series is

sourced from the Economic Policy Uncertainty Website (http://www.policyuncertainty.com).

For ease of identification, variables originating from China and Japan are distinctly marked

with prefixes ’C’ and ’J’ respectively. These return series are visually represented in Fig 1. Upon

observation, overall stability characterizes each series, albeit with occasional notable deviations.

Table 1 is instrumental in furnishing a holistic overview, encompassing descriptive statis-

tics, stability examinations, and heterogeneity assessments for both Chinese and Japanese

stock returns, in conjunction with each pertinent economic variable. In this study, the rate of

change of M2, ER and EPU is expressed as the log difference of the variable. The findings

derived from the scrutiny of Skewness, Kurtosis, and the Jarque-Bera (JB) test illuminate

salient features characterizing the probability distributions governing SSE, N225, and JEPU.

These probability distributions are notably distinguished by the presence of pronounced peaks

Table 1. Descriptive statistics and stationary testing and heteroskedastic test.

Panel A Descriptive statistics

Mean Min Max Std. Dev. Skewness Kurtosis P(JB)

SSE 0.002165 -3.853454 2.433618 0.568242 -0.883691 9.079544 0.000000

CM2 0.420960 -0.554221 1.593245 0.416307 0.323569 2.987790 0.243190

CER 0.002472 -1.285742 1.772869 0.436466 0.847789 6.166941 0.000000

CEPU 0.267899 -41.95545 36.99400 14.5854 -0.117788 2.884273 0.792549

N225 0.013404 -4.843875 3.393352 0.571788 -0.391549 7.872514 0.000000

JM2 0.126239 -0.261412 0.889751 0.200436 1.186965 4.899548 0.000000

JER 0.102262 -2.358774 3.204788 0.931771 0.614664 3.993229 0.000218

JEPU 0.010640 -26.96262 25.18561 8.110779 -0.110295 4.055536 0.019752

Panel B Stationary and heteroskedastic test

ADF PP KPSS Ljung-Box Q-

statistic (36)

ARCH

SSE -55.68574***
(0.0001)

-55.69187***
(0.0001)

0.046999 219.9500***
(0.0000)

129.0873***
(0.0000)

CM2 -2.426965

(0.1361)

-15.19483***
(0.0000)

0.758599***

DCM2 -11.58947***
(0.0000)

-109.9935

(0.0001)

0.196415

CER -7.502075***
(0.0000)

-7.207522***
(0.0000)

0.133526

CEPU -11.83482***
(0.0000)

-33.61563***
(0.0001)

0.138266

N225 -58.76959***
(0.0001)

-58.82644***
(0.0001)

0.043331 29.7300

(0.7600)

290.6381***
(0.0000)

JM2 -2.793088*
(0.0617)

-9.933491***
(0.0000)

0.133201

JER -9.030035***
(0.0000)

-8.997714***
(0.0000)

0.096680

JEPU -14.36969

(0.0000)

-28.94255***
(0.0001)

0.209168

Notes: The values in panel B are the t-statistics for stationary test.

*Indicate rejections of the null hypothesis at the 10% significance level.

**Indicate rejections of the null hypothesis at the 5% significance level.

***Indicate rejections of the null hypothesis at the 1% significance level. The numbers in parentheses are the p-values of the tests.

https://doi.org/10.1371/journal.pone.0305420.t001
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and pronounced tails skewed toward the left. In contrast, the probability distributions of CER,

JM2, and JER exhibit a distinct profile characterized by a rightward shift, spiked configura-

tions, and thick trailing tails. In addition, none of these six datasets conform to a normal distri-

bution. However, CM2 and CEPU exhibit distributions that lack overt features violating the

assumptions of normality. The examination of stability through the Augmented Dickey-Fuller

(ADF) test, Phillips-Perron (PP) test, and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test,

specifically within the context of unit root detection, yields statistically significant results for

all datasets, except for CM2, signifying the robust stability exhibited by these respective data

sequences. Notably, the first-order differenced series of CM2 (DCM2) successfully passes the

test of stability. Furthermore, an auxiliary analysis is conducted through the application of

Engle’s ARCH test to the regression series of SSE and N225 stocks. The outcome reveals a 1%

rejection rate of the null hypothesis, suggesting the existence of pronounced heterogeneous

effects within these datasets. This outcome underscores the appropriateness of employing a

GARCH-type model to effectively capture and model the volatility inherent in the Chinese

and Japanese stock markets across these two distinct stock exchanges. The Ljung-Box Q-statis-

tics are also presented in the table, and this autocorrelation test shows significant p-values for

SSE, indicating the presence of autocorrelation in the residual series. Specifically, the volatility

of its time period receives a significant influence from the prior period volatility. Hence the

problem can be correctly handled using GARCH model.

4. Empirical results

4.1 In-sample estimation of GARCH-type models

The in-sample estimation results are presented comprehensively in Table 2. Firstly, the parameter

μ denotes the unconditional mean of stock returns. Secondly, both estimated coefficients α and β,

associated with the total daily volatility of short-term component (gi,t) stock returns, exhibit signif-

icant positive values at the 1% level across all models. These parameters correspond to short-term

components linked to ARCH and GARCH terms, respectively. Their cumulative sum, α plus β,

closely approximates 1, indicating a pronounced volatility persistence effect for both SEE and

N225. Further parameters, ω1 and ω2, serve as the β polynomial weights for the long-run compo-

nents within the model. Their significance across most variables underscores the predictive capac-

ity of macroeconomic variables and the Economic Policy Uncertainty (EPU) in determining

long-run volatility. Additionally, θ represents the aggregated weighted rolling window realized

volatility for each variable, showcasing varied performance across countries and models.

For the Chinese stock market, in models GARCH-MIDAS-RV, GARCH-MIDAS-RV-X

and AO-GARCH-MIDAS-RV-X, all of them show a positive correlation between RV and vola-

tility, but in model G-M-RV this relationship is very weak, while in the other two models it is

significant at 1%. Similarly, CM2 also exhibits a significant positive effect at 5%, which be sup-

ported in GARCH-MIDAS-RV-X and AO-GARCH-MIDAS-RV-X models (not statistically

significant in GARCH-MIDAS-X). Conversely, CER and CEPU exhibit significant negative

impacts across all three models, indicating that China’s exchange rate and economic policy

uncertainty substantially dampen long-run stock price volatility. Similarly, JRV also displays a

significantly positive correlation with Japanese stock market volatility across three models.

Although JM2 negative in GARCH-MIDAS and GARCH-MIDA-RV models, lacks statistical

significance. While in AO-GARCH-MIDAS, JM2 is significantly positive at the 10% level.

Conspicuously, JER and JEPU consistently exhibit a significant positive impact on Japanese

stock volatility across all models, diverging from the findings in the Chinese stock market.

Overall, most parameter estimates for the long-run component τt demonstrate significance,

indicating the enduring impact of money supply, exchange rates, and economic policy
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uncertainty on stock markets in both China and Japan. Notably, the AO-GARCH-MIDAS

model outperforms other models, with a majority of parameter results exhibiting higher signif-

icance and significance levels.

To assess whether model performance can be enhanced through outlier correction, we

scrutinize the estimation outcomes for the four aforementioned models across the full sample

period. The evaluation of model fitting efficacy hinges on a direct comparison between

observed and predicted daily volatility. Thus, this study employs four distinct loss functions:

Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Deviation (MAD),

and Mean Squared Deviation (MSD), which are denoted as follows

MAE ¼
1

n

Xn

t¼1
jst � ŝtj;

MSE ¼
1

n

Xn

t¼1
ðst � ŝtÞ

2
;

MAD ¼
1

n

Xn

t¼1
j
ffiffiffiffi
st
p
�

ffiffiffiffiffi
ŝt

p
j;

MSD ¼
1

n

Xn

t¼1
ð
ffiffiffiffi
st
p
�

ffiffiffiffiffi
ŝt

p
Þ

2
:

Table 2. Estimated parameters of the GARCH-type model in the Chinese and Japanese samples.

GARCH GARCH-MIDAS-RV GARCH-MIDAS-X GARCH-MIDAS-RV-X AO-GARCH-MIDAS-RV-X

α 0.0676***(0.0153) 0.0771***0.0190) 0.0609***(0.0156) 0.0737***(0.0171) 0.0310***(0.0067)

β 0.9289***(0.0162) 0.9146***(0.0207) 0.9302***(0.0186) 0.8965***(0.0285) 0.9620***(0.0085)

μ 0.0049(0.0077) 0.0115(0.0082) 0.0123(0.0083) 0.0113(0.0080) 0.0207***(0.0064)

m -0.4627(0.5893) -1.0621**(0.3523) -1.3474***(0.3002) -2.4890***(0.4189) -2.4935***(0.1616)

θCRV 3.3037e-07(0.0009) 0.5078***(0.1565) 0.1737***(0.0390)

θCM2 0.4850(0.3626) 0.2522**(0.1134) 0.4407**(0.1988)

θCER -1.7727**(0.7613) -0.4986*(0.3019) -1.7800***(0.6481)

θCEPU -0.3246*(0.1799) -0.1637**(0.0745) -0.1626**(0.0741)

oCRV
2

4.7626(29.3466) 2.3264***(0.7222) 40.8121(32.9097)

oCM2
2

8.6611**(4.3215) 114.1349***(33.7489) 4.4400***(1.3803)

oCER
2

1.0000*(0.6003) 2.0733**(0.9721) 1.4747***(0.3720)

oCEPU
2

1.0000***(0.2094) 1.0875***(0.3222) 1.0000***(0.2075)

α 0.1259***(0.0219) 0.1266***(0.0217) 0.1197***(0.0257) 0.1160***(0.0206) 0.0783***(0.0166)

β 0.8295***(0.0298) 0.8033***(0.0397) 0.8276***(0.0439) 0.8013***(0.0416) 0.8410***(0.0416)

μ 0.02762***(0.0086) 0.0312***(0.0096) 0.0312***(0.0095) 0.0294***(0.0088) 0.0364***(0.0074)

m -1.0662***(0.1555) -1.9139***(0.3741) -1.0078***(0.2299) -1.9788***(0.3984) -3.0070***(0.2551)

θJRV 0.3197**(0.1405) 0.3203*0.1675 0.3364***(0.0962)

θJM2 -1.3528(1.2378) -0.3949(0.6591) 2.2797*(1.2840)

θJER 0.3482*(0.2024) 0.3206**(0.1424) 0.6033**(0.2203)

θJEPU 0.0741*(0.0422) 0.0649*(0.0334) 0.0531**(0.0241)

oJRV
2

14.0204**(6.3792) 2.8201(2.0210) 12.8771**(4.8761)

oJM2
2

1.0001(0.6506) 1.2480(1.2739) 1.0007***(0.2520)

oJER
2

8.9769(5.5246) 8.6838**(4.0019) 9.2348(7.0097)

oJEPU
2

1.0000**(0.4534) 1.1766**(0.5001) 11.8825**(4.2401)

https://doi.org/10.1371/journal.pone.0305420.t002
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Where n is the total number of volatility forecasts, σt and ŝt represent the actual value and

forecast value of the volatility, respectively.

Table 3 presents the outcomes from the assessment of diverse model specifications, demon-

strating consistent findings for both Japan and China. Primarily, the results obtained through

the loss function analysis reveal that models incorporating low-frequency economic variables,

namely GARCH-MIDAS-X, GARCH-MIDAS-RV-X, and AO-GARCH-MIDAS-RV-X, con-

sistently exhibit diminished values in comparison to GARCH-MIDAS-RV and the standard

GARCH model. This substantiates the assertion that integrating low-frequency economic vari-

ables significantly amplifies the model’s efficacy. Remarkably, the GARCH model consistently

ranks the lowest across all evaluation criteria, with a substantial margin, notably in terms of

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Specifically,

in Table 3, Panel A, its AIC and BIC values are more than twice those of the top-performing

model. In Panel B, the gap between the GARCH model and the leading model is striking, with

AIC and BIC disparities of 2484.345 and 2438.285, respectively. Moreover, the incorporation

of realized volatility does not substantially influence the estimation process. Although

GARCH-MIDAS-RV-X exhibits smaller values in the loss function, its AIC and BIC values are

comparatively larger. Lastly, the AO-GARCH-MIDAS-RV-X model consistently outperforms

the other four models, demonstrating superior performance with significantly lower loss func-

tion values and markedly smaller AIC and BIC scores. In sum, in the in-sample result,

AO-GARCH-MIDAS-RV-X emerges as the most robust model, reflecting its superior predic-

tive capacity and stability.

4.2 Out-of-sample forecast evaluation of GARCH-type models

For market participants, the primary concern lies in the model’s capacity to predict future

stock volatility rather than just in-sample performance [30,38,39]. Because of the prevalent

desire among investors to seek new investment insights from historical market data, there is a

pressing need for models characterized by improved efficiency to facilitate their effective

exploration of this valuable information.

In light of this objective, this section delves into an analysis of whether the incorporation of

a model with additive outliers can augment their predictive prowess. To ensure the robustness

of our findings and mitigate the influence of extraneous variables on forecasting results, we

employ a unified forecasting method, characterized by a rolling window approach consisting

Table 3. GARCH-type full sample parameter estimation results.

Panel A In-sample results of Chinese loss functions and information standards

Model MAE MSE MAD MSD AIC BIC

GARCH 0.3655 0.7416 0.3223 0.1768 4743.281 4767.661

GARCH-MIDAS-RV 0.3635 0.8548 0.3126 0.1758 3523.49 3558.553

GARCH-MIDAS-X 0.3588 0.8491 0.3099 0.1724 3495.888 3554.326

GARCH-MIDAS-RV-X 0.3572 0.7964 0.3132 0.1721 3855.604 3926.818

AO-GARCH-MIDAS-RV-X 0.3081 0.9406 0.2646 0.1565 2063.513 2133.639

Panel B In-sample results of Japanese loss functions and information standards

Model MAE MSE MAD MSD AIC BIC

GARCH 0.3565 0.6748 0.3217 0.1655 5129.268 5153.372

GARCH-MIDAS-RV 0.3594 0.5966 0.3234 0.1668 3945.111 3980.193

GARCH-MIDAS-X 0.3590 0.5942 0.3230 0.1660 3940.422 3998.892

GARCH-MIDAS-RV-X 0.3392 0.5318 0.3134 0.1560 4461.464 4533.265

AO-GARCH-MIDAS-RV-X 0.3093 0.6526 0.2793 0.1514 2644.923 2715.087

https://doi.org/10.1371/journal.pone.0305420.t003
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of five steps. This approach encompasses parameter estimation for GARCH-type models,

involving the analysis of model parameters utilizing sample data spanning various periods, fol-

lowed by out-of-sample forecasting. Evidently, the overall estimation timeline is iteratively

adjusted for each forecasting outcome generated within the confines of this recursive frame-

work. In particular, we commence by partitioning the complete dataset for both China and

Japan into two separate subgroups. The complete dataset sourced from the two nations was

initially partitioned into distinct subgroups. The complete dataset from both countries is ini-

tially segregated into two distinct subgroups. The allocation comprises 80% designated for in-

sample analysis and 20% earmarked for out-of-sample examination, with a total of 660 forecast

periods. In the case of China, the in-sample estimation spans from January 18, 2013, to August

5, 2020, while the out-of-sample forecast period extends from August 6, 2020, to March 31,

2023. Similarly, for Japan, the in-sample estimation period encompasses data from December

26, 2012, to July 13, 2020, followed by the corresponding out-of-sample evaluation period

spanning from July 14, 2020, to March 31, 2023.

The evaluation of out-of-sample model forecasting performance also relies on four distinct

loss functions; however, the predictive efficacy of the model displays noteworthy disparities

between China and Japan. As delineated in Examining the loss functions associated with the

GARCH-MIDAS-RV and GARCH-MIDAS-X models in Table 4, Panel B reveals that the

model incorporating low-frequency macro factors and EPU encompasses more valuable pre-

dictive information. Notably, the AO-GARCH-MIDAS-RV-X model, focusing on additive

outliers, notably surpasses the other models in terms of predictive accuracy. Specifically, across

both Chinese and Japanese datasets, the MAE, MSE, MAD, and MSD values are minimized. In

summary, this innovative model exhibits unequivocal superiority, excelling in both in-sample

estimation and out-of-sample prediction.

Table 4, Panel A, the GARCH model exhibits smaller values across all four loss functions

compared to the GARCH-MIDAS-X and GARCH-MIDAS-RV-X models, which show robust

out-of-sample forecasting capabilities, despite their underperformance in the in-sample con-

text. Remarkably, in Japan, the GARCH model does not establish an unequivocal advantage.

Moreover, the performance of GARCH-MIDAS-X and GARCH-MIDAS-RV-X models

diverges significantly between the two countries, with the latter model slightly outperforming

predictions in China but lagging behind all models in Japan. This disparity implies that the

incorporation or exclusion of the low-frequency factor RV does not singularly enhance the

model’s predictive prowess. Examining the loss functions associated with the

Table 4. Out-of-sample prediction assessment results.

Panel A Out-of-sample forecast validation of GARCH–type models, China

Model MAE MSE MAD MSD Mean Rank Theil’s U

GARCH 0.6900 1.3163 0.3265 0.1871 0.6300 0.2537

GARCH-MIDAS-RV 0.7072 1.300 0.3398 0.1941 0.6353 0.2487

GARCH-MIDAS-X 0.7372 1.3513 0.3535 0.2046 0.6617 0.2570

GARCH-MIDAS-RV-X 0.7056 1.3538 0.3426 0.2039 0.6515 0.2573

AO-GARCH-MIDAS-RV-X 0.6036 1.2259 0.2948 0.1614 0.5714 0.2448

Panel B Out-of-sample forecast validation of GARCH–type models, Japan

Model MAE MSE MAD MSD Mean Rank Theil’s U

GARCH 0.8080 1.0915 0.3692 0.2066 0.6188 0.2391

GARCH-MIDAS-RV 0.8046 1.0839 0.3679 0.2053 0.6154 0.2383

GARCH-MIDAS-X 0.7680 1.0728 0.3493 0.1915 0.5954 0.2371

GARCH-MIDAS-RV-X 0.8559 1.2118 0.3844 0.2234 0.6689 0.2520

AO-GARCH-MIDAS-RV-X 0.7390 1.0390 0.3426 0.1904 0.5778 0.2333

https://doi.org/10.1371/journal.pone.0305420.t004
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GARCH-MIDAS-RV and GARCH-MIDAS-X models in Table 4, Panel B reveals that the

model incorporating low-frequency macro factors and EPU encompasses more valuable pre-

dictive information. In addition, the tables presented offer consistent findings, affirming the

exceptional predictive efficacy of the AO-GARCH-MIDAS-X model. This is evidenced not

only through individual loss functions but also through the aggregate of four distinct loss func-

tions. The model’s unparalleled performance is distinctly evident across both in-sample esti-

mation and out-of-sample prediction, underscoring its unequivocal superiority in predictive

accuracy and innovation.

In addition to using these four loss functions to assess the predictive effectiveness of the

model, this study uses Theil’s U statistic. This statistical metric scales the Root Mean Square

Error (RMSE) by accounting for the variability inherent in the underlying data, thus offering

the advantage of independence from the actual process variance. The formula for Theil’s U sta-

tistic is as follows:

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTÞ� 1PT
i ðyai � yfi ðnÞÞ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTÞ� 1PT
i ðyai � y∗i ðnÞÞ

2

q

Where, T represents the quantity of forecasting periods under scrutiny. yai signifies the

authentic value while y∗i indicates the anticipated value derived from the naïve forecast for 5

steps into the future, with this study employing the no-change forecast as the basis for the

naïve forecast. yfi is the ith projected output for five steps in the future. When the value of

Theil’s U exceeds 1, it indicates a scenario wherein the forecast model’s performance worse

compared to the naïve forecast.

The final column of Table 4 presents the Theil’s U values. It is noteworthy that all values are

substantially below 1, indicating that the predictive capabilities of the models chosen for this

study surpass those of the naïve forecast. Furthermore, the Theil’s U value associated with the

AO-GARCH-MIDAS-RV-X model emerges as the smallest in both countries, a result consis-

tent with findings observed across the other four loss functions.

Table 5 provides a comprehensive overview of model performance, encompassing evalua-

tion across four distinct error measures. The initial four columns showcase the mean ratings

extracted from Table 4, while the last column aggregates the average mean ratings for each

method. Analysis of this table distinctly illustrates the sustained competitive edge of the

GARCH-MIDAS model, particularly with outlier correction, across all four assessment crite-

ria. Notably, in the overall rankings, this model confidently secures the top position, closely

pursued by the GARCH model.

This study employs four distinct loss functions to gauge the predictive efficacy of GARCH-

type models in volatility forecasting. The utilization of multiple criteria enhances the efficiency

of our analysis [40]. Moreover, to systematically appraise the predictive performance of these

models based on loss functions, the study employs the model confidence set (MCS) test [41].

Table 5. Summary of the ranking of methods in Table 4 for the two stock indices.

Model Mean Rank for MAE Mean Rank for MSE Mean Rank for MAD Mean Rank for MSD Mean of Mean Ranks

GARCH 0.7490 1.2039 0.3479 0.1969 0.6244

GARCH-MIDAS-RV 0.7559 1.1920 0.3539 0.1997 0.6254

GARCH-MIDAS-X 0.7526 1.2121 0.3514 0.1981 0.6286

GARCH-MIDAS-RV-X 0.7808 1.2828 0.3635 0.2137 0.6602

AO-GARCH-MIDAS-RV-X 0.6713 1.1325 0.3187 0.1759 0.5746

https://doi.org/10.1371/journal.pone.0305420.t005
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This test offers a straightforward and rapid method for comparison, bypassing the necessity to

establish a baseline model when assessing the predictive accuracies of diverse models.

Tables 6 and 7 present the selected optimal superior models (SSM), determined through

assessments of absolute and squared prediction errors, respectively. Notably, the associated p-

values demonstrate significance at the 20% level. Within these findings, the AO-GARCH-MI-

DAS-RV-X model emerges as the least eliminated, closely followed by the GARCH-MI-

DAS-RV-X model. This observation accentuates the diminishing predictive efficacy of models

in the presence of outliers. Consequently, it underscores the imperative for heightened consid-

eration of outlier influence when employing models for predictive purposes.

From the results of the MCS test, the predictive ability of the GARCH-MIDAS class of mod-

els generally outperforms the standard GARCH model, this finding is similar to Liu, Zhang

[42]. They employ both GARCH-MIDAS model and a variety of GARCH models for predict-

ing EUA futures, concluding that the former has stronger predictive power. In addition,

GARCH-MIDAS model that includes RV and low-frequency macroeconomic variables can

improve its predictive capability. The findings of Asgharian, Hou [12] support this conclusion.

Finally, this study finds that the inclusion of outlier correction function in the model results in

a significant improvement in predictive ability. This finding is consistent with Chen and Liu

[34] and Franses and Ghijsels [7]. After adding this function to the ARMA and GARCH mod-

els, Chen and Li find that the predictive effect of the model on the volatility is significantly bet-

ter than its standard model.

As delineated in Figs 2 and 3, it becomes apparent that the predictive outcomes of the

AO-GARCH-MIDAS-RV-X model exhibit greater proximity to actual volatility levels. Fur-

thermore, the observation that the temporal lag in predictions is notably diminished during

periods marked by extreme volatility.

In pursuit of bolstering the robustness of our conclusions, we have undertaken an addi-

tional assessment utilizing the Diebold and Mariano (DM) test [43] to gauge the comparative

predictive accuracy of the various models. Then, we define the mean loss differential of the

Table 6. Composition of remaining models in the superior set for two stock indices using absolute forecast errors.

China Japan

Model Tmax,M Rank_M Tmax,M Rank_M

GARCH

GARCH-MIDAS-RV 0.7004 3

GARCH-MIDAS-X

GARCH-MIDAS-RV-X 1.0000 1 0.9774 2

AO-GARCH-MIDAS-RV-X 0.9394 2 1.0000 1

https://doi.org/10.1371/journal.pone.0305420.t006

Table 7. Composition of remaining models in the superior set for two stock indices using squared forecast errors.

China Japan

Model Tmax,M Rank_M Tmax,M Rank_M

GARCH 0.9994 3 0.9294 4

GARCH-MIDAS-RV 0.8060 4 1.0000 2

GARCH-MIDAS-X 0.5384 5

GARCH-MIDAS-RV-X 1.0000 2 0.9658 3

AO-GARCH-MIDAS-RV-X 1.0000 1 1.0000 1

https://doi.org/10.1371/journal.pone.0305420.t007
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time series as a critical metric in our analysis.

�d ¼
1

T

XT

t¼1

dt ¼
1

T

XT

t¼1

½Lðei;tÞ � Lðej;tÞ�

Where L(ei,t) and L(ej,t) are respectively the absolute error loss from two different compet-

ing models.

The Diebold-Mariano test can be expressed as:

DM ¼
�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T Var dð Þ
p � N 0; 1ð Þ

Note that the Var(d) is a consistent estimator of the asymptotic variance of dt. The null

hypothesis posits an equivalence in predictive accuracy between the alternative model and the

Fig 2. The forecasting secular volatilities of GARCH-type models, China.

https://doi.org/10.1371/journal.pone.0305420.g002

Fig 3. The forecasting secular volatilities of GARCH-type models, Japan.

https://doi.org/10.1371/journal.pone.0305420.g003
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benchmark model, while the alternative hypothesis postulates a better predictive accuracy for

the benchmark model. In our analysis, we employ AO-GARCH-MIDAS-RV-X as the refer-

ence benchmark, subjecting each alternative model to a sequential comparative evaluation.

The outcomes of these comparisons are presented in Table 8 for reference.

4.3 Robustness analysis

Numerous studies have confirmed that the selected length of the prediction window leads to

differences in experimental results [44–46]. As previous predictions covered the pandemic

period, in order to capture more clearly whether the predictive ability of the model is robust or

not, this section will separately explore the sample data without the COVID-19 component.

Based on previous studies that typically used January 2020 as the pandemic start date [47], this

study divided the data prior to the onset of the pandemic into the period from October 2009 to

December 2019, with a prediction period of 500 days

Table 9 demonstrates the prediction performance of each model in China and Japan before

the outbreak. In China, the predictive ability of each model is not unanimously confirmed,

among which the predictive ability of AO-GARCH-MIDAS-RV-X is only supported by MAE

and MAD. However, according to the results of the DM test in Table 10, the p-values are all

found to be less than 10% when using this model as the baseline model in comparison with the

other competing models, indicating that the predictive ability of this model is significantly bet-

ter than that of all the competing models. The findings depicted in Tables 9 and 10 regarding

the different models in predicting Japanese stock volatility are in strong agreement. Firstly, the

AO-GARCH-MIDAS-RV-X model corresponds to the smallest values of the four loss func-

tions and Theil’s U, closely followed by the GARCH-MIDAS-RV-X model. Secondly, all p-val-

ues in the DM test are significant at the 1% level, indicating that the

AO-GARCH-MIDAS-RV-X has the strongest predictive power. Overall, the results of the

robustness test are consistent with the above findings that this model has a stable out-of-sam-

ple predictive ability. Table 10 summarizes the means of the loss functions from the two stocks.

For the AO-GARCH-MIDAS-RV-X model, the means of the three loss functions are signifi-

cantly smaller than the other models, except for MSE. The mean values of the four loss func-

tions corresponding to each model are shown in the last column of the table, again

demonstrating that the innovative models excel in forecasting. Table 11 shows the results of

DM-test. All the tests are significant, which means that all the models fail to beat the

Table 8. Results of the diebold–Mariano test.

Model China Japan

GARCH 3.9264***
(0.0000)

3.592***
(0.0002)

GARCH-MIDAS-RV 5.1586***
(0.0000)

3.4617***
(0.0003)

GARCH-MIDAS-X 7.0646***
(0.0000)

1.5815*
(0.0571)

GARCH-MIDAS-RV-X 5.9332***
(0.0000)

5.9405***
(0.0000)

Note: The table presents the evaluation results between the AO-GARCH-MIDAS-RV-X and various other GARCH-type models. An indication of a ratio exceeding 1

signifies that the predictive accuracy of the model under consideration is comparatively inferior to that of the benchmark model. The accompanying Diebold and

Mariano (DM) test p-values are provided within parentheses, with asterisks serving as indicators of statistical significance levels. Specifically

* denotes significance at the 10% level, and

** signifies significance at the 1% level.

https://doi.org/10.1371/journal.pone.0305420.t008
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AO-GARCH-MIDAS-RV-X model in terms of forecasting performance, both in the Chinese

and Japanese stock markets.

5. Conclusions

This study delves into the substantial influence of money supply, exchange rates, and eco-

nomic policy uncertainty on stock market volatility prediction through the GARCH-type

model. The findings furnish noteworthy insights applicable to both the Chinese and Japanese

stock markets, albeit with discernible performance disparities between the two nations.

Among the variables, only M2 consistently demonstrates a contributory effect on stock volatil-

ity in both countries. Conversely, the impact of ER and EPU diverges significantly: in China,

Table 9. Out-of-sample forecasting results in pre COVID-19 period.

Panel A Prediction results in pre COVID-19 period, China

Model MAE MSE MAD MSD Theil’s U

GARCH 0.8933 2.0953 0.3675 0.2487 0.2868

GARCH-MIDAS-RV 1.0004 2.1763 0.4123 0.2750 0.2923

GARCH-MIDAS-X 0.8759 2.1157 0.3638 0.2468 0.2882

GARCH-MIDAS-RV-X 0.8962 2.2584 0.3762 0.2699 0.2978

AO-GARCH-MIDAS-RV-X 0.8377 2.4709 0.358 0.2856 0.3115

Panel B Prediction results in pre COVID-19 period, Japan

Model MAE MSE MAD MSD Theil’s U

GARCH 0.9529 1.9489 0.4444 0.2973 0.3286

GARCH-MIDAS-RV 0.9462 1.9242 0.4493 0.3102 0.3265

GARCH-MIDAS-X 0.9921 1.9322 0.4665 0.3212 0.3272

GARCH-MIDAS-RV-X 0.9106 1.7674 0.4358 0.2904 0.3129

AO-GARCH-MIDAS-RV-X 0.7686 1.6169 0.3775 0.2438 0.2993

https://doi.org/10.1371/journal.pone.0305420.t009

Table 10. Summary of the ranking of methods in Table 9 for the two stock indices.

Model Mean Rank for MAE Mean Rank for MSE Mean Rank for MAD Mean Rank for MSD Mean of Mean Ranks

GARCH 0.9231 2.0221 0.4060 0.2730 0.9060

GARCH-MIDAS-RV 0.9733 2.0503 0.4308 0.2926 0.9367

GARCH-MIDAS-X 0.9340 2.0240 0.4152 0.2840 0.9143

GARCH-MIDAS-RV-X 0.9034 2.0129 0.4060 0.2802 0.9006

AO-GARCH-MIDAS-RV-X 0.8032 2.0439 0.3681 0.2647 0.8700

https://doi.org/10.1371/journal.pone.0305420.t010

Table 11. Results of the diebold–Mariano test in pre COVID-19 period.

Model China Japan

GARCH 1.7845**(0.0375) 6.5827***(0.0000)

GARCH-MIDAS-RV 4.5005***(0.0000) 6.6514***(0.0000)

GARCH-MIDAS-X 1.4384*(0.0755) 8.0824*(0.0000)

GARCH-MIDAS-RV-X 2.3646***(0.0092) 5.7967*(0.0000)

Note: The table presents the evaluation results between the AO-GARCH-MIDAS-RV-X and various other GARCH-type models. An indication of a ratio exceeding 1

signifies that the predictive accuracy of the model under consideration is comparatively inferior to that of the benchmark model. The accompanying DM test p-values

are provided within parentheses, with asterisks serving as indicators of statistical significance levels. Specifically

* denotes significance at the 10% level, and

*** signifies significance at the 1% level.

https://doi.org/10.1371/journal.pone.0305420.t011
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these variables exhibit a substantial negative influence on future volatility, whereas in Japan,

they showcase a positive effect. Furthermore, employing four distinct loss functions (MAE,

MSE, MAD, and MSD), we juxtapose the model’s estimation prowess pre and post the inclu-

sion of macroeconomic variables. Results underscore a noteworthy enhancement in the mod-

el’s estimation capability post incorporation of these variables, underscoring the utility of low-

frequency economic factors in estimating stock volatility. Subsequently, the in-sample explan-

atory strength of the AO-GARCH-MIDAS model, equipped with corrected outliers, remains

robust.

However, out-of-sample empirical results reveal nuances: GARCH-MIDAS-RV-X, incor-

porating realized volatility, exhibits superior predictive power over GARCH-MIDAS-X in

China, while the GARCH-MIDAS-X model, integrating macroeconomic variables and EPU,

outperforms the GARCH-MIDAS-RV model in predicting Japanese stock volatility. Compara-

tive assessments against rival models reaffirm the superior forecasting accuracy of the

AO-GARCH-MIDAS model. The consistency between the MCS test and DM test bolsters the

robustness of our main findings.

In summary, this research introduces novel approaches to forecast stock volatility, enrich-

ing the landscape of forecasting methodologies. The implications of our findings extend to pol-

icymakers and stock market participants. Policymakers should consider potential

market alterations resulting from relevant policies, emphasizing the need to maintain market

stability and transparency. Simultaneously, market participants can leverage these insights to

mitigate risks and make informed investment decisions.
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