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Abstract
Background  This study investigated whether the Combat compensation method can remove the variability of 
radiomic features extracted from different scanners, while also examining its impact on the subsequent predictive 
performance of machine learning models.

Materials and methods  135 CT images of Credence Cartridge Radiomic phantoms were collected and screened 
from three scanners manufactured by Siemens, Philips, and GE. 100 radiomic features were extracted and 20 radiomic 
features were screened according to the Lasso regression method. The radiomic features extracted from the rubber 
and resin-filled regions in the cartridges were labeled into different categories for evaluating the performance of 
the machine learning model. Radiomics features were divided into three groups based on the different scanner 
manufacturers. The radiomic features were randomly divided into training and test sets with a ratio of 8:2. Five 
machine learning models (lasso, logistic regression, random forest, support vector machine, neural network) were 
employed to evaluate the impact of Combat on radiomic features. The variability among radiomic features were 
assessed using analysis of variance (ANOVA) and principal component analysis (PCA). Accuracy, precision, recall, and 
area under the receiver curve (AUC) were used as evaluation metrics for model classification.

Results  The principal component and ANOVA analysis results show that the variability of different scanner 
manufacturers in radiomic features was removed (P˃0.05). After harmonization with the Combat algorithm, the 
distributions of radiomic features were aligned in terms of location and scale. The performance of machine learning 
models for classification improved, with the Random Forest model showing the most significant enhancement. The 
AUC value increased from 0.88 to 0.92.

Conclusions  The Combat algorithm has reduced variability in radiomic features from different scanners. In the 
phantom CT dataset, it appears that the machine learning model’s classification performance may have improved 
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Introduction
The United Nations Health Organization stated that out 
of the 19.2 million people with cancer in 2020, 9.9 million 
died. Radiomics has become a promising area of research 
for diagnosing, staging, and predicting tumors [1]. The 
radiomics workflow includes collecting images, prepro-
cessing images, identifying regions of interest, extracting 
features, and building models [2]. In general, large-scale 
multicenter research must collect medical images from 
different sites and equipment. Many studies have demon-
strated that radiomics features are sensitive and variable 
to scanners, scan parameters, and reconstruction algo-
rithms [3–7]. This sensitivity and variability pose a sig-
nificant challenge for the clinical application of radiomics 
[8, 9]. Furthermore, the variability in radiomics affects 
its subsequent statistical analysis and machine learn-
ing models. Therefore, more accurate radiomic features 
are extracted when noise is removed. Johnson and his 
colleagues proposed an empirical Bayesian function for 
nonparametric estimation (Combat) capable of adjusting 
batch effects in genetic data while preserving their bio-
logical properties [10]. In gene expression measurement 
experiments, different batches of experiments exhibit 
different environments and operating equipment, which 
create a ‘batch effect’ that invalidates the data. Radiomic 
features are also sensitive to conditions such as different 
acquisition equipment scan parameters.

Therefore, the Combat method can theoretically be 
applied to the removal of multi-center noise in radiomic 
features, which is the compensation of radiomic features. 
On the other hand, Fanny Orlhac and her colleagues 
demonstrated that the Combat algorithm successfully 
adjusted radiomics feature distributions computed from 
different CT imaging protocols and facilitated multi-
center radiomics studies [11]. However, this study did 
not investigate whether the Combat algorithm affects 
the performance of subsequent statistical analysis of the 
radiomic machine learning model. In addition, Fortin, 
Jean-Philippe and his colleagues stated that applying the 
Combat algorithm to compensate for multi-site effects of 
voxels in diffusion tensor imaging eliminates site-to-site 
variability while preserving biological variability such as 
age [12]. They also applied Combat to measure cortical 
layer thickness based on MRI data from different sites. 
The authors argued that Combat reduced the variability 
among different scanners and improve its performance 
in subsequent statistical analysis [13]. On the other hand, 
Da-anol and his colleagues assessed the ability of Combat 
and modified B-Combat and M-Combat to compensate 

for radiomics at different centers. They demonstrated 
that Combat and the modified Combat methods remove 
differences through performance metrics of machine 
learning pipelines [14].

The datasets consist of radiological images from vari-
ous scanner manufacturers, which can adversely affect 
the performance of radiomic machine learning models. 
Multicenter effect compensation studies are needed for 
CT images of different scanner manufacturers and dif-
ferent scan parameters. This study used an open-source 
dataset, which is a phantom data of different scan and 
reconstruction parameters on different models of CT 
[15]. The purpose of establishing this dataset was spe-
cifically to investigate the variability of radiomic features 
caused by different scanners and parameters.

(https://wiki.cancerimagingarchive.net/pages/view-
page.action?pageId=39879218).

Since applying the Combat method to multicenter 
compensation of radiomic features is a new field, many 
studies have focused on its compensatory effect on the 
radiomic characteristics. This study hopes to provide a 
reference for the subsequent modeling and analysis of 
the Combat method to compensate for the radiomics fea-
tures of the multicenter effect. Cartridge regions of two 
different materials were marked as ROI, and radiomic 
features were extracted from the regions of interest. The 
impact of the Combat method on the distribution of 
radiomic features of scanners from different manufac-
turers was investigated. In addition, the study validated 
whether the Combat algorithm could improve the perfor-
mance of subsequent modeling analysis of radiomic fea-
tures. We hope that this study can provide some valuable 
insights for future research or applications of the Combat 
algorithm in radiomic machine learning classification.

Materials and methods
Dataset and preprocessing
The Credence Cartridge Radiomic (CCR) phantom data-
set was collected from the public dataset. This dataset 
can be used to investigate the effects of scanners of dif-
ferent manufacturers on radiomic features. Table 1 shows 
that the Credence Cartridge had ten different material 
compositions representing different textures. Radiomic 
features extracted from different cartridges, such as rub-
ber and resin, were defined as distinct categories. The 
machine learning model was constructed to differentiate 
between these two different categories of features.

This dataset used eight scanners from three manufac-
turers, Siemens, Philips, and GE Healthcare, to assess 

after Combat harmonization. However, further investigation and validation are required to fully comprehend Combat’s 
impact on radiomic features in medical imaging.
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differences in radiomic features between manufactur-
ers and scanners. In total, 251 CT cohorts were acquired 
using different reconstruction parameters, voltages, cur-
rents, slice thicknesses, and reconstruction kernels. Out 
of the 251 CT cohorts, 41 phantom cohorts with different 
pitches, 20 phantom cohorts with different currents, and 
55 phantom cohorts with different reconstruction ker-
nels were excluded.

As shown in Table  2, CT phantom images from each 
manufacturer have the same reconstruction kernel, scan 
current and voltage, scan type, reconstruction FOV. In 
this study, 135 CT phantom cohorts with 53 S, 42 Phil-
ips, and 40 GE were screened to investigate differences 
in radiomic features between manufacturers, and the 
study found differences in slice thickness. These studies 
have demonstrated that radiomic features are sensitive 
to many factors, including reconstruction kernel, recon-
struction FOV, slice thickness, and pixel size. This study 
integrated other factors influencing radiomics character-
istics into the manufacturer’s scanner grouping. Since it is 
impossible to control all the factors influencing radiomics 
characteristics, this study tried to attribute all the factors 
to noise from scanners with different manufacturers. 
The principal component analysis was used to justify the 
grouping by scanners from different manufacturers.

Image segmentation
As shown in Fig.  1, the segmentation of the region of 
interest was performed manually on the CCR phantom 
image. We use the open source software ITK-SNAP 3.6 
to segment CT phantom images of different material car-
tridges [16]. Rubber particles were most commonly used 
in previous studies, and it was thought to be the clos-
est to the texture of NSCLC [17, 18]. Therefore, in this 
study, 50% filled ABS and rubber particle cartridges were 
selected to extract texture features.

This study used cubes of the same size to avoid differ-
ences in radiomic features caused by differently shaped 
labeled regions. A total of 270 cubes of the same size were 
cut separately in a 50% filled ABS and rubber particles 
Cartridge. Areas with rubber pellets were labelled 0, and 
areas with 50% filled ABS were labelled 1. This study used 
135 × 2 cubes scanned by GE, Philips, and Siemens as 
regions of interest (ROI) for radiomic feature extraction. 
In each ROI, all voxel values were linearly transformed 
to map between 0 and 1 by the Min-Max Normalization 
method. The image and segmentation data were stored in 
NIFTI format specially designed for neuroimaging with 
easy storage and readability.

Radiomic feature extraction
The open-source library Pyradiomics 3.0.1 and Python 
3.6.5 were employed to extract radiomic features [19], 
which were IBSI compliant [20]. The parameter for fea-
ture extraction was set as follows: the label value of the 
region of interest (ROI) in the label map was 0 or 1; 
the discretization value of the gray image level was 25; 
Voxel spacing was adjusted to 1 × 1 × 1 fixed size. This 
study excluded 2D shape features and 3D shape features 
because the ROI size in this study was the same. Table 3 
shows that 22  Gy Level Co-occurrence Matrix (GLCM) 
features, 11 first-order statistical features, 16  Gy-Level 
Run Length Matrix (GLRLM), 14  Gy Level Size Zone 
Matrix (GLSZM), and 14  Gy Level Dependence Matrix 

Table 1  Credence cartridge phantom CT scan description
Cartridge number Description
Cartridge 1 ABS plastic 20% honeycomb filling
Cartridge 2 ABS plastic 30% honeycomb filling
Cartridge 3 ABS plastic 40% honeycomb filling
Cartridge 4 ABS plastic 50% honeycomb filling
Cartridge 5 Sycamore wood
Cartridge 6 Rubber particles
Cartridge 7 Dense cork
Cartridge 8 Solid Acrylic
Cartridge 9 Natural cork
Cartridge 10 Plaster resin

Table 2  CCR Phantom scans of different manufacturers (total = 135)
CT scanner Reconstruction

Kernel.
mAs kVp Scan type Detector

configuration
(mm)

Varying reconstruction
FOV (mm)

GE
Discovery STE

Standard 250 120 Helical Det. Coverage = 20 200, 250, 300, 350, 400, 450, 500

GE
Lightspeed 32

Standard 250 120 Helical Det. Coverage = 20 200, 250, 300, 350, 400, 450, 500

Philips Brilliance 64 Standard (B) 250 120 Helical 64 × 0.625 200, 250, 300, 350, 400, 450, 500
Philips
Big Bore 16

Standard (B) 250 120 Helical 64 × 0.625 200, 250, 300, 350, 400, 450, 500

Siemens Sensation 64 B31f 250 120 Helical 64 × 0.6 200, 250, 300, 350, 400, 450, 500
Siemens
Sensation 40

B31f 250 120 Helical 40 × 0.6 200, 250, 300, 400, 500

Siemens
Sensation 16

B31f 250 120 Helical 16 × 0.6 200, 250, 300, 400, 500
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(GLDM) features were extracted. All phantom image 
samples and radiomic features were divided into three 
groups according to the manufacturers, Siemens, Philips, 
and GE Healthcare.

Combat compensation
The Combat algorithm was initially applied in genom-
ics to adjust genetic data obtained from multiple batches 
of microarray experiments [10]. The Combat algorithm 
assumes that “batch effects” affect many genetic data 
in similar ways. Many studies state that “Batch effects” 
include experimental environment, work, technology, 
and operators. It is similar to the multicenter effect of 
radiomics features, which includes scanner manufac-
turer, scan parameters, and reconstruction algorithm. 
This study used a model-based location (mean) / scale 
(variance) adjustment method for multicenter radiomic 
feature adjustments. This method is generally modeled 
by normalizing the mean and variance. However, for the 
more complex case of radiomic features, a more general 
location/scale modeling framework is applied. The value 
of the radiomic feature g for the j sample at i scanner 
manufacturer can be written as:

	
yijg = αg +Xβg + γig + δ

ig
εijg � (1)

Where α is the average value of the feature yijg , X is the 
design matrix for the sample condition, βg  is X  regres-
sion coefficient vector, γig  is the additive form effect 
of different scanner manufacturers, δ ig  is the multi-
plier form effect of different scanner. The error termεijg  

follows a normal distribution with mean zero and vari-
ance σ̂2.

	
ŷijg =

yijg − α̂g −Xβ̂g − γ̂ig

δ̂ig
+ α̂g +Xβ̂g � (2)

The adjustment algorithm uses the least square method 
to estimate the model parameters,α̂g, δ̂ig, γ̂igandβ̂g  can 
estimate the parameters αg,βg,γig, δ ig  based on the 
model [10].

The mean of each radiomics feature corresponds to α̂g  
in the formula. All radiomics features were divided into 
three batches corresponding to center i in the formula. 
The purpose was to investigate the performance of the 
Combat algorithm in removing noise from scanners man-
ufactured by Siemens, Phillips, and GE Healthcare. The 
study compensated radiomic feature in each ROI using 
the python open-source library ComBatHarmonization 
https://github.com/Jfortin1/ComBatHarmonization.

Machine learning model
Five machine-learning classification models were built to 
distinguish two different texture patterns. The selected 
radiomic features were divided into two groups: with 
the Combat group and without the Combat group, to 
investigate the impact of the Combat algorithm on sub-
sequent modeling. Changes in the classification per-
formance of five machine learning models between the 
two groups were investigated. It can assess the perfor-
mance of subsequent analysis of radiomic features, after 

Fig. 1  Flow chart of experimental design

 

https://github.com/Jfortin1/ComBatHarmonization
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Combat compensation. For example, if the classification 
performance of the machine learning model degrades 
after the Combat algorithm adjusts the features. It indi-
cates a negative impact of the Combat algorithm on the 
radiomic features. The dataset was randomly divided 
into 108 × 20 × 2 radiomic features as the training set and 
27 × 20 × 2 as the test set (the format is the number of 
samples × number of features × two texture patterns, and 
the ratio is 8:2.

Figure  1 shows that all models are built using open-
source scikit-learn 1.1.1. On the other hand, Table  4 
shows that five different machine learning models were 
employed to evaluate the impact of the Combat com-
pensation method on the classification performance of 
machine learning models. The five machine learning 
models include the least absolute shrinkage and selec-
tion operator (Lasso), logistic regression, random forests, 

support vector machines (SVM), and neural networks. 
The specific parameters of the model were set as follows.

Many studies have demonstrated that the collinear-
ity of radiomic features is an obstacle to improving the 
accuracy of model predictions. As a result, Lasso has 
been found to be the most efficient method to eliminate 
collinearity as it removes redundant features and filters 
the most relevant features for classification regardless of 
sample size [21]. Table 5 shows the 20 radiomic features 
most relevant to model classification predictions.

Statistical analysis
Statistical analysis was performed using the SPSS 25 
software https://sourceforge.net/projects/spss/. The 
between-group variability results of the ANOVA test 
were used to characterize the effect of Combat on 
radiomics characteristics. In this study, a p-value of less 
than 0.05 was considered to have a significant difference, 
and a p-value of greater than 0.05 was considered to have 
no significant difference. The effect of Combat on the dis-
tribution of radiomic features was determined through 
principal component analysis. The study investigated 
changes in the distribution of radiomic features for each 
category before and after Combat. Distribution plots and 
boxplots of probability densities of radiomic features 
were used to present the results.

The model classification performance was evaluated 
by the area under the receiver curve (AUC), accuracy 
(ACC), precision, and recall. The feature importance 
ranking was investigated using logistic regression and 
random forest models. The five-fold cross-validation 

Table 3  Name and classification of extracted radiomic features 
CCR Phantom
Category Features
First orders Percentile, Energy, Entropy, Interquartile Range, Kur-

tosis, Maximum, Mean Absolute Deviation, Mean, 
Median, Minimum, Range, Robust Mean Absolute 
Deviation, Root Mean Squared, Skewness, Total 
Energy, Uniformity, Variance,

Gray-Level Co-
occurrence Matrix 
(GLCM)

Autocorrelation, Joint Average, Cluster Prominence, 
Cluster Shade, Cluster Tendency, Contrast, Correla-
tion, Difference Average, Difference Entropy, Dif-
ference Variance, Joint Energy, Joint Entropy, Imc1, 
Imc2, Idm, Idmn, Id, Idn, Inverse Variance, Maximum 
Probability, Sum Entropy, Sum Squares

Gray-Level Run 
Length Matrix 
(GLRLM)

Gray Level non uniformity, Gray Level non unifor-
mity Normalized, Gray Level Variance, High Gray 
Level Run Emphasis, Long Run Emphasis, Long 
Run High Gray Level Emphasis, Long Run Low Gray 
Level Emphasis, Low Gray Level Run Emphasis, Run 
Entropy, Run Length non uniformity, Run Length 
non uniformity Normalized, Run Percentage, Run 
Variance, Short Run Emphasis, Short Run High Gray 
Level Emphasis, Short Run Low Gray Level Emphasis

Gray Level Size 
Zone Matrix 
(GLSZM)

Gray Level non uniformity, Gray Level non 
uniformity Normalized, Gray Level Variance, High 
Gray Level Zone Emphasis, Large Area Emphasis, 
Large Area High Gray Level Emphasis, Large Area 
Low Gray Level Emphasis, Low Gray Level Zone 
Emphasis, Size Zone non uniformity, Size Zone non 
uniformity Normalized, Small Area Emphasis, Small 
Area, Small Area Low Gray Level Emphasis, Zone 
Entropy, Zone%, Zone Variance

Gray Level De-
pendence Matrix 
(GLDM)

Dependence Entropy, Dependence non uniformity, 
Dependence non uniformity Normalized, Depen-
dence Variance, Gray Level non uniformity, Gray 
Level Variance, High Gray Level Emphasis, Large 
Dependence Emphasis, Large Dependence High 
Gray Level Emphasis, Large Dependence Low Gray 
Level Emphasis, Low Gray Level Emphasis, Small 
Dependence Emphasis, Small Dependence High 
Gray Level Emphasis, Small Dependence Low Gray 
Level Emphasis

Table 4  Parameter settings of five machine learning models
Model name Model parameter Parameter 

values
Least absolute 
shrinkage and 
selection op-
erator (Lasso)

Lasso regression canonical term 
coefficient
Maximum number of iterations

0.1
1000

Logistic 
regression

Logistic regression penalty term ‘l2’

Random forests Number of random forest trees
Maximum depth

100
8

Support vector 
machines 
(SVM)

SVM regularization parameter
Kernel type
Kernel coefficient

2
Radial basis 
function
scale

Neural 
networks

Activation function
Optimizer selection was ' Stochas-
tic gradient descent’ Learning rate
Maximum number of iterations
Neural network composition

Rectified linear 
unit
Stochastic gradi-
ent descent
0.01
200
1 input layer and5 
hidden layers and 
1 output layer

https://sourceforge.net/projects/spss/
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results of all classification models were recorded and sta-
tistically calculated using 95% confidence intervals.

Result
Radiomics feature compensation
ANOVA tests were performed across the radiomics 
features of the three manufacturers, and the results are 
shown in Table  5. The between-group difference was 

significant (p < 0.05) before Combat, indicating that the 
radiomics features were affected by scanners from differ-
ent manufacturers. After Combat, the difference between 
groups was significant (p˃0.05), indicating that the Com-
bat method successfully removed the influence of scan-
ners from different manufacturers.

Figure  2 is the principal component analysis plot of 
radiomic features of the three groups of scanners before 
and after Combat. In Fig. 2A, the scanners are manufac-
tured by Siemens, Philips, and GE, labeled as 0, 1, and 2 
respectively. manufacturer 1 is distributed at the top, and 
manufacturer 2 and three are distributed at the lower 
left and lower right, respectively. These results show that 
the spatial distribution of the radiomic features of differ-
ent manufacturers’ scanners is significantly different. In 
Fig. 2B, the radiomic features of the three manufacturers’ 
scanners are uniformly distributed, which shows that the 
combat method successfully reduced the variability from 
different manufacturers.

Figure  3 shows the probability density functions and 
boxplots of the texture features. The first order features 
were shown here (GLDM, GLCM, and GLRLM features 
were shown in Supplementary Figs.  1, 2, and 3). The 
three colors represent the radiomics features of the three 
manufacturer’s scanner groupings. Figure 3A shows that 
the distribution of radiomics features varied significantly 
among the three groups. Boxplots also reveal notable dif-
ferences between groups, which can impact subsequent 
statistical analyses and model accuracy. Figure 3B shows 
the distribution after Combat compensation. Combat 
compensation removes differences in the distribution 
of radiomics features between scanners from different 
manufacturers. The shapes of the distributions of the 
same set of features after Combat are roughly the same. It 
partly demonstrates that Combat maintains classification 

Table 5  Concordance test for ANOVA between different 
scanners
Features names Without 

Combat
With 
Combat

Glcm Imc1 < 0.001 0.837
Glcm Inverse Variance < 0.001 0.869
Gldm Low Gray Level Emphasis < 0.001 0.975
Glszm Gray Level Variance < 0.001 0.511
Glszm Zone% < 0.001 0.978
Gldm Dependence non uniformity 
Normalized

< 0.001 0.894

First order Skewness < 0.001 0.949
Glcm Sum Squares < 0.001 0.889
Glcm Contrast < 0.001 0.972
Glszm Large Area Low Gray Level Emphasis < 0.001 0.878
First order Interquartile Range < 0.001 0.975
Gldm Small Dependence Low Gray Level 
Emphasis

< 0.001 0.864

Gldm Large Dependence Low Gray Level 
Emphasis

< 0.001 0.910

First order Kurtosis < 0.001 0.816
Glrlm Long Run Emphasis < 0.001 0.876
Gldm Large Dependence High Gray Level 
Emphasis

< 0.001 0.939

First order Energy < 0.001 0.838
Gldm Small Dependence High Gray Level 
Emphasis

< 0.001 0.907

Glszm Small Area Emphasis < 0.001 0.842
Glcm Sum Entropy < 0.001 0.905

Fig. 2  Principal component analysis of radiomic features, A: without Combat; B: with Combat
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specificity while removing unwanted noise from different 
manufacturers.

The results indicate that radiomic features are sensi-
tive to different CT scanners and manufacturers, lead-
ing to poor stability and robustness of these features. The 
Combat algorithm successfully removes the variability in 
radiomic features caused by different scanner manufac-
turers. It suggests that the Combat algorithm can harmo-
nize the distribution of radiomic features and eliminate 
the multicenter effects of radiomic features.

Machine learning models
Figure  4 shows the classification performance of five 
machine learning models (Lasso, Logistic, Random For-
est, SVM, and Neural network) for radiomics features 
in two different regions. The red bars show the results 
of machine learning classification of radiomics features 
before Combat compensation, whereas the blue bars rep-
resent the results of machine learning classification of 
radiomics features after Combat compensation. The error 
bars represent the range of validation errors. Compensa-
tion of the radiomic features using Combat improved 

the classification performance of five machine learning 
models.

The logistic regression and the random forest mod-
els outperformed the other three models. Maybe due 
to the small dataset size and overfitting, the neural net-
work’s classification performance was lower than that 
of all other models. The impact of radiomic features on 
the classification performance of machine learning mod-
els before and after Combat was compared. The study 
found that the accuracy and precision of the model were 
significantly improved. After Combat, the error margins 
of most of the model classification results were reduced, 
demonstrating that the Combat method can enhance the 
accuracy and stability of model classification.

Figure 5 shows the optimal ROC curves of five machine 
learning models for classification tasks, where the blue 
curve is before Combat, and the red curve is after Com-
bat. The ROC values of logistic regression and random 
forest models were 0.84 and 0.88 before Combat 0.91 and 
0.92 after Combat.

Different radiomic features contribute differently to 
machine learning model classification. After Combat 

Fig. 3  Density distribution of First Order interquartile range in with and without Combat. A: without Combat; B: with Combat
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compensation, the importance of the contribution of 
radiomic features changes, and the magnitude of the 
change can reveal the impact of Combat on radiomic 
features. In Supplementary Figs. 4 and 5, changes in the 
importance ranking of radiomic features were investi-
gated, after Combat compensation,

The importance of the variable was derived from 
the value of the coefficient of the variable in the logis-
tic regression analysis. Supplementary Fig.  4A features 
importance statistics before Combat, and Supplementary 
Fig. 4B shows feature importance statistics after Combat. 
The results show that texture features such as GLCM are 
more important than statistical features. The study also 
found that the importance rankings for most features 
changed slightly, indicating that the Combat method 
did not significantly affect the specificity of radiomic 
features. The results also show that the proportion of 
feature importance in the classification contribution is 
unchanged. However, the study observed fluctuations in 
the importance ranking of a few radiomic features, such 
as the first-order interquartile range, which shows that 
the Combat algorithm still requires further refinement to 
adapt to the multi-center effect compensation problem 
of radiomic features. Supplementary Fig.  5 shows that 

radiomic feature importance changed after using Com-
bat. The results of the random forest model are consis-
tent with those of logistic regression.

In this phantom CT dataset, there was a modest 
improvement in the AUC value of the harmonized fea-
tures. It suggests that the Combat algorithm may poten-
tially enhance the classification performance of radiomic 
machine learning models.

Discussion
Radiomics features are sensitive to medical image data 
from different centers, which vary with the acquisition 
equipment, manufacturers, acquisition parameters, and 
reconstruction kernels [22]. Several radiomics studies 
have analyzed medical images from several medical insti-
tutions and different scanner models. It has been found 
that the multicenter problem is a major challenge inter-
fering with the application of radiomic features in large-
scale multicenter data and clinical practice.

This study investigated the impact of the Combat algo-
rithm in removing the variability of CT phantom data 
from different manufacturers. The study used the PCA 
and ANOVA to examine the influence of different manu-
facturers on radiomic features. It was observed that the 

Fig. 4  Performance metrics evaluation of different model performance indicators in with and without Combat
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sample distribution of the principal component analysis 
was different for different manufacturers, which indi-
cated that different scanner manufacturers resulted in 
variations among radiomic features. Radiomic features 

were also sensitive to scanner [23, 24], reconstruction 
kernel [25, 26], and scan parameters [27].

PCA revealed that the distribution differences between 
groups of radiomics feature disappeared after the 

Fig. 5  ROC curves of five machine learning models in with and without Combat
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Combat algorithm adjusted the radiomics features. The 
ANOVA consistency test showed that the differences in 
radiomics features between different groups disappeared, 
and the p-values of all features changed from less than 
0.05 to greater than 0.05. Johnson believed that the Com-
bat algorithm removes the variability of different batches 
and preserves its biological specificity [10]. Many studies 
have also demonstrated that the Combat algorithm has a 
good adjustment effect for radiomic features from differ-
ent voxel sizes, reconstruction kernels, and scanning pro-
tocols [11, 28].

Microarray data for genes are often influenced by 
in the types of chips, samples, and labels [10]. Simi-
larly, radiomics feature data often vary between scan-
ners, scanner manufacturers, and other parameters. 
The Combat algorithm assumes that the distribution of 
radiomics features generally follows a location (mean)/
size (variance) distribution. Combat uses modeling to 
fit the distributions and errors of radiomics features and 
then estimates the model parameters and errors. The 
radiomics features of scanners from different manufac-
turers were defined as different batches and adjusted 
according to Eq. 2.

Table  1 shows the 50% ABS resin and rubber particle 
cartridge areas in the cartridge CT phantom data marked 
as ROIs. 100 radiomic features were extracted from the 
ROI region. There are some features in the radiomics 
that are redundant, and cross-correlated features need to 
be excluded and it will also bias the subsequent analysis 
[29]. Lasso regression was utilized to select the radiomic 
features most relevant to model predictions. Many stud-
ies show that the Lasso regression model is the most effi-
cient variable selection method [30].

Five frequently used machine learning models Lasso, 
logistic regression, random forest, SVM, and neural net-
work, were designed to distinguish radiomics features. 
The performance of these five machine learning models 
was compared before and after Combat. The results show 
that Combat can not only remove unwanted variation 
from scanners but also can improve model classification 
accuracy.

As shown in Figs.  3, 4 and 5, the Combat algorithm 
aligns the centers and scales of the radiomic features’ dis-
tributions by standardizing the feature distributions. This 
helps to remove the variability in radiomic features. The 
evaluation of radiomic machine learning model classifica-
tion performance results demonstrates that the Combat 
algorithm may improve the classification performance of 
machine learning models. One possible reason is that the 
Combat algorithm mitigates the interference of unfavor-
able factors, such as scanner models, on radiomic fea-
tures. However, this result is currently only tested on this 
whole-body dataset, and rigorous conclusions require 
comprehensive validation and assessment.

Fanny Orlhac and his colleagues found that the relative 
positions and shapes of the density distributions of dif-
ferent groups of features were the same before and after 
Combat [11]. They believe this indicates that the prop-
erties of the radiomic signature have not changed after 
Combat compensation. On the other hand, Jean-Philippe 
and his colleagues applied Combat to compensate corti-
cal thickness measurements from different scanners [13]. 
Demonstrated that the Combat algorithm successfully 
removed noise from cortical thickness measurements 
from different scanners. In addition, they verified that the 
correlation of cortical layer thickness with age persisted 
after Combat compensation. This study investigated 
changes in feature importance before and after Com-
bat based on logistic regression and random forests. We 
found that the importance of texture features was altered 
as a result of Combat’s adjustments. Texture features 
were found to be influenced by different scanners [6]. 
Although the model evaluation method achieved good 
performance, the Combat method need to be improved 
to ensure stability of features.

This study also has some shortcomings. Combat algo-
rithm can only adjust the existing data, but cannot be 
applied to adjust new data. Ronrick and his colleagues 
tried to use deep learning to fit Combat’s process so that 
it could be applied to new data [31]. It will be interesting 
attempt, but improving the Combat algorithm is more 
direct and efficient. In other words, if the compensation 
performance of the Combat algorithm is not improved, 
there is no prospect of using another model to simulate 
this process. The dataset used in this study were limited 
to phantom CT. We hope that in future studies, improve-
ments to the structure of the Combat algorithm can be 
made. The aim is to develop a feature variability harmo-
nization algorithm that is specifically applicable to the 
field of radiomics.

Conclusion
This study collected CT phantom images from different 
scanners manufactured by different companies. In total, 
100 radiomic features were extracted. The ANOVA test 
and feature probability density distribution results show 
that the Combat algorithm successfully removes the 
noise of radiomics features from the different scanners. 
the Combat algorithm improved the performance of sub-
sequent modeling analysis of radiomic features. How-
ever, whether the Combat algorithm can improve the 
robustness and classification performance of radiomic 
machine learning models in clinical disease CT images 
still requires further validation.
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