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Abstract: The development of nanotechnology has led to
the creation of materials with unique properties, and in
recent years, numerous attempts have beenmade to include
nanoparticles in concrete in an effort to increase its per-
formance and create concrete with improved qualities.
Nanomaterials are typically added to lightweight concrete
(LWC) with the goal of improving the composite’s mechan-
ical, microstructure, freshness, and durability qualities.
Compressive strength is the most crucial mechanical char-
acteristic for all varieties of concrete composites. For this
reason, it is essential to create accurate models for esti-
mating the compressive strength (CS) of LWC to save
time, energy, and money. In addition, it provides useful
information for planning the construction schedule and
indicates when the formwork should be removed. To pre-
dict the CS of LWC mixtures made with or without nano-
materials, nine different models were proposed in this
study: the gradient-boosted trees (GBT), random forest,
tree ensemble, XGBoosted (XGB), Keras, simple regression,
probabilistic neural networks, multilayer perceptron, and
linear relationship model. A total of 2,568 samples were
gathered and examined. The most significant factors influ-
encing CS during the modeling process were taken into

account as input variables, including the amount of nano-
materials, cement, water-to-binder ratio, density, the con-
tent of lightweight aggregates, type of nano, fine and coarse
aggregate content, and water. The performance of the sug-
gested models was assessed using a variety of statistical
measures, including the coefficient of determination (R2),
scatter index, mean absolute error, and root-mean-squared
error (RMSE). The findings showed that, in comparison to
other models, the GBT model outperformed the others in
predicting the compression strength of LWCmixtures enhanced
with nanomaterials. The GBT model produced the best results,
with the greatest value of R2 (0.9) and the lowest value of RMSE
(5.286). Furthermore, the sensitivity analysis showed that the
most important factor influencing the prediction of the CS of
LWC enhanced with nanoparticles is the water content.

Keywords: compressive strength, machine learning, regres-
sion model, nanomaterials, nano silica, nano metakaolin,
lightweight concrete

1 Introduction

It is possible to improve the mechanical characteristics and
performance of lightweight concrete (LWC) by modifying it
with nanoparticles. Compressive strength is a crucial prop-
erty of concrete that is used to evaluate material’s load-
bearing ability and structural integrity. Experimental testing
has always been the primary method for estimating com-
pressive strength (CS) although it can be labor and resource
intensive. However, new developments in machine learning
(ML) techniques have created new opportunities for precise
and effective CS estimation in LWC enhanced with nano-
particles.

To create prediction algorithms, ML-based CS estima-
tion includes training models with data from experimental
tests and other pertinent characteristics. The CS of LWC
with nanomaterial changes can then be estimated using
these algorithms, which take into account a variety of input
variables like mix proportions, curing conditions, type and
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dose of the nanomaterials, and others. With the use of ML
algorithms, this method analyzes intricate relationships
and patterns in the data to provide precise CS estimates.

There are many benefits to applying ML-based CS esti-
mates in LWC enhanced with nanoparticles. First, it speeds
up development by reducing reliance on expensive and
time-consuming experimental testing, which conserves
resources. Second, by taking into account several factors
at once, it offers a more thorough knowledge of how
nanomaterials affect CS. This makes it possible to identify
the most important variables influencing CS and optimize
the mixture design.

Furthermore, complex nonlinear interactions that may
be difficult for traditional analytical approaches to capture
and handle vast datasets are also capabilities of ML models.
Predictions become more reliable as a result of the capacity
to estimate CS more precisely and robustly. Furthermore, as
new data become available, MLmodels may be updated and
enhanced regularly, which over time will increase their
accuracy and flexibility.

It is crucial to remember that estimating CS using ML
is not without its difficulties. Important factors to take into
account include the training dataset’s representativeness
and quality, the choice of relevant input variables, and the
models’ ability to generalize to various contexts. The models
must be carefully validated and verified to guarantee their
efficacy.

In conclusion, a major development in concrete tech-
nology has been made with the introduction of ML-based
CS estimation in LWC modified with nanoparticles. It can
estimate CS more quickly, accurately, and economically.
This might lead to more effective mixture design optimi-
zation and the creation of novel LWC materials with
improved mechanical properties. The construction industry
has considerable potential when it comes to applying ML to
research and development of concrete.

The main aim of this study was to provide multiscale
models to predict the CS of LWC-containing nanoparticles.
To that end, a variety of laboratory work data, approxi-
mately 2,568 tested specimens with varying cement con-
tent, fine aggregate content, normal coarse aggregate
content, lightweight aggregate content, water, water/
cement ratio, density, percent of nano, and type of
nano were taken into consideration with various ana-
lysis approaches aiming:
(i) To ensure that the construction industry can use the

models provided without any theoretical.
(ii) To conduct statistical analysis and identify the influ-

ence of various parameters on the CS of LWC.
(iii) To quantify and provide a systematic multiscale model

to predict the CS of LWC containing nanoparticles.

(iv) To use statistical assessment tools to identify the most
reliable model among nine different model strategies
(XGB, random forest (RF), linear regression (LR), SL,
Keras, multilayer perceptron (MLP), probabilistic neural
networks simple regression trees (SRT), and TER) for
predicting the CS of LWC.

2 Literature review

When designing and building concrete, one of the most
important quality control parameters is the LWC’s CS.
The widespread use of CS can be ascribed to the ease of
its testing process and its strong association with other
crucial factors, such as durability and tensile strength.
Furthermore, structural engineers make considerable use
of CS when designing structures [1]. Because LWC is highly
complicated and heterogeneous, designing and producing
it generally require trial and error. This is due to the fact
that there is a wide range of mixture ingredients that can
be used to make concrete, such as cement, water, admix-
tures, aggregates, and supplemental cementitious mate-
rials (SCMs), all of which have a wide range of physical
and chemical characteristics [1–3]. The scenario becomes
more difficult due to the potential impact of environmental
conditions like temperature and humidity on the charac-
teristics of concrete [4,5]. To enable high-throughput mixture
design and minimize the time-consuming trial-and-error
methods currently employed in the manufacturing of con-
crete, a predictive model that is efficient and dependable
and that can estimate CS based on mixture proportions is
required. A strong predictive model would provide more
optimized mixtures that satisfy design specifications and
raise mixture efficiency [6,7]. The field of ML is growing
quickly and has demonstrated significant promise for appli-
cations in civil engineering [8,9]. Large datasets may be
analyzed byML algorithms, which can then extract valuable
information to help with decision-making, classification,
and prediction [10]. Based on a variety of input parameters,
such as dosage of cement, sand content, normal aggregate
content, lightweight aggregate content, water mix, den-
sity, and other SCMs such as nano silica and nano meta-
kaolin (NMK), and the ratio of water to cementitious
materials (W/Cm) [9], ML algorithms can be used to pre-
dict the CS [7,11], modulus of elasticity [3,12], flexural
strength [13,14], pore solution connectivity [9], and other
properties of concrete. The ability of ML to process enor-
mous amounts of data considerably more quickly and
precisely than conventional approaches is one of the
main advantages of utilizing it in concrete analysis.
This enables engineers to minimize the amount of
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experimental testing and improve the mix design, which
can save money and time while increasing the efficiency
of the project as a whole [6]. Furthermore, ML can pro-
vide detailed information about the intricate relation-
ships between various factors and highlight connections
that conventional statistical methods could have over-
looked [10]. Using ML to model the intricate structure of
concrete may prove to be a very successful strategy. The
CS of concrete has been predicted using a number of ML
models, including gradient-boosted trees (GBT), extreme
gradient boosting (XGBoost), RFs, tree ensemble (TE), LR,
MLP, SRT, Keras learning network, and artificial neural net-
works (ANNs, i.e., PNN) [6]. It has been demonstrated that
these models are capable of accurately predicting the CS of
concrete. To offer more illustrations beyond the already
referenced literature, Maherian et al. [15] intended to use
support vector machine (SVM) and Gaussian process regres-
sion (GPR) ML approaches to create predictive models for
the CS of concrete containing nano-silica (NS). Cement
concentration, aggregates, NS characteristics, water–binder
ratio (W/B), and forecast time were among the input factors.
According to the findings, SVM performed better in CS pre-
diction than GPR. According to Zaman et al. [16], curing time
and silica concentration are important determinants of the
28-day CS of cement paste with nanocomposites. ML
methods, in particular, ensemble approaches combining
ANN and RF, efficiently predict this strength, attaining an
R2 value of 0.97. In addition to proposing streamlined
formulas for calculating strength, Kioumarsi et al. [17]
created an ML-based model for forecasting the CS of con-
crete containing ground granulated blast furnace slag
(GGBFS). DT, RF, SVM, K-nearest neighbors (KNNs), and
ANN were among the ML techniques used with a large
dataset comprising 625 experimental trials. Performance
metrics were used to evaluate the model’s correctness,
and a sensitivity analysis was conducted to determine
how GGBFS affected the CS of concrete. The results of
this study were used to propose equations for the model.
Shahmansouri et al. [18] conducted research to examine
the possibility of using an ANN model to forecast the
electrical resistivity and CS of natural zeolitic concrete
(NZC). Seven input variables were used in the study: spe-
cimen age, W/Cm, cement, natural zeolite, gravel, sand,
and superplasticizer contents. The experimental data from
324 NZC specimens were used. The model’s correctness was
validated by extensive computer studies, providing a
dependable and effective substitute for expensive and
time-consuming experiments in the optimization of envir-
onmentally friendly concrete mixtures. Young et al. [7]
examined a large data set (>10,000 observations) of
measured CSs from real job site mixtures and their

corresponding mixture proportions in a different study.
This study focused on the industrial significance of pre-
dicting concrete’s CS using statistical and ML approaches
based on mixture proportions. The models were also used
to determine the best concrete combinations that meet
target strength requirements while minimizing cost and
embodied CO2 impact. Alshammari [19] optimized concrete
compositions for sustainability and strength using artificial
intelligence. By using a dataset of 1,150 typical concrete
formulas to train an ML model, it was possible to forecast
concrete strength at different ages with previously unheard
of precision. The model created high-performance concrete
with a lower environmental impact by taking carbon embo-
diment into account. Li et al. [6] addressed the difficulties in
formulating desired features as she investigated the trans-
formational potential of ML in practical research. Their
review, which addresses the implementation, application,
and interpretation of ML algorithms, demonstrates the ben-
efits of ML in concrete research. Surono et al. [20] developed
a deep learning and ML model for COVID-19 classification
using convolutional neural network (CNN) architectures and
ML algorithms. The article compares the accuracy of dif-
ferent CNN models with ML algorithms for classifying CXR
lung images, with the MobileNetV2-SVM structure achieving
the highest accuracy of 93%. Bayesian optimization was
used to optimize the ML algorithms, resulting in improved
accuracy. The SVM algorithm outperformed other ML algo-
rithms such as Naive Bayes, KNN, and decision tree in terms
of accuracy. The MobileNetV2-SVMmodel achieved an accu-
racy of 93% in classifying the CNN-extracted features from
the lung images. Precision, recall, and F1-score values for the
MobileNetV2-SVMmodel were 0.83 each. The SVM algorithm
outperformed other ML algorithms, such as Naive Bayes,
KNN, and decision tree, in terms of accuracy. The research
provided valuable insights into the development of an accu-
rate and efficient diagnostic system for COVID-19 using state-
of-the-art CNN models and optimized ML algorithms.

NS’s effectiveness depends on a number of variables,
including its dosage and particle size, the dispersion tech-
nique employed, and the mixture’s W/Cm, among others
[21]. Srinivas [22] claim that because of the latter’s coarse
capillary pore structure, which made it difficult for NS
particles to effectively fill the pores and reinforce the
microstructure, the use of NS significantly improved the
mechanical properties of concrete mixtures with a W/Cm
ratio of 0.36 as opposed to those with a ratio of 0.55.
Taher and Ismael [23] studied the incorporation of NS
into asphalt mixtures to improve the resistance of the
asphalt mixture to rutting. The study showed that adding
4% NS effectively improved the asphalt mixture against
corrosion and corrosion. Moreover, the addition of 6%
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NS improved Marshall’s stability by 33%. In addition, the soft-
ening point of asphalt increased and the mixture showed
greater resistance to permanent deformation and corrosion
at high temperatures. Yasin et al. [22] developed anMLmodel
to improve LWCmix. The researchers used light volcanic tuff
with unique properties. ANNs have been successfully used to
predict the optimum content of Tuff fine aggregate in LWC,
with a range of CSs from 20 to 50MPa. The ANN model
showed a clear agreement between the predicted values
and the experimental ones, indicating its accuracy in pre-
dicting the properties of LWC. The use of ANNs in concrete
mix design can help minimize the need for costly and time-
consuming experimental investigations, leading to cost
and time savings in construction projects. The ANN model
developed in this research can be used to predict new
data ranges, indicating its potential for application in dif-
ferent scenarios. The ANN-FF method provided higher
accuracy in predicting the CS compared to the ANN-CF
method, especially for Tuff percentages up to 50. The
developed ANN model can contribute to expanding the
applications of Tuff aggregate in LWC production, offering
potential benefits in terms of cost savings and increased
efficiency.

However, the significance of NS’s ability to improve
concrete characteristics increases as the W/C ratio drops
and finer capillary pores appear [24]. It is also well known
that the mechanical characteristics and workability of con-
crete are significantly influenced by the size of NS parti-
cles. Rao and Maruthi, [25] studied the effects of NS and
Metakaolin (MK) on different concrete qualities. When pre-
paring concrete, MK and NS are utilized in part lieu of
cement. In the current study, MK is initially used to substi-
tute cement to the tune of 5 and 10% by weight. Subsequent

research is conducted by substituting NS at 1, 2, and 3% by
weight of cement for MK at 5 and 10%. The modulus of
elasticity, flexural strength, split tensile strength, CS, and
other characteristics of M25 grade concrete containing MK
and NS are assessed for structural applications, and the out-
comes are compared with the controlled concrete. The test
results show that, in comparison to the controlled concrete,
the concrete created using a mixture of 5% MK and 2% NS
exhibited greater strength. Therefore, it can be said that
concrete made with a mixture of 5% MK and 2% NS is
suitable for structural applications. Not only it process by
its nucleating impact but also it raises the need for plasti-
cizer with rising NS and NMK dosages, changing the mix-
ture’s fresh and hardened properties in the process and
adding to the cementitious system’s complexity [21].

Based on the published literature in recent years, there
is a lack of use of all parameters that affect CS. In addition,
some appeared to use a few algorithms conducting statis-
tical analysis, and this in itself constitutes a step in the
accuracy of the results. Moreover, not more than 1,440
samples were recorded for predicting compression resis-
tance. As well, a few pieces of literature, which are inter-
ested in light concrete-enhanced nanomaterials, were also
identified. Even if it is found, the focus is on the use of two
nanomaterials or three. This misses the effect of the types
of nanotechnologies that can be used (Table 1).

3 Methodology

In ML-based CS estimates for LWC modified with nanoma-
terials, the specific set of CS parameters chosen is usually

Table 1: Concrete-strength prediction methods using machine-learning algorithms

Author Algorithm Data volume Results

Lai and Serra [26] ANN 240 Relative error less than 5%
Kewalramani and Gupta [27] ANN 864 Maximum error rate 25.69%
Naderpour et al. [28] ANN 139 R = 0.8926, MSE = 0.004447
Morsy et al. [29] ANN 205 R2 = 0.919
Wang et al. [30] GA-SVM 24 Maximum relative error 2.42%
Kurihara and Maruyama [31] SVM 80 R-0.94
Kurihara and Maruyama [31] SVM 239 R2 = 0.87, RMSE = 4.86, MAPE = 9.81%
Wang et al. [30] BP, RBF 19 Relative error of less than 6%
Maqbool et al. [32] BP-ANN 30 Absolute error less than 5.0%
Nivethitha and Dharmar [33] BP 251 Coefficient of variation = 0.112
Wu et al. [34] RF 56 R2 = 0.969, RMSE = 0.0149
Ortenzi et al. [35] RF 1,030 R2 = 0.902, MAE = 3.761, MAPE = 12.807, RMSE = 5.342
Farooq et al. [36] RF, GEP 357 R2 = 0.96 (RF), R2 = 0.9 (GEP)
Feng et al. [37] AdaBoost 1,030 R2 = 0.952, MAPE = 11.39%, RMSE = 4.856
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chosen for a number of reasons. 1) Relevance to compres-
sive strength: The parameters chosen ought to affect the
concrete’s CS, either directly or indirectly. These variables
could be the kind and amount of nanomaterials used, the
water-to-cement ratio, the curing environment, the char-
acteristics of the aggregate, and other elements that are
known to affect CS. The purpose of selecting these charac-
teristics was to identify the critical elements that influence
the development of strength in LWC modified with nano-
materials. 2) Availability and accessibility: In both experi-
mental and real-world settings, the parameters used
should be readily observable or achievable. Data accessi-
bility is essential for ML model validation and training. It
might not be feasible to regularly utilize parameters for CS
estimation if they necessitate intricate or costly testing
processes. Thus, using measurable and easily accessible
characteristics makes the process of gathering data easier.
3) Influence on nanomaterial effects: Particular attention
should be paid to how nanomaterials affect CS in the para-
meters. For example, the kind and dosage of nanomaterials
may have a substantial impact on the strength develop-
ment; hence, the model may accurately reflect their influ-
ence by considering these characteristics. Through explicit
consideration of the parameters linked to nanoparticles,
the ML model is able to efficiently estimate the CS of
LWC modified with nanomaterials. 4) Statistical signifi-
cance: There should be evidence of statistical significance
between the selected parameters and CS. The parameters
that significantly affect the model’s predicted accuracy and
have a high link with CS can be found via statistical ana-
lysis. By adding statistically significant parameters, the
model can be made to concentrate on the most important
elements while avoiding the addition of superfluous or
unnecessary variables. 5) Model complexity and overfit-
ting: A balance between model complexity and overfitting
is the reason for choosing a certain set of parameters.
Overfitting, in which the model performs badly on untested
data and becomes unduly specialized to the training dataset,
can result from having too many parameters. However,
leaving out crucial variables could lead to a simplistic model
that is unable to adequately represent the nuanced nature of
the CS relationship. As a result, great thought is paid to
incorporate the most important parameters without adding
needless complication.

It is worth noting that some previous studies used
different parameters and others used the same para-
meters, but not in this number. It is crucial to remember
that the criteria for CS can be chosen based on the parti-
cular goals of the study, the information at hand, and the
properties of the LWC and nanomaterials under investiga-
tion. The selection of parameters should have a rationale

that is in line with the objectives of the research, guarantee
the feasibility of gathering data, and improve the precision
and dependability of the CS estimation model that is based
on ML.

A total of 2,568 datasets were collected in 2023 from the
previous work on the CS of LWC. In the literature, there is a
range of data regarding LWC with different base source
materials, including fly ash, nano silica fume, nano Al2O3,
nano Fe2O3, NMK, nano clay, and so on. But in this article,
the authors take those papers that use NMK and NS as base
source materials to prepare LWC-containing nanoparticles.
The models used nine input parameters to restrict authors
from using more datasets in the developed models. The
collected datasets were statistically analyzed and split
into two groups. The larger group, which included 1,535
(78%) datasets, was used to create the models. The second
group consists of 433 (22%) datasets used to test the pro-
posed models. The input dataset consists of the cement
content range from 92 to 686 kg/m3, fine aggregate range
from 440 to 1,078 kg/m3, normal coarse aggregate range
from 0 to 1,532 kg/m3, lightweight weight aggregate range
from 0 to 1,273 kg/m3 water range from 100 to 257 l/m3,W/C
range from 0.23 to 0.66, density range from 710 to 2,656 kg/m3%
of nanoparticles range from 0 to 110%. The former dataset
was then used to propose different models to predict the CS
of LWC and compared with the actual experimental CS
(MPa). After that, the developed models were assessed by
some statistical criteria such as coefficient of determination
R2, root-mean-square error (RMSE), absolute mean error
AME, scatter index (SI), and objective value (OBJ) to indicate
the most reliable and accurate model. Further details of the
data collection and modeling work are summarized in the
form of a flow chart, as depicted in Figure 1.

4 Statistical evaluation

The statistical study carried out in this section aims to
demonstrate whether or not there are significant correla-
tions between the input parameters and the CS of LWC. To
illustrate the distribution of each variable with CS, statis-
tical functions such as variance, skewness, kurtosis, and
standard deviation were determined. All considered vari-
ables, including (i) nanomaterials content, (ii) cement con-
tent, (iii) W/B, (iv) water content, (v) density content, (vi)
fine aggregate, (vii) normal coarse aggregate content, (viii)
lightweight aggregate content, and (ix) type of nano, were
plotted and analyzed with CS. A strong negative value for
the kurtosis parameter indicates that the distribution tails
are shorter than those of a normal distribution; a positive
value is represented by longer tails. A large negative value
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for the skewness parameter indicates a long left tail, while
a positive value indicates a right tail. Enough details about
each variable that is thought to be an input parameter are
provided below:

4.1 Cement content

Ordinary Portland Cement Type I, which met ASTM C 150
requirements, was the type of Portland cement used in

most LWC combinations. The specific gravity ranged from
3.05 to 3.2, while the specific surface area ranged from 300 to
400m2/kg. The amount of cement ranged from 92 to 686 kg/m3,
with a median of 373 kg/m3, a standard deviation of
108.65 kg/m3, and a variance of 11804.26 kg/m3, due to the
higher cement and binder content in the LWC. The variables
for skewness and kurtosis are, respectively, −0.3423 and
−0.2553. Figure 2 shows the relationship between cement
concentration and CS with a normal distribution and histo-
gram of LWC mixtures modified with nanomaterials.

Data collec�on and data 
prepara�on

Dependant 
variables

Independent 
variables

Compressive 
strength

cement water Water/ 
cement

density
Type of 

nano
% of 
nano

Sand LWA Normal 
aggregate 

Correla�on between 
dependant and independent

Data spli�ng 

Tes�ng data 22%Training data 78%

Development modles

Grandient 
Boosted 

t

XG 
Boosted 

t

Random 
forest

Linear 
regression

MLP PNN 
learner

Performance evalua�on 

R2 RMSE MEA OBJ SI

Selec�on best algorithm

kERAS Tree 
ensemble

Simple 
regressio

sensi�vity analysis by the 
selected best algorithm

Figure 1: Flow chart of the MLA methods.
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4.2 Fine aggregate content

River sand with a maximum aggregate size of 4.75mm and a
specific gravity ranging from 2.65 to 2.75 was the fine aggre-
gate employed in the previous research. In addition, its grada-
tion complied with ASTM C 33’s requirements. The maximum
and minimum fine aggregate content in the LWC mixtures
were 440 to 1,072 kg/m3, with a median of 769 kg/m3, a stan-
dard deviation of 114 kg/m3, and a variance of 13,071.1 kg/m3,
based on the total of 2,568 collected data from the literature.
Skewness and kurtosis, two additional functional parameters
for the fine aggregate dosage in the LWC mixtures, are −0.337
and 0.124, respectively. Figure 3 shows the correlation
between CS and fine aggregate content using a histogram
of LWC mixtures modified with nanomaterials.

4.3 Normal aggregate content

According to the literature, coarse aggregate for the crea-
tion of LWC was crushed stone or gravel with a maximum

aggregate size of 20 mm. The greatest and minimum coarse
aggregate content, based on all 2,568 gathered data from
previous investigations, were 0 and 1,532 kg/m3, with a
median of 407 kg/m3, a standard deviation of 442 kg/m3,
and a variance of 1,961 kg/m3. The statistical values for
skewness and kurtosis are 0.255 and −1.77, respectively.
Figure 4 displays the relationship between CS and coarse
aggregate content using a histogram of LWC mixtures that
have been altered using nanomaterials.

4.4 Density

The density of LWC mixtures modified with nanomaterials
ranged from 710 to 2,656 kg/m3, with amedian of 1,881 kg/m3,
based on the overall data gathered from previous inves-
tigations. Other variables like variance, standard devia-
tion, skewness, and kurtosis are 95,717, 309.38, −0.268,
and −0.668, respectively, according to the statistical ana-
lysis. Furthermore, Figure 5 reports the variation in the

Figure 2: The variation between CS and cement content with normal distribution and Histogram of LWC mixtures modified with nanomaterials.

Figure 3: The variation between CS and fine aggregate content with the histogram of LWC mixtures modified with nanomaterials.
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Histogram and CS and density of LWC mixtures modified
with nanomaterials.

4.5 Lightweight aggregate content

In the literature, lightweight aggregate for the creation of
LWC was described as being crushed lightweight stone

with a maximum aggregate size of 17 mm. The lightweight
aggregate content ranged from 0 to 1,276 kg/m3, with a
median of 454 kg/m3, a standard deviation of 276.7 kg/m3,
and a variance of 71,777 kg/m3, based on all 2,568 collected
data from previous studies. The statistical values for skew-
ness and kurtosis are 0.451 and −0.829, respectively. Figure 6
displays the relationship between CS and lightweight

Figure 4: The variation between CS and coarse aggregate content with the histogram of LWC mixtures modified with nanomaterials.

Figure 5: The variation between CS and density with normal distribution and histogram of LWC mixtures modified with nanomaterials.

Figure 6: The variation between CS and lightweight aggregate content with the histogram of LWC mixtures modified with nanomaterials.

8  Nashat S. Alghrairi et al.



aggregate content using a histogram of LWC mixtures that
have been altered with nanomaterials.

4.6 Water content

From the 2,568 data collected, potable water was used in
the process of mixing concrete components. The minimum
amount of water used was 100 l/m3, the largest amount was
275 l/m3, the mean was 180 l/m3, the standard deviation was
26.55 l/m3, and the variance was 704, and The statistical
values for skewness and kurtosis are −0.239 and 0.355,
respectively. Figure 7 displays the relationship between
CS and water content using a histogram of LWC mixtures
that have been altered with nanomaterials.

4.7 Water/cement ratio

The W/C ratio of LWC mixtures modified with nanomater-
ials ranged from 0.26 to 0.66 with a median of 0.45 based on

the overall data collected from previous investigations.
Other characteristics including variance, standard devia-
tion, skewness, and kurtosis are 0.006, 0.08, 0.279, and
0.211, respectively, according to the statistical analysis.
Furthermore, Figure 8 reports the variation in the histo-
gram and CS and W/C ratio of LWC mixtures treated with
nanomaterials. Figure 4 shows that the CS of LWC modified
with nanomaterials was dramatically reduced with an
increase in the W/B ratio.

4.8 % of nanomaterials

The nanomaterials employed in the mix proportions had a
particle diameter below 50 nm, a surface-to-volume ratio
between 50 and 200 m2/g, and a purity of greater than 99%,
according to the dataset, which included 2,568 data sam-
ples from the literature. With a median of 11.36%, the
minimum and highest proportion of nanomaterials uti-
lized in the LWC combinations to replace the cement

Figure 7: The variation between CS and water content with a histogram of LWC mixtures modified with nanomaterials.

Figure 8: The variation between CS and W/C ratio with normal distribution and histogram of LWC mixtures modified with nanomaterials.
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weight ranged from 0 to 110%. In addition, the variance,
skewness, kurtosis, and standard deviation are, respectively,
26.91, 723.9, 1.041, and 0.046%. In Figure 9, the histogram
analysis and the relationship between CS and nanomaterials
content are displayed.

5 ML modeling

None of the nine variables under investigation have a straight-
forward mathematical relationship with CS. Consequently, CS
can now be predicted statistically and analytically without
a lot of testing or material consumption thanks to the
KNIME application. The coefficient of determination, R2,
verified the veracity of the findings [38,39]. A number of
algorithms have been employed to assess how factors
affect CS [40]. The data were divided into two parts for
all algorithms, and the program was trained and tested,
obtaining the ideal weights and biases. By finding the coef-
ficient of determination for each algorithm, the accuracy of
each algorithm was evaluated, and the highest R2 value
represents the best because it has less error and less dis-
persion [41]. The study included the use of algorithms with
excellent effectiveness. For example, XGBoosted, ANNs, LR,
gradient boosted, RF regression, and other algorithms. Part
of it will be reviewed.

5.1 XGBoost model

Distributed gradient boosting library is a learning tech-
nique used to train models via ML quickly and scale
them. It is also known as an ensemble learning technique
through which the results of several ineffective models can
be combined to increase their accuracy. It was developed

to become gradient boosting to be more famous than other
algorithms due to its ability to process large groups and its
ability to show results in diverse and sophisticated task
groups. The XGBoost approach is based on a decision
tree [41].

5.2 ANNs MLP

ANN is a type of algorithm in ML. Interconnected artificial
nerve cells or nodes are used and are built in layers similar
in composition to the human brain. They have been used in
engineering disciplines, especially building and construc-
tion. It is considered a relatively new and simple com-
puting technology. This technology has proven its ability
to predict and address relationships between input and
output parameters, and these neurons are responsible
for processing data. An ANN contains several layers. An
ANN consists of grouping neurons so that they are con-
nected by synapses to form a network. The data is entered,
subjected to digital processing, and then the data are exited
from the output layer [40].

5.3 RF Model

The RF model can be used to predict CS in various engi-
neering applications. RF is an ML algorithm that is known
for its simplicity, versatility, and ability to handle both
classification and regression tasks. It has been successfully
applied to predict the properties of materials such as con-
crete. For example, in the study by Vu, an RF model was
developed to predict the slump and strength of concrete
using mixed mineral admixtures from blast furnace slag
and silica fume [42,43]. Similarly, in the study by Ali and

Figure 9: The variation between CS and % of nanomaterials with normal distribution and histogram of LWC mixtures modified with nanomaterials.
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Suthar, an RF-based model outperformed other ML algo-
rithms in predicting the CS of concrete. The RF model
achieved high correlation coefficient values and low mean
absolute error (MAE) and root-mean-square error values,
indicating its accuracy in predicting concrete strength [44].
The advantages of using the RF model to predict CS include
its simplicity, versatility, and suitability for both classifica-
tion and regression tasks [42]. RF models have been success-
fully applied to a variety of engineering problems, including
predicting the slump and strength of concrete. RF models
have also been found to outperform other ML algorithms,
such as M5P and LR, in terms of prediction accuracy for
concrete CS [45]. The RF model has been proven to be the
most suitable technique for predicting CS in various con-
crete mix designs, including geopolymer concrete and glass
fiber-reinforced concrete [46]. However, there are also some
limitations to using the RF model. It requires a large amount
of training data and can be computationally expensive. In
addition, the RF model may not perform well if the input
parameters are not properly selected or if there are inter-
actions between the input variables that are not captured by
the mode. Therefore, the RF model can be a valuable tool for
predicting CS in LWC and other engineering materials.

5.4 LR model

The LR model was used to predict CS in the papers by Alabi
and Mahachi [47], Imran et al. [48], and Gkountakou and
Papadopoulos. Alabi and Mahachi compared the perfor-
mance of LR with ANN in forecasting the CS of geopolymer
recycled concrete based on selected pozzolans. Imran et al.
developed a white-box ML model called multivariate poly-
nomial regression to predict the CS of eco-friendly concrete
and compared it with LR and SVM. Gkountakou and Papa-
dopoulos studied the prediction of compressive cement
strength using fuzzy linear regression and adaptive neuro-
fuzzy inference system methods [49]. In this research, LR
was used to analyze the collected data (2,568), and it proved
its efficiency and ease of obtaining data, but it was not
optimal.

5.5 Gradient Boosted Trees Models (GBTs)

GBTs have been used in several studies to predict the CS of
concrete. Liu and Sun applied an explainable boosting
machine to predict concrete CS and determine the contri-
bution of mix ratio factors on the strength [50]. Dahish and

Almutairi constructed a baseline model using a state-of-
the-art ML method to predict concrete CS [50]. Dahish
and Almutairi proposed a categorical gradient boosting
(CatBoost) model with feature importance, feature interac-
tion, partial dependence plot, and shapley additive explana-
tions to explain the mechanism of ML models for predicting
CS [50]. Tran and Nguyen developed a hybrid ML model
combining GB and Bayesian optimization algorithms to pre-
dict the CS of concrete containing ground glass particles.
Falah et al. examined the capability of a deep learning
neural network approach, along with other AI models, to
simulate the CS of environmentally friendly concrete con-
taining recycled aggregate [51].

5.6 Keras network learner

Deep learning is a subfield of artificial intelligence and ML
that builds learning models using ANNs as the foundation.
In deep learning, “deep” refers to the quantity of layers in a
neural network. The “deep learning” set of algorithms was
inspired by the composition and functions of the human
brain [52]. It uses a large amount of structured and
unstructured data to forecast outcomes and effectively
instruct machines. The main area of difference between
deep learning and ML technologies is in the presentation
of the data [12]. This study makes use of Keras, one of the
deep learning programming interfaces, which can handle
large amounts of data and multiple layers [15]. High-level
deep learning application programming interface Keras
was designed with human ease of use in mind and is
easy to learn. It is written in Python and may be used to
construct any type of neural network. Keras is built upon
several deep learning frameworks, including TensorFlow
and Theano, to name only two. To enable speedy experi-
mentation with creating deep neural networks, it empha-
sizes being fundamental, modular, and extensible. It also
provides comprehensive, expert-level knowledge about
deep learning.

5.7 TE regression

TE regression methods have been applied to predict the CS
of concrete in several studies. These methods include RF
[12], decision tree regressor, and RF regressor [53,54]. The
gradient-boosting regression tree has also been used as an
ensemble learning framework [54]. In addition, XGBoost
[55], light gradient boosting machine (LightGBM) [31], and
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category boosting (CatBoost) have been employed. These
ensemble methods have shown promising results in pre-
dicting the CS of concrete, with the LightGBM model
achieving the best comprehensive performance. The RF
and GB models have also demonstrated strong potential
in predicting the CS of self-compacting recycled aggregate
concrete. Therefore, TE regression methods have proven to
be effective in predicting concrete CS [56].

5.8 Probabilistic neural networks PNN
distributed delay activation (DDA)

For assessing the CS of concrete, probabilistic neural net-
works, also known as DDA PNNs, offer a special set of
benefits. Complex nonlinear correlations between the CS
of concrete and its characteristics can be captured by PNNs
[57]. Compared to linear models, they can produce predic-
tions that are more accurate because they can represent
complex patterns and interactions in the data. PNNs are
useful for studying a variety of concrete datasets since they
can handle both continuous and categorical variables.
Unlike some other neural network architectures, PNNs
do not require iterative optimization, which results in a
quicker training procedure. It is possible to swiftly store
the training data in the network during the training phase.
PNNs are appropriate for real-time applications because,
once trained, they can quickly predict new concrete data.
Because PNNs retain training samples directly and use
similarity metrics to conduct regression or classification,
they are resistant to noisy input. They are appropriate for
concrete datasets that can contain measurement mistakes
or outliers since they can manage noisy observations and
outliers without materially compromising overall perfor-
mance. PNNs provide class probabilities or predicted
strength values along with related uncertainty, resulting
in outputs that are easy to understand. It is simpler to
explain the outcomes to stakeholders and subject matter
experts thanks to the interpretability of the model, which
aids in understanding its reasoning and decision-making
process. PNNs are capable of transfer learning and good
generalization. They can successfully apply the knowl-
edge they have learned to new concrete strength analysis
tasks or related domains after being trained on a dataset.
When working with comparable concrete datasets or
studying various concrete combinations, this capacity
saves time and resources [58].

5.9 SRT

Numerous studies employ simple regression (SR) to fore-
cast the CS of concrete. In a different study, an ML model
for forecasting concrete CS was trained using the multiple
linear regression techniques. The figure below shows how
to forecast concrete’s CS using ML by using SR techni-
ques [59].

6 Model implementation and
analysis of prediction results

To assess the efficacy and identify which models more
accurately predict the CS of LWC, a number of statistical
performance metrics have been used, such as the coeffi-
cient of determination (R2), RMSE, MAE, Mean Absolute
Percentage Error (MAPE), SI. Generally, the suggested arti-
ficial neural language models (ML) are put into practice in
four stages. The gathered database is divided into training
(78%) and testing (22%) datasets at random in the first step.
To get rid of the scale effect, the second step is to normalize
all inputs to a range of [0, 1]. Using a grid search strategy,
the optimal hyperparameter values for training implemen-
tation are determined in the third stage. Tenfold cross-
validation is a technique used to lessen bias resulting
from random sampling of the training set. Finally, the
test dataset (22%) is used to assess the model’s perfor-
mance, which is then quantified using the six performance
indicators previously discussed. The analysis and evalua-
tion of each model’s prediction findings are shown as
follows.

7 Comparison between developed
models

Except for the R2 value, which has the best value of one, the
best value for all other evaluation metrics parameters is
zero. It can be argued that a model performs poorly when
SI > 0.3, moderately well when 0.2 < SI < 0.3, well when 0.1
< SI < 0.2, and excellently when SI < 0.1 in relation to the SI
parameter [60] (Figures 10 and 11).

As Table 2 shows, the LR model performs the worst
(R2 = 0.49), while the GBT model performs the best regardless
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Figure 10: Model implementation and analysis of prediction results.
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Figure 10: Continued
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Figure 10: Continued

Figure 11: SI for residual errors of the developed models.
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of the testing set used (R2 = 0.9). It is also observed that, in
order of performance, XGBoost, RF, and Keras after GBT.
Reduced variation in the GBT model and the plotted data
are close to the fit line, both of which indicate a smaller
projected value error. As mentioned previously, five different
statistical tools such as RMSE, MAE, SI, OBJ, and R2 were
implemented to assess the efficiency of the proposed models.
Among the nine different models, the GBT model has higher
R2 with lower RMSE and MAE values compared to other
models. Also, Table 2 presents the comparison among model
estimations of CS of nanomaterial-modified LWC mixes using
testing data. Moreover, it can be noticed from the figures that
the predicted andmeasured values of CS are closer to the GBT
model, which indicates the superior performance of the GBT
model compared to other models. The OBJ values for all

proposed models are shown in Figure 12. The values for
GBT, RF, TE, XGB, Keras, SR, PNN, MLP, and LR are 1, 1.05,
1.1, 1.12, 1.24, 1.51, 1.64, 2.15, and 2.85, respectively. The OBJ
value of the GBT model is lower when compared with
another model. This also demonstrates that the GBT
model is more efficient regarding the estimation of the
CS of LWC mixtures modified with nanomaterials. The
scatter interval (SI) values for GBT, RF, TE, XGBoost, Keras,
SR, PNN, LR, and RPOP (MLP) are 0.132, 0.136, 0.14, 0.145,
0.168, 0.198, 0.21, 0.312, and 0.395, respectively, as shown
in Figure 13. GBT demonstrated excellent performance,
as indicated by its SI value, which ranged from 0.1 to
0.2. Like the other performance characteristics, the GBT
model has lower SI values than the other models. The SI
values are lower than the other models by 3, 6, 10, 27, 50,
59, 136, and 199%, respectively. The figures below show
the results of the SI for residual errors of all constructed
models.

The SI values for GBT, RF, TE, XGBoost, Keras, SR, PNN,
LR, and RPOP are 0.132, 0.136, 0.14, 0.145, 0.168, 0.198, 0.21,
0.312, and 0.395, respectively, as shown in Figure 6. GBT
demonstrated excellent performance, as indicated by its SI
value, which ranged from 0.1 to 0.2. Like the other perfor-
mance characteristics, the GBT model has lower SI values
than the other models. The SI values are lower than the
other models by 3, 6, 10, 27, 50, 59, 136, and 199%, respec-
tively. The figures below show the results of the SI for
residual errors of all constructed models.

Table 2: The analysis and evaluation of each model’s prediction findings

Algorithms R2 MAE RMSE MAPE SI OBJ

GBTs 0.9 3.4 5.28 0.1 0.13 1
RF 0.888 3.531 5.427 0.122 0.135 0.855
TE 0.885 3.84 5.62 0.136 0.14 1.1
XGBoost 0.877 3.733 5.818 0.119 0.145 1.12
Keras 0.85 0.475 6.73 0.154 0.168 1.24
SR 0.772 4.304 7.913 0.14 0.19 1.516
PNN 0.742 4.57 8.417 0.14 0.21 1.64
MLP 0.535 12.2 24 0.714 0.394 2.85
Linear regression 0.49 10.035 12.5 0.316 0.31 2.15

Figure 12: Comparing the OBJ performance parameters of different developed.
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8 Statistical assessment of design
parameters with compressive
strength

In this section, statistical analysis has been done to show
whether the CS has any meaningful relationships with the
input parameters. To achieve this, all nine parameters
were plotted and evaluated using the actual CS to deter-
mine the extent to which each variable affects the CS. The

correlation data between each variable used as an input
parameter and CS are shown in the following figures.

8.1 Relationship between cement content
and compressive strength

Figure 14 illustrates the nonlinear connection between
(cement content) and (CS) based on the dataset, which

Figure 13: Comparing the SI performance parameters of different develop models.
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Figure 14: Relationship between cement content and compressive strength.
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includes 1,968 samples. The findings show that the (cement
content) value is useful and practicable between 250 and
550 kg/m3, after which it starts to decline since a higher
cement dose reduces CS [61]. As a result, the value of R2

= 0.0866 indicates that the entire collection of data has a
negligible relationship to the CS.

8.2 Relationship between sand and
compressive strength

According to the collocated data distribution, it was found
that the relationship between sand and CS second-degree
nonlinear relation as illustrated in Figure 15. It is evident
from the preceding data that the effective sand content

ranges from 600 to 930 kg/m3. When the amount is exceeded
above the limit, the concrete loses some of its CS; when it is
decreased, the concrete becomes less fluid and encourages
the settling of coarse material, which further deteriorates
the concrete. As a result, the value of R2 = 0.0336 indicates
that the entire collection of data has a negligible relationship
to the CS.

8.3 Relationship between normal aggregate
and compressive strength

Figure 16 shows that the weight of the impact aggregate is
between 500 and 1,200 kg/m3 and that the relationship
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Figure 15: Relationship between sand and compressive strength.
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between normal coarse aggregate and CS is linear. The
figure shows that the relationship between ordinary coarse
aggregate and CS is linear and that the coefficient of deter-
mination R2 was 0.23. This indicates the presence of an
average effect of ordinary coarse aggregate on CS.

8.4 Relationship between lightweight
aggregate and compressive strength

The following figure illustrates the significant impact of
lightweight coarse aggregate on CS at quantities ranging
from 370 to 800 kg/m3, demonstrating a second-degree non-
linear relationship between the two. The data in the fol-
lowing figure indicate that the coefficient of determination
R2 was generally weak (0.0689), but it is effective and
affects the CS when the aggregate is employed in a studied
quantity between 370 and 800 kg/m3 (Figure 17).

8.5 Relationship between water and
compressive strength

The distributed data, as shown in the Figure below, indi-
cates that the relationship between the water and CS. The
results show that the relationship is nonlinear and second
order and that the effect of water is significant when its

quantity is between 120 and 180 l/m3. The results show that
the coefficient of determination R2 is 0.073, meaning that
the relationship exists, but it increases if the amount of
water is within the optimal limits between 120 and 180 l/m3

(Figure 18).

8.6 Relationship between water/cement
ratio and compressive strength

The distributed data, as shown in Figure 19, indicates that
the relationship between the water–cement ratio and the
CS is a linear inverse relationship. The data showed that
increasing the water–cement ratio causes a decrease in
CS, and this is what previous studies have proven. The
coefficient of determination R2 is 0.0684, and the best CS
can be obtained when the water-to-cement ratio is
0.35–0.55.

8.7 Relationship between density and
compressive strength

Density data showed that the relationship between it and
the CS is nonlinear, but rather a second-degree equation
and that increasing it leads to an increase in the CS. Density
data showed that it is effective when it is between 1,500 and
2,400 kg/m3. The value of the coefficient of determination
R2 was equal to 0.2 (Figures 20 and 21).
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Figure 17: Relationship between lightweight aggregate and compressive strength.
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9 Relationship between % of
nanomaterial and compressive
strength

9.1 Validation of the superior ML model

The statistical tests discussed earlier demonstrated that the
GBT approach outperformed other ML models in terms of
accuracy, error tolerance, and performance. The model’s

robustness, precision, and effectiveness were then con-
firmed through testing and validation on a new experi-
mental database of 14 samples and 9 CS-affecting charac-
teristics. This group represents laboratory work done in
Iraq’s Diyala University laboratories. Light-weight concrete
with lightweight porcelainite stone was employed. To meet
American regulations ACI211.2, which state that the CS
cannot be less than 17 mega-Pascals and the density cannot
be greater than 2,000 kg/m3, it was built with a 17.3 mega-
Pascal CS [62]. The mechanical characteristics and CS of
LWC were improved by adding two nanomaterials (NS
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Figure 18: Relationship between water and compressive strength.
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and NMK) in varying amounts to suit all building compo-
nents. Compressive strength improved significantly for all
mixes at 28 days of age, increasing by two times or more,
according to the results. This database had not been expli-
citly utilized in ML methods for the aforementioned model.
In the sense that, as opposed to using this specific set of data,
the model was trained using different sets of data for testing
and training. Fourteen datasets received preprocessing
before being fed into the model, as shown in the flowchart
of all operations performed on the data from preprocessing
and eventually provided to the model in Figure 22.

Based on actual data gathered from laboratory testing,
the results demonstrated a high degree of accuracy in CS

prediction (R2 = around 98%). This great precision indi-
cates that the concrete produced in the laboratory meets
the intended objective. The NMK and NS dosage ratios
utilized in laboratory work are not exactly the same as
those used in earlier research, but by applying the GBT
algorithm, it is now simple to determine which CS is
needed and what proportion is used. This eliminates the
need to pour new light concrete into the lab, which adds
to the expense, time, and material requirements. This is
intended for the purpose of utilizing the artificial intelli-
gence application KNIME. Figure 23 shows the relation-
ship between the experimental actual CS results and the
predicted CS.
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10 Sensitivity analysis

To find and assess the most impacting variable that influ-
ences the CS of LWC mixtures modified with nanomater-
ials, a sensitivity comparison was performed for the
models [50]. The most efficient model, GBT, was chosen
for the sensitivity analysis. During the sensitivity analysis,
several different training data sets were used, and for
each set, a single input variable was extracted at a time.
The assessment parameters such as R2, RMSE, and MAE
were calculated for each training (Figure 12). The OBJ
values for all developed models (Figure 13) are compared
with the SI performance parameters of different devel-
oped model datasets independently. The results of the
sensitivity analysis are reported in Table 3. It is obvious
from the results that water is the most important and
influencing variable for the CS prediction of LWC mix-
tures modified with nanomaterials. In this study, the
water for the obtained data was ranged from 100.2 to

257 L/m3. This can be approved by almost all experimental
results collected from previous studies. Figure 24 shows

Figure 22: Flowchart of all operations performed on the data from preprocessing and eventually provided to the model.
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Figure 23: Relationship between the experimental (actual) CS results and the predicted CS.

Table 3: Comparison of developed model results for different ML
models

Sr. No Removed parameter R2 RMSE Ranking

1 None 0.9 5.286 None
2 Water 0.769 8.024 1
3 Density 0.79 7.657 2
4 Sand 0.81 7.443 3
5 W/C 0.833 6.862 4
6 % of nano 0.846 6.63 5
7 Lightweight aggregate 0.846 6.525 6
8 Cement 0.862 6.052 6
9 Type of nano 0.87 5.973 7
10 Normal aggregate 0.872 5.934 8

Bold values represent the order of factors from the most influencing the
compressive strength to the least
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the sensitivity analysis using the GBT model. Table 3 and
Figure 24 display the results of the essential variables
sensitivity analysis (Figure 25).

11 Results and discussion

11.1 Main findings of the present study

Through comparison between the results obtained using
the nine algorithms for the same samples collected (2,568),
and through the five statistical performance measures (R2,

MAE, MAPE, RMSE, and SI), it was found that the best
performance obtained was for GBTs, where R2 was 0.9,
MRSE was 5.28, MAE was 3.4, MAPE was 0.1, and SI was
0.132. These results indicate accuracy and reliability, as
when compared to the real results, they are very close to
the optimal results line, and the value has little dispersion,
as shown in Figure 10, in contrast to the rest of the algo-
rithms, in which the accuracy (R2) decreased from 0.888
to 0.49.

The superiority of GBTs over other algorithms in accu-
racy in the process of predicting compressive resistance is
due to the accuracy of dealing with different inputs and
building models that simulate reality [63].
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Figure 24: Sensitivity analysis using GBT model.

Cement

Cement 1 Sand

Sand -0.17 1 Normal 
aggregate 

Normal 
aggregate 

0.20 0.19 1 LWC

LWC -0.46 -0.16 -0.59 1 Water

Water 0.10 -0.22 -0.31 0.14 1 W/C

W/C -0.48 0.18 0.12 -0.04 0.21 1 Density

Density 0.32 0.24 0.72 -0.50 -0.16 0.01 1 Type of nano

Type of nano -0.46 0.26 0.08 0.37 0.04 0.23 -0.05 1 % of nano

% of nano -0.36 0.15 0.35 -0.07 -0.24 0.28 0.15 0.35 1 Compressiv
e

Compressive 0.31 0.21 0.53 -0.21 -0.22 -0.19 0.47 0.10 0.13 1

Figure 25: Correlation matrix for input variables and target (output).
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11.2 Comparison with other studies

Through the samples he collected from previous studies
from reliable sources, and as shown in the review section
of previous studies and the table, it was found that there is
a clear weakness in the number of data he collected and
used to predict CS. In addition, the number of algorithms
used ranged from three to seven algorithms. Moreover, not
using a sufficient number of parameters affects the CS.
Also, there was a lack of clarity in the data on the use of
nanomaterials to improve CS because most studies used
one or two nanomaterials and were analyzed. In this
article, approximately 2,568 samples were collected from
reliable previous studies, sorted, and purified frommissing
and duplicate information. In addition, nine parameters
affecting CS were identified, and the relationship between
them and CS was studied once and between each para-
meter and another time. In addition, the effect of these
parameters on lightweight and ordinary concrete was stu-
died. It is worth noting that this study included an analysis
of evidence of concrete containing many types of nanoma-
terials in multiple proportions to give a clear picture of the
effect of nanomaterials on concrete. As for the number of
algorithms used, nine algorithms that were known in pre-
vious studies in predicting the CS of concrete were chosen,
to demonstrate the best, most accurate, and easiest for all
users, even if they are not proficient in programming.

11.3 Implication and explanation of findings

Using a large number of data and excluding duplicates and
missing ones gave the KNIME statistical program the
power to analyze the results with high accuracy. In addi-
tion, KNIME is easy to use, has an open-source platform for
data analysis, and makes the program’s source code freely
available, allowing anyone to access, modify, and distri-
bute the system. In addition, choosing the GBT algorithm
as the best and most accurate algorithm was consistent
with many researchers, and this in itself gave high relia-
bility to the results.

11.4 Strengths and limitations

The strength of this work is summarized in the use of the
KNIME program in data analysis, as it has ease of use,
access to its updates, accurate analysis, and ease of dealing
with many of the important algorithms used in predicting
the CS of concrete, without complexity when compared to

some codes and software such as Python, Matlab, and
others. The sufficient number of data also played an effec-
tive role in giving accuracy to the results that were pre-
dicted when compared with real data obtained from
laboratory work. Increasing the number of algorithms
and parameters and including data for most nanomater-
ials used to improve the CS of concrete gave a good pic-
ture for predicting CS.

The limitations of work could be in data quality and
availability: To train ML models, a large, representative
dataset is needed. Nevertheless, it can be difficult to obtain
big and varied information for predicting concrete strength.
To train accurate models, high-quality data with precise and
trustworthy measurements must be available. Predictions
that are skewed or poorly generalized to new contexts can
result from incomplete or biased data.

Limited understanding of causality: ML models are
very good at identifying patterns and correlations in
data. They might not, however, offer an in-depth under-
standing of the fundamental causal connections between
input factors and CS. Models are useful for identifying
traits, but they might not reveal the underlying scientific
ideas that underpin concrete strength. This restriction
makes it more difficult for the models to be applied to
novel materials or circumstances that were not included
in the training set.

12 Conclusion

Because it depends on the kind, quantity, and homogeneity
of its elements as well as on compaction, curing time, envir-
onmental factors, and equipment employed, estimating
the CS of concrete is a complicated task. The difficulty
of the issue is further increased by adding nanoparticles
to the concrete mixture. Applying a strong ML model to
this intricate issue could yield dependable outcomes and
ultimately lower the expenses associated with traditional
approaches. This work used the KNIME platform to
employ several ML techniques, including GBTs, RF,
XGBoost, PNN, RProp MLP, ANN, SR, and LR, on a dataset
of 2,568 samples that were taken from 152 peer-reviewed
academic publications.
1. Out of all the ML models that were assessed, GBT and RF
produced R2 scores of 0.9 and 0.89, respectively, and
were the most accurate in predicting the CS of LWC
with NS and NMK. With fewer than 10% prediction
error, CS can be predicted in both models. These ratings
are considered robust given the difficulty of the chal-
lenge and the unpredictability of the input parameters.
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2. As anticipated, the LR model showed the lowest depend-
ability due to the nonlinear relationship between the
input parameters and CS.

3. After examining the data, it was discovered that the
GBTs approach is among the finest models that were
employed since it produced the best coefficient of deter-
mination (R2 = 90%), MAE of 3.4, RMSE = 5.28, and MAPE
= 0.1, or less error rate. When compared to the other
methods, the dispersion coefficient’s value was the
lowest, with SI = 1.3

4. It was determined that the Water was the predominant
variable influencing the CS, followed by the density and
sand. Comparing the results from this study with other
models in the literature, it becomes evident that the
dataset used significantly influences the identification
of the most critical factor affecting the CS.

5. The QBT model’s link between CS and nanomaterial
percentage indicates that a dose of roughly (0–20)%
for nanomaterials is the best amount to obtain the
required characteristics. The efficacy of nanomaterials
appears to decrease beyond this point, presumably as a
result of workability and dispersion issues. The dataset
obtained from the literature and the outcomes of the
experimental work were used to create the machine-
learning models in this study. An even bigger data set
is needed to create models that are more trustworthy
and robust. Because of this, data were gathered for a
sample size greater than 2,500, since prior research has
shown that the more data entered, the more accurate
the conclusions and predictions. The purpose of this
study was to aid in data collection and the creation of
more reliable machine-learning models for the predic-
tion of concrete mixture CS. To move further, ML mod-
eling approaches should also be used to study how
nanoparticles affect the mechanical qualities of LWC,
such as CS.

6. The findings, which were supported by earlier research,
indicated that the amount of water and the ratio of
water to cement had an inverse influence on CS.

7. The results showed that with increasing density, the CS
increases, meaning that density is directly proportional
to the resistance, and this is what has been proven in
previous studies.

8. The best cement dosage, according to the findings, was
between 290 and 525 kg/m3.

9. The results clearly show that the most sensitive and
influential variable for the prediction of CS is water,
followed by density, sand, and the W/C ratio, which is
indicated in blue. The lightweight aggregate and percen-
tage of nano have a mild impact. The remaining factors,
which included cement, nano type, and regular aggregate,

all showed negligible effects and some had no effect on the
anticipated CS; their respective R2 and RMSE values were
5.9 and 0.87.

13 Recommendations

Based on the work that has been carried out in this study
on the use of different modeling techniques to forecast the
CS of LWC modified with nanomaterials, the scope and
gaps for further studies have been discussed and high-
lighted in the following:

(a) Use of these modern techniques and input of all
variable parameters that can affect the CS.

(b) Developing empirical models to predict the CS of
different types of LWC.

(c) Using these model techniques to propose empirical
equations for other mechanical properties of LWC compo-
sites like splitting tensile strength, flexural strength, and
modulus of elasticity.

(d) Conducting laboratory experiments to validate the
developed models.

(e) Take benefits from these models and other intelli-
gence techniques to standardize the mix design of LWC
composites just like traditional concrete.

14 Future work

The GBT method is used in this article to forecast the CS of
concrete materials. The test variables are separated into
nine inputs (such as cement, water, additives, coarse/fine
aggregates, etc.) and one output (CS value) after 2,568 sets
of concrete compressive tests are gathered. A training set
and a testing set are created by further dividing the entire
data set. The training set’s GBoosted trees create the model,
which is subsequently assessed by the testing set. The fol-
lowing can be inferred from the results for future work:
1. Collect more data to introduce new parameters that
affect CS.

2. Using the same algorithms to predict some other prop-
erties of concrete, such as tensile and bending strength.

3. Trying to collect all published data in a unified database
so that all researchers can view and use it.

4. Conducting a comprehensive introduction to the KNIME
program for ease of use by researchers and providing
the necessary data for this.
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