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Abstract—Magnetic Resonance Imaging (MRI) plays a crucial 

role in diagnosing brain disorders, with stroke being a significant 

category among them. Recent studies emphasize the importance 

of swift treatment for stroke, known as "time is brain," as early 

intervention within six hours of stroke onset can save lives and 

improve outcomes. However, the conventional manual diagnosis 

of brain stroke by neuroradiologists is subjective and time-

consuming. To address this issue, this study presents an 

automatic technique for diagnosing and segmenting brain stroke 

from MRI images according to pre and post stroke patient. The 

technique utilizes machine learning methods, focusing on 

Susceptibility Weighted Imaging (SWI) sequences. The machine 

learning technique involves four stage, those are pre-processing, 

segmentation, feature extraction, and classification. In this paper, 

preprocessing and segmentation are proposed to identify the 

stroke region. The segmentation performance is assessed using 

Jaccard indices, Dice Coefficient, false positive, and false 

negative rates. The results show that adaptive threshold 

performs best for stroke lesion segmentation, with good 

improvement stroke patient that achieving the highest Dice 

coefficient of 0.96. In conclusion, this proposed stroke 

segmentation technique has promising potential for diagnosing 

early brain stroke, providing an efficient and automated 

approach to aid medical professionals in timely and accurate 

diagnoses. 

Keywords—Magnetic Resonance Imaging (MRI) diagnosis, 

time is brain, Susceptibility Weighted Imaging (SWI) and dice 
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I. INTRODUCTION 

Cerebrovascular accident (CVA) or stroke stands as the 
third leading cause of death in Malaysia [1]. This presents a 
significant challenge to the Malaysian healthcare system, 
witnessing over 50,000 new cases annually, resulting in at least 
32 daily fatalities. In 2016, the government committed RM180 
million to address this issue. Globally, stroke is the second 
leading cause of death, surpassed only by coronary artery 
disease, and it ranks prominently in causing long-term 
disability. The Malaysian National Stroke Association 
(NASAM) underscores the urgency of immediate medical 
attention for stroke, as swift treatment, especially within six 
hours, has been shown to save lives. However, the scarcity of 
neuroradiologists, with only 107 specialists, and the reliance on 
manual interpretation of magnetic resonance imaging (MRI) 
images hinder timely treatment efforts. 

Brain stroke, characterized by a network of small blood 
vessels facilitating blood flow through a stroke or blocked 
artery, requires rapid and accurate diagnosis for prompt 
intervention. While MRI has gained preference over 
conventional angiography for diagnosing brain stroke, the 
current practice involves labor-intensive visual inspection, 
delaying the process [2]. Timely diagnosis and treatment are 
critical to preventing disability caused by insufficient blood 
and oxygen, leading to nerve cell death. Diagnostic 
considerations include factors like infarct volume, penumbra 
size, and the presence of adequate early stroke, all crucial for 
successful treatment [3]. Neuroradiologists urgently need 
efficient tools for quick and accurate acute stroke diagnosis. 

Moreover, brain stroke detection from MRI images faces 
challenges due to noise, artifacts, vessel size, and structural 
heterogeneity [4]. Novel methods for segmenting and 
classifying medical images are regularly proposed [5]. 
Common machine learning techniques for vessel segmentation, 
such as region growing, clustering, and active contours, face 
limitations related to sensitivity to noise and segmentation 
issues [6]. The manual segmentation by neuroradiologists, 
though time-consuming, highlights the importance of 
processing time speed and accuracy in computer-aided 
diagnostic systems [7]. 

Traditional machine learning methods, while effective, 
require complex denoising and feature extraction before 
classification, leading to prolonged computation times [8]. 
Recent studies acknowledge the robustness of machine 
learning in processing noisy medical images, yet the challenges 
of long computation times persist [9]. As a solution, hybrid 
frameworks incorporating machine learning techniques are 
considered promising for achieving optimal accuracy in early 
stroke classification. 

This review explores the significance of stroke, brain stroke 
concepts, and MRI in the context of the human brain. Stroke, 
or cerebral infarction, ranks as the third leading cause of death 
and the primary cause of permanent disability in Malaysia [10]. 
The profound public health impact is evident in high initial 
treatment, rehabilitation, and chronic care costs. The urgency 
of stroke is highlighted by its occurrence every 45 seconds in 
the United States, affecting 795,000 individuals annually. The 
devastating impact on neurons and synapses during a stroke, 
leading to accelerated aging of the ischemic brain, underscores 
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the critical notion that "time is the brain." Despite this urgency, 
there is a notable absence of computer-aided diagnosis (CAD) 
systems tailored for stroke, unlike those available for fields like 
mammography and breast imaging. Existing studies on CAD 
systems and methodologies emphasize their potential to 
enhance diagnostic precision for radiologists [11]. 

II. LITERATURE REVIEW 

A. Human Brain 

The human brain stands out as one of the most intricate 
organs in the human body, comprising billions of 
interconnected nerve cells forming complex networks. Its 
spatiotemporal patterns contribute to its recognition as the most 
intricate system, wherein the alignment between structural and 
functional connections relies on spatial resolution and temporal 
scale [7]. Endowed with the capacity to govern intelligence, 
creativity, emotions, and memory, the brain is shielded by the 
skull and comprises the cerebrum, cerebellum, and brainstem, 
as illustrated in Fig. 1. Further division into lobes reveals 
specific responsibilities: 

1) The frontal lobe manages problem-solving, decision-

making, and motor skills. 

2) The parietal lobe oversees sensation, handwriting, and 

posture. 

3) The temporal lobe plays a role in memory and hearing. 

4) The occipital lobe houses the brain's visual processing 

system. 
Facilitating communication with the body, the brain utilizes 

12 pairs of cerebrovascular vessels through the spinal cord and 
blood flow. Among these, ten pairs originating in the brainstem 
control functions like hearing, eye movements, facial 
sensations, taste, swallowing, and muscle movements in the 
face, neck, shoulders, and tongue. Meanwhile, cerebral blood 
vessels governing smell and vision originate in the cerebrum. 
Hence, maintaining proper blood circulation in vessels is 
crucial to prevent neuropathy, which could lead to nerve cell 
damage and subsequent cell death [8]. Refer to Fig. 1, for a 
visual representation of the human brain's anatomy. 

 
Fig. 1. Anatomy of human brain. 

B. Brain Stroke Diagnosis 

In this universe, second-leading cause of death is stroke, 
demanding prompt intervention to prevent severe long-term 
disability or fatality. This occurs when a blood clot obstructs a 
blood vessel or ruptures, impeding blood flow to a specific 

brain region. The classification, depicted in Fig. 2, 
distinguishes between ischemic stroke, where a blood vessel 
abruptly obstructs a brain artery [1], and hemorrhagic stroke 
(cerebral hemorrhage), characterized by the rupture of a blood 
vessel [2]. 

 
Fig. 2. Types of stroke. 

Stroke exerts a significant impact on public health, 
resulting in substantial expenditures for primary care, 
rehabilitation, and the management of chronic conditions. In 
2015, stroke accounted for 6.3 million deaths globally, ranking 
as the second leading cause of death after ischemic heart 
disease. Despite its persistent status as the third leading cause 
of death in Malaysia as reported by the Institute for Health 
Metrics and Evaluation in June 2019, there is a notable absence 
of computer-aided diagnosis (CAD) systems designed 
specifically for stroke, unlike the numerous CAD systems 
available for fields such as mammography and thorax. 
Research on CAD systems and techniques underscores the 
potential for enhancing the diagnostic accuracy of radiologists. 

Reperfusion injury plays a pivotal role in the outcomes of 
ischemic stroke patients upon the restoration of blood flow [3]. 
Various approaches, including ischemic preconditioning, 
perconditioning, and postconditioning, have been explored for 
cardio protection, yielding diverse results regarding potential 
treatments [4]. The timely reinstatement of local blood flow is 
crucial for salvaging threatened tissue, minimizing cell death, 
and ultimately reducing patient disability. Successful 
recanalization significantly increases the likelihood of a 
favorable outcome, with a fourfold reduction in mortality 
compared to patients without recanalization [5]. Strategies for 
recanalization involve thrombolytic drugs such as tissue 
plasminogen activator (tPA) and/or mechanical interventions 
like thrombectomy using distal or proximal devices. 
Thrombectomy, involving the removal of blood clots through a 
catheter with an attached mechanical device, is particularly 
attractive due to its short intervention time, high recanalization 
rates, and potential for efficient blood flow restoration. 
However, the associated risks necessitate careful consideration, 
and the procedure should be reserved for patients meeting 
specific criteria, including a large circumference, small infarct, 
and good collateral circulation. In essence, precise patient 
selection based on pre-treatment imaging is crucial for 
achieving favorable outcomes with mechanical recanalization 
[6]. 

C. Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is a medical imaging 
technique that uses strong magnetic fields and radio waves to 
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generate detailed images of the body's internal structures. MRI 
is commonly used in the early diagnosis of strokes and plays a 
crucial role in assessing the extent and location of the stroke, 
determining the appropriate treatment, and monitoring the 
patient's progress. When it comes to early stroke diagnosis, 
MRI provides several advantages over other imaging 
techniques. Here's how it works:-  

1) Visualization of brain anatomy: MRI produces high-

resolution images that can accurately depict the brain's 

anatomy, allowing healthcare professionals to identify any 

abnormalities or changes associated with a stroke. It provides 

detailed information about the brain's structure, including 

differentiating between gray and white matter, which is 

essential for detecting ischemic (clot-based) or hemorrhagic 

(bleeding-based) strokes. 

2) Differentiating stroke types: MRI can help differentiate 

between ischemic and hemorrhagic strokes, which is crucial for 

determining the appropriate treatment approach. Ischemic 

strokes occur due to a blockage in a blood vessel, while 

hemorrhagic strokes result from bleeding in the brain. By 

examining the MRI images, doctors can identify the type and 

location of the stroke. 

3) Time-sensitive techniques: Certain MRI techniques are 

time-sensitive and can detect changes in brain tissue that occur 

shortly after a stroke. Susceptibility-Weighted Imaging (SWI) 

is particularly useful in the early stages of stroke diagnosis. It 

measures the movement of water molecules in the brain and 

can detect restricted diffusion in areas affected by an ischemic 

stroke within minutes of onset. This early identification helps 

guide treatment decisions promptly. 

4) Assessment of perfusion: Perfusion-weighted imaging 

(PWI) is another MRI technique that provides information 

about blood flow to the brain. PWI helps assess the extent of 

damaged brain tissue and determine the viability of the 

surrounding areas. By comparing SWI and PWI, healthcare 

professionals can identify the ischemic penumbra, which refers 

to the region around the stroke where brain tissue is at risk but 

still salvageable. This information aids in treatment planning. 

5) Detection of complications: MRI can also identify 

complications associated with strokes, such as swelling, 

edema, or the presence of blood in the brain. These factors are 

crucial in determining the severity of the stroke, guiding 

treatment decisions, and assessing the patient's prognosis. 
Overall, MRI is a valuable tool in the early diagnosis of 

brain strokes. Its ability to provide detailed images of the 
brain's anatomy, differentiate between stroke types, detect early 
changes in brain tissue, assess perfusion, and identify 
complications makes it an essential imaging technique in 
stroke management. It enables healthcare professionals to 
make informed decisions regarding treatment options and 
improve patient outcomes. 

Two types of stroke, namely hemorrhagic and ischemic, are 
distinguished based on interpretation [12]. Ischemic strokes 
constitute approximately 70% of all cases, presenting with 
neurological deficits that endure for more than 24 hours or 
result in death within that timeframe [13]. Hemorrhagic 

strokes, accounting for about 12% of all strokes, are further 
divided into 9% intracerebral hemorrhages and 3% 
subarachnoid hemorrhages. Hemorrhagic strokes occur due to 
the rupture of a cerebral blood vessel or an abnormality in a 
blood vessel, causing bleeding into adjacent brain tissue. This 
leads to impairment of brain function and often results in death 
rather than permanent disability. In contrast, ischemic strokes, 
caused by the blockage of blood vessels supplying the brain, 
are more prevalent.  

Within the Oxfordshire Community Stroke Project [14], 
instances of stroke are categorized into four groups by 
considering the initial symptoms and their severity. This 
classification aims to anticipate the extent of the stroke, the 
affected brain regions, underlying causes, and the prognosis. 
The four groups include total anterior circulation stroke 
syndrome (TACS), partial anterior circulation stroke syndrome 
(PACS), lacunar stroke syndrome (LACS), and posterior 
circulation stroke syndrome (POCS). The most common type 
of LACS is caused by blockage of small arteries that supply 
deep brain structures. Patients usually suffer from pure motor 
or sensory deficits, sensorimotor deficits, or ataxic hemiplegia 
[15]. TACS occurs when the blood supply to the anterior and 
middle cerebral arteries on both sides of the brain is 
compromised, causing hemiplegia. PACS is a less severe form 
of TACS that exhibits some, but not all, of the symptoms 
associated with TACS. POCS is caused by a reduced blood 
supply to the posterior cerebral artery on one side of the brain 
[16].  Fig. 3 shows the MRI machine used for scanning.  

 
Fig. 3. MRI machine used for scanning. 

III. METHODOLOGY 

The flowchart for MRI image analysis using machine 
learning is shown in Fig. 4. All techniques, including image 
pre-processing, picture segmentation and features extraction 
are included in the flow chart. 

A. Pre-processing Stage (Normalization, Background 

Removal and Enhancement) 

Suitable pre-processing will be identified to enhance and 
remove the noise. Image normalization, background removal 
and enhancement will be included (Shakunthala and 
Helenprabha, 2019). Mathematical methods known as "image 
enhancement techniques" are designed to increase the quality 
of a particular image, either for usage by a human viewer or for 
computer processing. 

The kind of intensity depth must be transformed to double 
precision throughout the normalisation process, with the 
minimum value set to "0" and the maximum value set to "1". 
To make the computation of the algorithm simpler, this 
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procedure is necessary. Eq. (1), where N is the bit depth 
applied to the normalisation computation, states the equation. 
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Fig. 4. Flow chart of MRI image analysis using machine learning technique. 

Background pixels in MRI images need to be eliminated. 
This is due to the fact that specific brain structures and the 
background have similar intensities. Adaptive thresholding and 
morphological techniques can be used to achieve this. The 
threshold version's binary image output is its ultimate product. 
In order to trace the closed regions and their boundaries of 
connected neighbourhoods, boundary extraction algorithms are 
required. Enhancement techniques can be used to expand the 
intensity and improve the contrast. Several techniques can be 
implemented such as gamma-law and contrast stretching 
algorithms. 

B. Segmentation using Machine Learning Techniques 

Image segmentation is crucial because radiologists need to 
know the accurate location, size, intensity and other lesion’s 
details to make a conclusion or diagnosis. The segmentation 
involves detecting and labelling meaningful regions in the 
given image data. Three types of image segmentation 
technique will be analyzed which are Adaptive Threshold, 
Fuzzy C-Means and Marker-Controlled Watershed. 

1) Adaptive threshold: An adaptive threshold is a 

segmentation technique that creates a binary picture from a 

grayscale image of a fixed value. Thresholding is the technique 

of converting a grayscale image into a black and white image 

by turning all of the pixels to either white or black depending 

on whether their value is above or below a specified threshold 

[17]. Eq. (2) illustrates adaptive threshold, which determines 

each pixel's threshold value by referring to the gray-level 

intensity of its neighbours. 
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2) Fuzzy C-Means: Fuzzy C-Means (FCM) is one of the 

popular algorithm in clustering [18]. Data that belong to two or 

more clusters with various membership coefficients can be 

processed iteratively in this way. After creating the initial fuzzy 

partition matrix, the initial fuzzy cluster centres are computed. 

In order to determine where the clusters should be placed, the 

objective function is minimised while the cluster centres and 

membership grade point are updated at each iteration's step. 

When the maximum number of iterations is reached or when 

the improvement in the objective function between two 

successive iterations is less than the minimum amount of 

improvement required, the procedure comes to an end [19]. 

The iteration of FCM is performed through two parameters, 
namely the membership degree and the center of the cluster. 
When the repeated steps come to an end or reach their 
maximum number of iterations, these parameters are altered 
[20]. Additionally, when the objective function improvements 
of two successive iterations are less than the minimum amount 
of improvement set, the change of these parameters is affected. 
The low, medium, and high clusters are the starting points for 
the Fuzzy C-Means technique used in this segmentation [21]. 
The centre of each cluster will be used to determine the data 
point. The cluster's data points should all equal one. The 
algorithm relies on minimising the objective function presented 
below. 
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where, uij represents the membership degree of data point 
xi in cluster j, where xi is the d-dimensional center of the ith 
cluster, cj is the d-dimensional center of the cluster, and |*| is a 
norm indicating the similarity between measured data and the 
center. The term M, referred to as the fuzziness exponent, is 
any number greater than 1. 

3) Marker-Controlled watershed: A gradient-based 

segmentation method is called watershed segmentation. 

According to this study's findings, the watershed segmentation 

identifies the water basins and watershed ridge lines by 

classifying each pixel's intensity as either high intensity or low 

intensity on a surface [22]. The gradient magnitude is 

calculated using the image foreground and background markers 

and the edge detection technique. The watershed ridge line and 

morphological operation are then used [23]. Based on the 

provided watershed ridge lines, the watershed transform is 

created. The input image I(x,y) and the gradient along x and y-

axis are calculated according to Eq. (4). 
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Then the gradient of the image is defined as: 
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where, i and j are unit vectors along x and y axis 
respectively. The magnitude of gradient is given by: 

22
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The image may have an excessive amount of gradient 
segmentation as a result of noise and other irregularities [24]. 
Thus to overcome the problem, morphological operation 
technique can be implemented. 

C. Features Extraction 

A collection of features are extracted from each image 
based on the segmentation technique. Meaningful 
characteristics must be developed before they can be used as 
input in the classification process [25]. These properties may 
be based on spectral, textural, or statistical examination of an 
image's grey level. To complete the diagnosis, other general 
features like signal intensity are needed [26]. All the features 
that radiologists discovered when examining the brain scans 
are listed in Table IV. Table I provides a list of the feature 
extractions that reflect nearby stroke area regions. 

TABLE I. LIST OF FEATURES EXTRACTION RESULTS AND DISCUSSIONS 

 

A. Performance Evaluation 

The segmentation results obtained from the proposed 
technique will be compared with the manual reference 

segmentation performed by neuroradiologists. Similarity 
indices based on Jaccard’s and then the accuracy is obtained by 
finding the percentage of the number of correctly classified 
samples. Dice will be calculated to measure the accuracy of the 
segmentation for the pair of segmented and reference image. 

IV. RESULTS AND DISCUSSIONS 

A. Image Pre-processing 

Fig. 5 displays an image portraying a stroke brain lesion 
characterized by hyperintensity. The maximum pixel intensity 
in the image is 205, and the pixels are in a 9-bit format. Based 
on analysis, the image underwent preprocessing using three 
methods: normalization, background removal, and 
enhancement through power-law transformation. 

 

Fig. 5. Original image. 

In Fig. 6, the image has undergone normalization to a 10-
bit format, along with its corresponding histogram. The highest 
normalized intensity is recorded as 0.76908. Following the 
normalization process, a background removal procedure is 
employed to eliminate pixels, enhancing the clarity of the 
lesion in the image. 

 
Fig. 6. Image normalization with its histogram. 

In Fig. 7, background pixels have been eliminated through 
thresholding at 0.0563, with the highest peak observed at an 
intensity level of 0.1196. 

 
Fig. 7. Image background removal with its histogram. 

Fig. 8 illustrates the result following the implementation of 
a power-law transformation. The peak intensity is situated at 
0.6892. Analyzing the histogram, it is evident that the power-
law transformation has elevated the normalized intensity to 
0.3556. Simultaneously, the lesion has expanded to an intensity 
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level of 0.8, as indicated by arrows. The maximum intensity 
achieved through the gamma-law transformation is 0.7901. 

 
Fig. 8. Image enhancement with its histogram. 

B. Image Segmentation 

An automated segmentation method has been devised for 
segmenting Regions of Interest (ROIs) within SWI images, 
utilizing adaptive threshold, marker-controlled watershed with 
correlation template, and FCM with active contour. Each 
segmentation outcome is subsequently compared with a 
manual reference. This process pertains to the segmentation of 
both hyperintense and hypointense lesions in SWI images. 

1) Adaptive Threshold 

TABLE II. THE SEGMENTATION RESULTS OF THE SWI STROKE LESION 

FROM THE ORIGINAL IMAGE USING ADAPTIVE THRESHOLD SEGMENTATION 

TECHNIQUE 

 

According to the data presented in Table II, the 
segmentation outcomes indicate that the adaptive threshold 
technique is effective in delineating hyperintense lesions. 
However, it faces challenges in segmenting hypointense 
lesions due to the presence of shadow pixels, which are 
uncertain with the assigned threshold value from this 
segmentation method. The technique struggles to segment 
overlapping pixels resulting from noise or intensity variation in 
the SWI image. 

2) Fuzzy c-means (FCM) with active contour: FCM is a 

clustering method designed to group objects with similar 

characteristics. This technique is combined with active contour 

to eliminate CSF regions by establishing boundaries within the 

SWI image. Computer-generated curves are employed to 

identify and pinpoint the Regions of Interest (ROIs). The 

segmentation outcomes for the stroke lesion from the original 

image are presented in Table III. 

TABLE III. THE SEGMENTATION RESULTS OF THE SWI STROKE LESION 

FROM THE ORIGINAL IMAGE USING FCM WITH ACTIVE CONTOUR 

SEGMENTATION TECHNIQUE 

 
According to Table III, the segmentation outcomes reveal 

that the FCM segmentation method, when combined with 
active contour, yields favorable results for both hyperintense 
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and hypointense lesions in the Regions of Interest (ROIs). 
However, in FCM, the presence of noise in SWI isn't factored 
in, making the technique susceptible to noise. To address this 
issue, additional refinement is applied using active contour 
segmentation to eliminate cerebrospinal fluid (CSF) and small 
pixels. 

3) Marker-controlled watershed: Marker-controlled 

watershed segmentation is a segmentation method based on 

gradients. It is combined with a correlation template that 

utilizes a matching template to eliminate the cerebrospinal fluid 

(CSF) region in severe stroke cases. The segmentation 

outcomes for the stroke lesion from the original image are 

illustrated in Table IV. 

TABLE IV. THE SEGMENTATION RESULTS OF THE SWI STROKE LESION 

FROM THE ORIGINAL IMAGE USING MARKER-CONTROLLED WATERSHED 

WITH CORRELATION TEMPLATE SEGMENTATION TECHNIQUE 

 
In Table IV, the segmentation outcomes indicate that the 

marker-controlled watershed segmentation technique, 
combined with the correlation template, effectively delineates 
Regions of Interest (ROIs) for both hyperintense and 
hypointense lesions. The marker-controlled watershed 
technique segments the ROI by utilizing the boundary formed 
through the watershed technique, which is based on the 

gradient surface in the SWI image. To address the issue of 
over-segmentation resulting from the marker-controlled 
watershed technique, the correlation template method is 
introduced. This refinement aids in removing cerebrospinal 
fluid (CSF) and producing a more reasonable segmentation that 
accurately reflects the layout of the ROI. 

C. Performance Evaluation for Segmentation Method 

This part discusses the performance analysis and evaluation 
of the proposed segmentation technique. The evaluation is 
grounded in the analysis of 24 samples, specifically focusing 
on the optimal appearance of SWI lesions. The evaluation 
centers on stroke lesions, encompassing 18 samples from stable 
stroke patients and six from patients with more severe 
conditions. Performance evaluation employs metrics including 
the Jaccard index (area overlap, AO), Dice coefficient (DC), 
false positive rate (FPR), and false negative rate (FNR). A 
higher index signifies greater area overlap and superior 
performance. 

1) Poor improvement stroke patient: Fig. 9 illustrates the 

performance evaluation for poor improvement stroke patient 

using AO, FPR, FNR and DC. According to the findings, the 

adaptive threshold technique outperforms other segmentation 

methods, demonstrating superior results. Specifically, the 

adaptive threshold technique exhibits high AO and DC along 

with low FPR and FNR outcomes. 

 
Fig. 9. Average performance evaluation for poor improvement stroke patient. 

The adaptive threshold technique yields values of 0.72 for 
AO and 0.86 for DC. FPR signifies errors related to over-
segmentation, while FNR denotes errors linked to under-
segmentation. Lower values for both FPR and FNR are desired 
to minimize errors. The outcomes reveal that the adaptive 
threshold segmentation technique effectively distinguishes 
hyperintense lesions from other intensity pixels in the SWI 
image, displaying a low FPR of 0.21 and a low FNR of 0.35. 
For poor improvement stroke patients, the FCM technique 
stands out with the best FNR value, indicating no over-
segmentation errors. In contrast, the marker-controlled 
watershed technique exhibits a high FNR for poor 
improvement stroke patients. 

2) Moderate improvement stroke patient: In Fig. 10, the 

performance evaluation for moderate improvement stroke 

patient using AO, FPR, FNR and DC. According to the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

459 | P a g e  

www.ijacsa.thesai.org 

findings, the adaptive threshold technique again stands out as 

the superior segmentation method among others. 

The adaptive threshold technique demonstrates favorable 
outcomes with high AO and DC values along with low FPR 
and FNR results. Specifically, the AO and DC values achieved 
by the adaptive threshold technique are 0.83 and 0.94, 
respectively. The findings indicate that this segmentation 
method effectively distinguishes hyperintense lesions from 
other intensity pixels in the SWI image, displaying a low FPR 
of 0.15 and a low FNR of 0.29. The adaptive threshold 
technique attains the best under-segmentation rate compared to 
other techniques. However, the FCM technique achieves the 
best FNR result, recording 0.87. 

 
Fig. 10. Average performance evaluation for moderate improvement stroke 

patient. 

3) Good improvement stroke patient: Fig. 11 determines 

the performance evaluation for good improvement stroke 

patient using AO, FPR, FNR and DC. According to the results, 

the adaptive threshold technique once again emerges as the 

leading segmentation method among others. 

 
Fig. 11. Average performance evaluation for good improvement stroke patient. 

The adaptive threshold technique exhibits high AO and DC 
values with low FPR and FNR outcomes. Specifically, the AO 
and DC values attained by the adaptive threshold technique are 
0.89 and 0.96, respectively. The least favorable over-
segmentation result is observed in FCM for stroke patients with 
significant improvement, featuring an FPR error of 0.08. In 
contrast, the adaptive threshold technique achieves the best 
FPR value at 0.31, indicating its efficacy in segmenting 
hypointense lesions with minimal over-segmentation error. 

However, the FCM technique records the best value for FNR 
error, standing at 0.1. 

D. Comparison Result of Performance Verification for the 

Stroke Lesion Classification Benchmarking 

Based on previous research, Table V concluded the results 
by other researchers in similar studies. The Adaptive threshold 
segmentation technique has shown best dice coefficient 
compare to other studies. The dice coefficient value obtain was 
0.97. Tetteh et al. (2023) presents dice coefficient value with 
0.76% by using Marker-Controlled Watershed. Kuang et al. 
(2023) presents the second highest dice coefficient value with 
0.89. Rava et al. (2021) presents dice coefficient value with 
0.83. Gong et al. (2021) dice coefficient value with 0.87. At 
last, Su et al. (2020) presents dice coefficient value 0.75. 

TABLE V. MACHINE LEARNING TECHNIQUE FOR BRAIN STROKE 

DIAGNOSIS BY OTHER RESEARCHERS 

Author 
Imaging 

Modality 

Number of 

Data 
Technique Result 

Proposed 

method 
MRI 24 patients 

Adaptive 

Threshold 
0.96 

Tetteh et 
al. (2023, 

[27]) 

MRI 
183 

patients 

Marker-
Controlled 

Watershed 

0.76 

Kuang et 
al. (2023, 

[28]) 

CT 
154 

patients 

Adaptive 

Threshold 
0.89 

Rava et al. 
(2021, 

[29]) 

CBCT 
200 

patients 
k-Means 0.83 

Hokkinen 
et al. 

(2021, 

[30]) 

MRI 89 patients 
Adaptive 

Threshold 
0.97 

Gong et al. 

(2021, 

[31]) 

CT 
30 patients 
 

Fuzzy C-

Means 

(FCM) 

0.87 

Su et al. 

(2020, 

[32]) 

MRI 
269 
patients 

Region 
Growing 

0.75 

V. CONCLUSION 

In this research, machine learning techniques are proposed 
for automatic scoring of brain stroke diagnosis in the context of 
treatment decision making in ischemic stroke. The automated 
technique to locate, segment and quantify the lesion area would 
support clinicians and neuroradiologists rendering their 
findings more robust and reproducible. The techniques are 
highly capable to classify the type of brain stroke and accurate 
diagnosis for ischemic stroke patient into two types, those are 
stable and worse stroke patient. The outcome of this research 
could serve as an insight to improve the healthcare of the 
community by providing better solutions using such intelligent 
system. Furthermore, the characteristics of stroke lesion 
appearances, their evolution, and the observed challenges 
should be study in detail. 
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