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Abstract A fundamental feature of spectral graph theory is the correspondence between matrix and 

graph. As a result of this relation, the characteristic polynomial of the graph can be formulated. This 
research focuses on the power graph of dihedral groups using degree-based matrices. Throughout this 
paper, we formulate the characteristic polynomial of the power graph of dihedral groups based on 
seven types of graph matrices which include the maximum degree, the minimum degree, the greatest 
common divisor degree, the first Zagreb, the second Zagreb, the misbalance degree, and the Nirmala 
matrices. 
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Introduction 
 
Spectral graph theory begins with a correspondence between matrices and graphs, most prominently 
the adjacency and Laplacian matrices. The main goals of spectral graph theory are to calculate or 
estimate the eigenvalues of these matrices, and to create connections between the eigenvalues and 
structural characteristics of the graph. It turns out that one useful tool when investigating graph theory 
includes the spectral perspective.  
 
Finite group theory currently has a high level of activity in investigating graphs defined as the elements 
of a finite group. There has been extensive research on these graphs in the literature. A variety of graphs 
are associated with groups, for example, Cayley graph, commuting graph, coprime graph and power 

graph. A power graph of the group 𝐺 is denoted by 𝛤𝐺 and defined as a graph whose vertex set is all the 

elements of 𝐺 and two distinct vertices 𝑣𝑝 and 𝑣𝑞 are adjacent if and only if 𝑣𝑝
𝑥 = 𝑣𝑞 or 𝑣𝑞

𝑦
= 𝑣𝑝 for positive 

integers 𝑥 and 𝑦 [5].  
 
Recent research has focused on the power graph for some finite groups, as stated in [20]. It is 
demonstrated that a degree formula can be derived for a vertex in the finite abelian group. Different group 
has been discussed in [9], they focused on all nilpotent groups and presented the isomorphism of the 
power graph. The study of the power graph of dihedral groups was performed by [4]. In addition, Kumar 
et al. [10] have discussed a survey of the power graph for some finite groups. The fact that a power graph 
is always a divisor graph is presented in [22].  
 
In the present work, we focus on the non-abelian dihedral groups of order 2𝑛, 𝑛 ≥ 3, denoted by 𝐷2𝑛 =
〈𝑎, 𝑏 ∶  𝑎𝑛 = 𝑏2 = 𝑒, 𝑏𝑎𝑏 = 𝑎−1〉 and its elements can be written as 𝑎𝑖 and 𝑎𝑖𝑏 [3]. Throughout this note, 

we are concerned with 𝛤𝐺 of 𝐷2𝑛 and denoted by 𝛤𝐷2𝑛
. The spectral property of 𝛤𝐷2𝑛

 can be expressed in 
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adjacency matrix, 𝐴(𝛤𝐷2𝑛
) = [𝑎𝑝𝑞] of size 2𝑛 × 2𝑛, in which 𝑎𝑝𝑞 = 1, if 𝑣𝑝 and 𝑣𝑞 are adjacent, and 

otherwise, it is zero. The characteristic polynomial of 𝐴(𝛤𝐷2𝑛
), 𝑃𝐴(𝛤𝐷2𝑛)(𝜆) = |𝜆𝐼2𝑛 − 𝐴(𝛤𝐷2𝑛

)|, where 𝐼2𝑛 is 

the identity matrix of size 2𝑛 × 2𝑛.  
 
Many researchers are currently interested in studying the characteristic polynomial of graphs, for 
instance, the signless Laplacian polynomial for simple graphs [13] and the characteristic polynomial 
based on the Sombor matrix [14]. Moreover, the Laplacian spectrum of coprime order graph for finite 
abelian 𝑝-group has been presented in [21]. Meanwhile, a discussion of characteristic polynomials based 

on degree-based matrices applied to commuting and non-commuting graphs for 𝐷2𝑛  can be seen in 
[15,16,17,18,19]. These results motivate us to investigate the characteristic polynomial of the power 
graph of the dihedral graph associated with degree-based matrices. 
 
Degree-based matrices have been introduced that involve the degree formulas of every vertex in a graph. 
The definition of the maximum degree matrix of a graph can be found in [1]. A study of the minimum 
degree matrix was performed by [2]. The greatest common divisor degree matrix has been defined in 
[11]. Moreover, we can see in [12] that the Zagreb matrices are defined as two types of matrices. 
Meanwhile, some definitions have also been presented, for instance, the misbalance degree [6] and the 
Nirmala matrices [8]. 
 
The methodology involves the construction of degree-based matrices of 𝛤𝐷2𝑛

, which include the maximum 

degree, the minimum degree, the greatest common divisor degree, the first Zagreb, the second Zagreb, 
the misbalance degree, and the Nirmala matrices. The next step is partitioning those matrices into block 
matrices and formulating the characteristic polynomial. Therefore, we need to present one theorem to 
simplify the characteristic polynomial of a particular matrix in the first main result. 

 
Preliminaries 
 
We study the power graph for 𝐷2𝑛, 𝛤𝐷2𝑛

. Suppose that 𝑑𝑣𝑖
 as the degree of 𝑣𝑖. The following theorem 

presents 𝑑𝑣𝑖
, for every 𝑣𝑖 on 𝛤𝐷2𝑛

. 

 
Theorem 2.1. [4] Let 𝛤𝐷2𝑛

 be the power graph for 𝐷2𝑛. Then 

1. the degree of 𝑒 on 𝛤𝐷2𝑛
 is 𝑑𝑒 = 2𝑛 − 1 

2. the degree of 𝑎𝑖 on 𝛤𝐷2𝑛
 is 𝑑𝑎𝑖 = 𝑛 − 1, for 1 ≤ 𝑖 ≤ 𝑛 − 1, and 

3. the degree of 𝑎𝑖𝑏 on 𝛤𝐷2𝑛
 is 𝑑𝑎𝑖𝑏 = 1, 1 ≤ 𝑖 ≤ 𝑛.  

 

Suppose that 𝐺1 = {𝑒}, 𝐺2 = {𝑎𝑖: 1 ≤ 𝑖 ≤ 𝑛 − 1}, and 𝐺3 = {𝑎𝑖𝑏: 1 ≤ 𝑖 ≤ 𝑛} such that 𝐷2𝑛 = 𝐺1 ∪ 𝐺2 ∪ 𝐺3. 

It is shown that vertex 𝑒 is adjacent to all other vertices in 𝛤𝐷2𝑛
. Every vertex in 𝐺2 is adjacent to 𝑒 and all 

other members in 𝐺2. Meanwhile, all vertices in 𝐺3 are only adjacent to 𝑒 [4]. 
 
The degree-based matrices are defined in the following definitions. They are the maximum degree, 
minimum degree, greatest common divisor degree, first Zagreb, second Zagreb, misbalance degree, 
and Nirmala matrices. 
 

Definition 2.1. [1] The maximum matrix of 𝛤𝐷2𝑛
, denoted by 𝑀𝑎𝑥(𝛤𝐷2𝑛

) = [𝑚𝑎𝑥𝑝𝑞] whose (𝑝, 𝑞) −th entry 

is  

𝑚𝑎𝑥𝑝𝑞 = {
𝑚𝑎𝑥 {𝑑𝑣𝑝

, 𝑑𝑣𝑞
} ,    if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent 

0,                              otherwise.                                          
 

 

Definition 2.2. [2] The minimum matrix of 𝛤𝐷2𝑛
, denoted by 𝑀𝑖𝑛(𝛤𝐷2𝑛

) = [𝑚𝑖𝑛𝑝𝑞] whose (𝑝, 𝑞) −th entry 

is  

𝑚𝑖𝑛𝑝𝑞 = {
𝑚𝑖𝑛 {𝑑𝑣𝑝

, 𝑑𝑣𝑞
} ,     if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent 

0,                              otherwise.                                         
 

 

Definition 2.3. [11] The greatest common divisor degree matrix of 𝛤𝐷2𝑛
, denoted by 𝐺𝐶𝐷𝐷(𝛤𝐷2𝑛

) = [𝑔𝑝𝑞] 

whose (𝑝, 𝑞) −th entry is  

𝑔𝑝𝑞 = {
𝑔. 𝑐. 𝑑 {𝑑𝑣𝑝

, 𝑑𝑣𝑞
} ,     if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent 

0,                                 otherwise.                                          
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Definition 2.4. [12] The first Zagreb matrix of 𝛤𝐷2𝑛
, denoted by 𝑍1(𝛤𝐷2𝑛

) = [𝑧1𝑝𝑞] whose (𝑝, 𝑞) −th entry 

is  

𝑧1𝑝𝑞 = {
𝑑𝑣𝑝

+ 𝑑𝑣𝑞
,     if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent 

0,                    otherwise.                                          
 

 

Definition 2.5. [12] The second Zagreb matrix of 𝛤𝐷2𝑛
, denoted by 𝑍2(𝛤𝐷2𝑛

) = [𝑧2𝑝𝑞] whose (𝑝, 𝑞) −th 

entry is  

𝑧2𝑝𝑞 = {
𝑑𝑣𝑝

∙ 𝑑𝑣𝑞
,     if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent 

0,                  otherwise.                                          
 

 

Definition 2.6. [6] The misbalance degree matrix of 𝛤𝐷2𝑛
, denoted by 𝑀𝐷(𝛤𝐷2𝑛

) = [𝑚𝑑𝑝𝑞] whose (𝑝, 𝑞) −th 

entry is  

𝑚𝑑𝑝𝑞 = {
|𝑑𝑣𝑝

− 𝑑𝑣𝑞
| ,     if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent 

0,                        otherwise.                                          
 

 

Definition 2.7. [8] The Nirmala matrix of 𝛤𝐷2𝑛
, denoted by 𝑁(𝛤𝐷2𝑛

) = [𝑛𝑝𝑞] whose (𝑝, 𝑞) −th entry is  

𝑛𝑝𝑞 = {
√𝑑𝑣𝑝

+ 𝑑𝑣𝑞
,     if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent 

0,                        otherwise.                                          

 

 

To formulate the characteristic polynomial of degree-based matrices of 𝛤𝐷2𝑛
, we need the following result. 

 

Theorem 2.2. [7] If a square matrix 𝑀 = [
𝐴 𝐵
𝐶 𝐷

] can be partitioned into four blocks, where |𝐴| ≠ 0, then  

|𝑀| = |
𝐴 𝐵
0 𝐷 − 𝐶𝐴−1𝐵

| = |𝐴||𝐷 − 𝐶𝐴−1𝐵|. 

 
For the formulation of the characteristic polynomial, elementary row and column operations must be 

performed on a square matrix 𝑀. Now suppose that 𝑅𝑖 be the 𝑖-th row and 𝑅𝑖
′ be the new 𝑖-th row resulting 

from a row operation on 𝑀. Also, let the 𝑖-th column as 𝐶𝑖 and 𝐶𝑖
′ is the new 𝑖-th column obtained from a 

column operation of 𝑀. 

 
Main Results 
 
We begin with the simple form of the characteristic polynomial of a square matrix that very useful for our 
main results in this section. 
 

Theorem 3.1. For 𝑎, 𝑏, 𝑐 are real numbers, the characteristic polynomial of the 2𝑛 × 2𝑛 matrix of  

𝑀 = [

0 𝑎𝐽1×(𝑛−1) 𝑏𝐽1×𝑛

𝑎𝐽(𝑛−1)×1 𝑐(𝐽 − 𝐼)𝑛−1 0(𝑛−1)×𝑛

𝑏𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

] 

can be simplified as 

𝑃𝑀(𝜆) = 𝜆𝑛−1(𝜆 + 𝑐)𝑛−2(𝜆3 − 𝑐(𝑛 − 2)𝜆2 − (𝑏2𝑛 + 𝑎2(𝑛 − 1))𝜆 + 𝑏2𝑐𝑛(𝑛 − 2)). 

 
Proof. 
Suppose that 𝑀 is a 2𝑛 × 2𝑛 matrix as follows: 

𝑀 = [

0 𝑎𝐽1×(𝑛−1) 𝑏𝐽1×𝑛

𝑎𝐽(𝑛−1)×1 𝑐(𝐽 − 𝐼)𝑛−1 0(𝑛−1)×𝑛

𝑏𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

] =

[
 
 
 
 
 
 
 
 
0 𝑎 𝑎 ⋯ 𝑎 𝑏 𝑏 ⋯ 𝑏
𝑎 0 𝑐 ⋯ 𝑐 0 0 ⋯ 0
𝑎 𝑐 0 ⋯ 𝑐 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑎 𝑐 𝑐 ⋯ 0 0 0 ⋯ 0
𝑏 0 0 ⋯ 0 0 0 ⋯ 0
𝑏 0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑏 0 0 ⋯ 0 0 0 ⋯ 0]

 
 
 
 
 
 
 
 

 

 

Below is a determinant that represents the characteristic polynomial for 𝑀,  
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𝑃𝑀(𝜆) = |

𝜆 −𝑎𝐽1×(𝑛−1) −𝑏𝐽1×𝑛

−𝑎𝐽(𝑛−1)×1 (𝜆 + 𝑐)𝐼𝑛−1 − 𝑐𝐽𝑛−1 0(𝑛−1)×𝑛

−𝑎𝐽𝑛×1 0𝑛×(𝑛−1) 𝜆𝐼𝑛

|. 

By applying the row and column operations: 

1. 𝑅𝑛+1+𝑖
′ = 𝑅𝑛+1+𝑖 − 𝑅𝑛+1, for 1 ≤ 𝑖 ≤ 𝑛 − 1; 

2. 𝐶𝑛+1
′ = 𝐶𝑛+1 + 𝐶𝑛+1 + ⋯+ 𝐶2𝑛;  

3. 𝐶1
′ = 𝐶1 +

𝑏

𝜆
𝐶𝑛+1;  

4. 𝑅2+𝑖
′ = 𝑅2+𝑖 − 𝑅2, for 1 ≤ 𝑖 ≤ 𝑛 − 2; 

5. 𝐶2
′ = 𝐶2 + 𝐶3 + ⋯+ 𝐶𝑛.  

Then we obtain 

𝑃𝑀(𝜆) =

|

|

𝜆2−𝑏2𝑛

𝜆
−𝑎(𝑛 − 1) −𝑎𝐽1×(𝑛−2) −𝑏𝑛 −𝑏𝐽1×(𝑛−1)

−𝑎 𝜆 − 𝑐(𝑛 − 2) −𝑐𝐽1×(𝑛−2) 0 01×(𝑛−1)

0(𝑛−2)×1 0(𝑛−2)×1 (𝜆 + 𝑐)𝐼𝑛−2 0(𝑛−2)×1 0(𝑛−2)×(𝑛−1)

0 0 01×(n−2) 𝜆 01×(𝑛−1)

0(𝑛−1)×1 0(𝑛−1)×1 0(𝑛−1)×(n−2) 0(𝑛−1)×1 𝜆𝐼𝑛−1

|

|

.               (7) 

By Theorem 2.2 with 𝐴 = |
𝜆2−𝑏2𝑛

𝜆
−𝑎(𝑛 − 1)

−𝑎 𝜆 − 𝑐(𝑛 − 2)
|

2×2

, 𝐵 = |
−𝑎𝐽1×(𝑛−2) −𝑏𝑛 −𝑏𝐽1×(𝑛−1)

−𝑐𝐽1×(𝑛−2) 0 01×(𝑛−1)
|
2×(2𝑛−2)

,  

𝐶 = 0(2𝑛−2)×2, 𝐷 = |
(𝜆 + 𝑐)𝐼𝑛−2 0(𝑛−2)×n

0n×(n−2) 𝜆𝐼𝑛
|
(2𝑛−2)×(2𝑛−2)

, then we have 

𝑃𝑀(𝜆) = |𝐴||𝐷| = |
𝜆2 − 𝑏2𝑛

𝜆
−𝑎(𝑛 − 1)

−𝑎 𝜆 − 𝑐(𝑛 − 2)

| (𝜆 + 𝑐)𝑛−2𝜆𝑛 

   = 𝜆𝑛−1(𝜆 + 𝑐)𝑛−2(𝜆3 − 𝑐(𝑛 − 2)𝜆2 − (𝑏2𝑛 + 𝑎2(𝑛 − 1))𝜆 + 𝑏2𝑐𝑛(𝑛 − 2)). 

□ 
 
The following results present the characteristic polynomial of maximum degree, minimum degree, 
greatest common divisor degree, first Zagreb, second Zagreb, misbalance degree, and Nirmala matrices 
of 𝛤𝐷2𝑛

.  

 
Theorem 3.2. The characteristic polynomial of the maximum matrix of 𝛤𝐷2𝑛

 is 

 𝑃𝑀𝑎𝑥(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + 𝑛 − 1)𝑛−2(𝜆3 − (𝑛 − 2)(𝑛 − 1)𝜆2 − (2𝑛 − 1)2𝜆 + 𝑛(2𝑛 − 1)2(𝑛 − 2)(𝑛 − 1)). 

 
Proof. 

Let 𝛤𝐷2𝑛
 be a power graph of 𝐷2𝑛 = 𝐺1 ∪ 𝐺2 ∪ 𝐺3, where 𝐺1 = {𝑒}, 𝐺2 = {𝑎, 𝑎2, ⋯ , 𝑎𝑛−1 }, and 𝐺3 =

{𝑏, 𝑎𝑏, 𝑎2𝑏,⋯ , 𝑎𝑛−1𝑏}. We know that vertex 𝑒 is adjacent to all other vertices in 𝛤𝐷2𝑛
. Every vertex in 𝐺2 is 

adjacent to 𝑒 and all other members in 𝐺2. Meanwhile, all vertices in 𝐺3 are only adjacent to 𝑒. From 

Theorem 2.1 we have 𝑑𝑒 = 2𝑛 − 1, 𝑑𝑎𝑖 = 𝑛 − 1, 1 ≤ 𝑖 ≤ 𝑛 − 1, and 𝑑𝑎𝑖𝑏 = 1, 1 ≤ 𝑖 ≤ 𝑛. Based on this 

information and Definition 2.1, the maximum matrix for 𝛤𝐷2𝑛
 is a 2𝑛 × 2𝑛 matrix as follows: 

 

𝑀𝑎𝑥(𝛤𝐷2𝑛
) =

𝑒
𝑎
𝑎2

⋮
𝑎𝑛−1

𝑏
𝑎𝑏
⋮

𝑎𝑛−1𝑏

    𝑒          𝑎          𝑎2     ⋯   𝑎𝑛−1       𝑏         𝑎𝑏    ⋯ 𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 

0 2𝑛 − 1 2𝑛 − 1 ⋯ 2𝑛 − 1 2𝑛 − 1 2𝑛 − 1 ⋯ 2𝑛 − 1
2𝑛 − 1 0 𝑛 − 1 ⋯ 𝑛 − 1 0 0 ⋯ 0
2𝑛 − 1 𝑛 − 1 0 ⋯ 𝑛 − 1 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
2𝑛 − 1 𝑛 − 1 𝑛 − 1 ⋯ 0 0 0 ⋯ 0
2𝑛 − 1 0 0 ⋯ 0 0 0 ⋯ 0
2𝑛 − 1 0 0 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
2𝑛 − 1 0 0 ⋯ 0 0 0 ⋯ 0 ]

 
 
 
 
 
 
 
 

. 

 
The maximum matrix of 𝛤𝐷2𝑛

 can be expressed as the block matrix  
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𝑀𝑎𝑥(𝛤𝐷2𝑛
) = [

0 (2𝑛 − 1)𝐽1×(𝑛−1) (2𝑛 − 1)𝐽1×𝑛

(2𝑛 − 1)𝐽(𝑛−1)×1 (𝑛 − 1)(𝐽 − 𝐼)𝑛−1 0(𝑛−1)×𝑛

(2𝑛 − 1)𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

].  

By Theorem 3.1 with 𝑎 = 𝑏 = 2𝑛 − 1 and 𝑐 = 𝑛 − 1, we derive the characteristic polynomial of 𝑀𝑎𝑥(𝛤𝐷2𝑛
) 

as given below: 

 𝑃𝑀𝑎𝑥(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + 𝑛 − 1)𝑛−2(𝜆3 − (𝑛 − 2)(𝑛 − 1)𝜆2 − (2𝑛 − 1)2𝜆 + 𝑛(2𝑛 − 1)2(𝑛 − 2)(𝑛 − 1)). 

     □ 

 
Theorem 3.3. The characteristic polynomial of the minimum matrix of 𝛤𝐷2𝑛

 is 

 𝑃𝑀𝑖𝑛(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + 𝑛 − 1)𝑛−2(𝜆3 − (𝑛 − 2)(𝑛 − 1)𝜆2 − (𝑛 + (2𝑛 − 1)2(𝑛 − 1))𝜆 + 𝑛(𝑛 − 2)(𝑛 − 1)). 

 
Proof. 
The minimum matrix definition from Definition 2.2 gives the minimum matrix for 𝛤𝐷2𝑛

 as a 2𝑛 × 2𝑛 matrix: 

𝑀𝑖𝑛(𝛤𝐷2𝑛
) =

𝑒
𝑎
𝑎2

⋮
𝑎𝑛−1

𝑏
𝑎𝑏
⋮

𝑎𝑛−1𝑏

           𝑒       𝑎        𝑎2  ⋯   𝑎𝑛−1 𝑏 𝑎𝑏 ⋯ 𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 

0 𝑛 − 1 𝑛 − 1 ⋯ 𝑛 − 1 1 1 ⋯ 1  
𝑛 − 1 0 𝑛 − 1 ⋯ 𝑛 − 1 0 0 ⋯ 0  
𝑛 − 1 𝑛 − 1 0 ⋯ 𝑛 − 1 0 0 ⋯ 0  

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮  
𝑛 − 1 𝑛 − 1 𝑛 − 1 ⋯ 0 0 0 ⋯ 0  

1 0 0 ⋯ 0 0 0 ⋯ 0  
1 0 0 ⋯ 0 0 0 ⋯ 0  
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮  
1 0 0 ⋯ 0 0 0 ⋯ 0  ]

 
 
 
 
 
 
 
 

. 

 

The minimum matrix of 𝛤𝐷2𝑛
 can be stated as the partition matrix  

𝑀𝑖𝑛(𝛤𝐷2𝑛
) = [

0 (𝑛 − 1)𝐽1×(𝑛−1) 𝐽1×𝑛

(𝑛 − 1)𝐽(𝑛−1)×1 (𝑛 − 1)(𝐽 − 𝐼)𝑛−1 0(𝑛−1)×𝑛

𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

].  

By using Theorem 3.1 with 𝑎 = 𝑛 − 1, 𝑏 = 1, and 𝑐 = 𝑛 − 1, therefore, we obtain: 

𝑃𝑀𝑖𝑛(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + 𝑛 − 1)𝑛−2(𝜆3 − (𝑛 − 2)(𝑛 − 1)𝜆2 − (𝑛 + (𝑛 − 1)3)𝜆 + 𝑛(𝑛 − 2)(𝑛 − 1)). 

     □ 
 

Theorem 3.4. The characteristic polynomial of the greatest common divisor degree matrix of 𝛤𝐷2𝑛
 is 

 𝑃𝐺𝐶𝐷𝐷(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + 𝑛 − 1)𝑛−2(𝜆3 − (𝑛 − 2)(𝑛 − 1)𝜆2 − (2𝑛 − 1)𝜆 + 𝑛(𝑛 − 2)(𝑛 − 1)). 
 

Proof. 
According to Definition 3.3, the greatest common divisor degree matrix for 𝛤𝐷2𝑛

 is a 2𝑛 × 2𝑛 matrix as 

follows: 

𝐺𝐶𝐷𝐷(𝛤𝐷2𝑛
) =

𝑒
𝑎
𝑎2

⋮
𝑎𝑛−1

𝑏
𝑎𝑏
⋮

𝑎𝑛−1𝑏

       𝑒    𝑎        𝑎2   ⋯ 𝑎𝑛−1 𝑏 𝑎𝑏 ⋯ 𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 
0 1 1 ⋯ 1 1 1 ⋯ 1  
1 0 𝑛 − 1 ⋯ 𝑛 − 1 0 0 ⋯ 0  
1 𝑛 − 1 0 ⋯ 𝑛 − 1 0 0 ⋯ 0  
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮  
1 𝑛 − 1 𝑛 − 1 ⋯ 0 0 0 ⋯ 0  
1 0 0 ⋯ 0 0 0 ⋯ 0  
1 0 0 ⋯ 0 0 0 ⋯ 0  
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮  
1 0 0 ⋯ 0 0 0 ⋯ 0  ]

 
 
 
 
 
 
 
 

. 

 
The greatest common divisor degree matrix of 𝛤𝐷2𝑛

 can be expressed as  

𝐺𝐶𝐷𝐷(𝛤𝐷2𝑛
) = [

0 𝐽1×(𝑛−1) 𝐽1×𝑛

𝐽(𝑛−1)×1 (𝑛 − 1)(𝐽 − 𝐼)𝑛−1 0(𝑛−1)×𝑛

𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

].  

Therefore, by Theorem 3.1 with 𝑎 =  𝑏 = 1, and 𝑐 = 𝑛 − 1, we derive the following formula: 

 𝑃𝐺𝐶𝐷𝐷(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + 𝑛 − 1)𝑛−2(𝜆3 − (𝑛 − 2)(𝑛 − 1)𝜆2 − (2𝑛 − 1)𝜆 + 𝑛(𝑛 − 2)(𝑛 − 1)). 

     □ 
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Theorem 3.5. The characteristic polynomial of the first Zagreb matrix of 𝛤𝐷2𝑛
 is 

𝑃𝑍1(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + 2𝑛 − 2)𝑛−2(𝜆3 − 2(𝑛 − 2)(𝑛 − 1)𝜆2 − (4𝑛3 + (3𝑛 − 2)2(𝑛 − 1))𝜆 + 8𝑛3(𝑛 − 2)(𝑛 − 1)). 

Proof. 

By Definition 2.4, we can construct he first Zagreb matrix for 𝛤𝐷2𝑛
 as a 2𝑛 × 2𝑛 matrix as follows: 

 

𝑍1(𝛤𝐷2𝑛
) =

𝑒
𝑎
𝑎2

⋮
𝑎𝑛−1

𝑏
𝑎𝑏
⋮

𝑎𝑛−1𝑏

            𝑒          𝑎          𝑎2     ⋯   𝑎𝑛−1   𝑏  𝑎𝑏 ⋯ 𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 

0 3𝑛 − 2 3𝑛 − 2 ⋯ 3𝑛 − 2 2𝑛 2𝑛 ⋯ 2𝑛
3𝑛 − 2 0 2𝑛 − 2 ⋯ 2𝑛 − 2 0 0 ⋯ 0
3𝑛 − 2 2𝑛 − 2 0 ⋯ 2𝑛 − 2 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
3𝑛 − 2 2𝑛 − 2 2𝑛 − 2 ⋯ 0 0 0 ⋯ 0

2𝑛 0 0 ⋯ 0 0 0 ⋯ 0
2𝑛 0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

2𝑛 0 0 ⋯ 0 0 0 ⋯ 0 ]
 
 
 
 
 
 
 
 

. 

 

The first Zagreb matrix of 𝛤𝐷2𝑛
 can be partitioned into block matrices  

𝑍1(𝛤𝐷2𝑛
) = [

0 (3𝑛 − 2)𝐽1×(𝑛−1) 2𝑛𝐽1×𝑛

(3𝑛 − 2)𝐽(𝑛−1)×1 (2𝑛 − 2)(𝐽 − 𝐼)𝑛−1 0(𝑛−1)×𝑛

2𝑛𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

].  

By using Theorem 3.1 with 𝑎 = 3𝑛 − 2, 𝑏 = 2𝑛, and 𝑐 = 2𝑛 − 2, thus we get: 

 𝑃𝑍1(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + 2𝑛 − 2)𝑛−2(𝜆3 − 2(𝑛 − 2)(𝑛 − 1)𝜆2 − (4𝑛3 + (3𝑛 − 2)2(𝑛 − 1))𝜆 + 8𝑛3(𝑛 − 2)(𝑛 − 1)). 

     □ 
 
Theorem 3.6. The characteristic polynomial of the second Zagreb matrix of 𝛤𝐷2𝑛

 is 

𝑃𝑍2(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + (𝑛 − 1)2)𝑛−2(𝜆3 − (𝑛 − 2)(𝑛 − 1)2𝜆2 − ((2𝑛 − 1)2(𝑛 + (𝑛 − 1)3))𝜆 + 𝑛(2𝑛 − 1)2(𝑛 − 1)2(𝑛 − 2)). 

 
Proof. 
By using Definition 2.5, the second Zagreb matrix for 𝛤𝐷2𝑛

 is a 2𝑛 × 2𝑛 matrix as follows: 

 

𝑍2(𝛤𝐷2𝑛
) =

𝑒
𝑎
𝑎2

⋮
𝑎𝑛−1

𝑏
𝑎𝑏
⋮

𝑎𝑛−1𝑏

             𝑒                             𝑎                            𝑎2             ⋯           𝑎𝑛−1               𝑏         𝑎𝑏     ⋯ 𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 

0 (2𝑛 − 1)(𝑛 − 1) (2𝑛 − 1)(𝑛 − 1) ⋯ (2𝑛 − 1)(𝑛 − 1) 2𝑛 − 1 2𝑛 − 1 ⋯ 2𝑛 − 1

(2𝑛 − 1)(𝑛 − 1) 0 (𝑛 − 1)2 ⋯ (𝑛 − 1)2 0 0 ⋯ 0

(2𝑛 − 1)(𝑛 − 1) (𝑛 − 1)2 0 ⋯ (𝑛 − 1)2 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

(2𝑛 − 1)(𝑛 − 1) (𝑛 − 1)2 (𝑛 − 1)2 ⋯ 0 0 0 ⋯ 0
2𝑛 − 1 0 0 ⋯ 0 0 0 ⋯ 0
2𝑛 − 1 0 0 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
2𝑛 − 1 0 0 ⋯ 0 0 0 ⋯ 0 ]

 
 
 
 
 
 
 
 

. 

 

The next step is to express the second Zagreb matrix of 𝛤𝐷2𝑛
as the block matrix as given below: 

𝑍2(𝛤𝐷2𝑛
) = [

0 (2𝑛 − 1)(𝑛 − 1)𝐽1×(𝑛−1) (2𝑛 − 1)𝐽1×𝑛

(2𝑛 − 1)(𝑛 − 1)𝐽(𝑛−1)×1 (𝑛 − 1)2(𝐽 − 𝐼)𝑛−1 0(𝑛−1)×𝑛

(2𝑛 − 1)𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

].  

Consequently, by applying Theorem 2.1 with 𝑎 = (2𝑛 − 1)(𝑛 − 1), 𝑏 = 2𝑛 − 1, and 𝑐 = (𝑛 − 1)2, we can 
obtain: 

𝑃𝑍2(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + (𝑛 − 1)2)𝑛−2(𝜆3 − (𝑛 − 2)(𝑛 − 1)2𝜆2 − ((2𝑛 − 1)2(𝑛 + (𝑛 − 1)3))𝜆 + 𝑛(2𝑛 − 1)2(𝑛 − 1)2(𝑛 − 2)). 

     □ 

 

Theorem 3.7. The characteristic polynomial of the misbalance degree matrix of 𝛤𝐷2𝑛
 is 

𝑃𝑀𝐷(𝛤𝐷2𝑛)(𝜆) = 𝜆2𝑛−2(𝜆2 − 𝑛(𝑛 − 1)(5𝑛 − 4)). 

Proof. 

The misbalance degree matrix for 𝛤𝐷2𝑛
 is a 2𝑛 × 2𝑛 matrix can be provided following Definition 3.6. It is 
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𝑀𝐷(𝛤𝐷2𝑛
) =

𝑒
𝑎
𝑎2

⋮
𝑎𝑛−1

𝑏
𝑎𝑏
⋮

𝑎𝑛−1𝑏

    𝑒     𝑎 𝑎2 ⋯ 𝑎𝑛−1 𝑏       𝑎𝑏     ⋯ 𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 

0 𝑛 𝑛 ⋯ 𝑛 2𝑛 − 2 2𝑛 − 2 ⋯ 2𝑛 − 2
𝑛 0 0 ⋯ 0 0 0 ⋯ 0
𝑛 0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑛 0 0 ⋯ 0 0 0 ⋯ 0

2𝑛 − 2 0 0 ⋯ 0 0 0 ⋯ 0
2𝑛 − 2 0 0 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
2𝑛 − 2 0 0 ⋯ 0 0 0 ⋯ 0 ]

 
 
 
 
 
 
 
 

. 

 

The misbalance degree matrix of 𝛤𝐷2𝑛
 can be expressed as the block matrix  

𝑀𝐷(𝛤𝐷2𝑛
) = [

0 𝑛𝐽1×(𝑛−1) (2𝑛 − 2)𝐽1×𝑛

𝑛𝐽(𝑛−1)×1 0𝑛−1 0(𝑛−1)×𝑛

(2𝑛 − 2)𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

].  

By Theorem 3.1 with 𝑎 = 𝑛, 𝑏 = 2𝑛 − 2 and 𝑐 = 0, we get the following formua: 

𝑃𝑀𝐷(𝛤𝐷2𝑛)(𝜆) = 𝜆2𝑛−2(𝜆2 − 𝑛(𝑛 − 1)(5𝑛 − 4)). 

     □ 
 
Theorem 3.8. The characteristic polynomial of the Nirmala matrix of 𝛤𝐷2𝑛

 is 

 𝑃𝑁(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + √2𝑛 − 2)𝑛−2 (𝜆3 − √2𝑛 − 2(𝑛 − 2)𝜆2 − (2𝑛2 + (3𝑛 − 2)(𝑛 − 1))𝜆 + 2𝑛2√2𝑛 − 2(𝑛 − 2)). 
 
Proof. 
According to Definition 2.7, we obtain the Nirmala matrix for 𝛤𝐷2𝑛

 as a 2𝑛 × 2𝑛 matrix: 

 

𝑁(𝛤𝐷2𝑛
) =

𝑒

𝑎

𝑎2

⋮
𝑎𝑛−1

𝑏

𝑎𝑏
⋮

𝑎𝑛−1𝑏

         𝑒             𝑎             𝑎2       ⋯    𝑎𝑛−1      𝑏    𝑎𝑏 ⋯ 𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 
 0 √3𝑛 − 2 √3𝑛 − 2 ⋯ √3𝑛 − 2 √2𝑛 √2𝑛 ⋯ √2𝑛

√3𝑛 − 2 0 √2𝑛 − 2 ⋯ √2𝑛 − 2 0 0 ⋯ 0

√3𝑛 − 2 √2𝑛 − 2 0 ⋯ √2𝑛 − 2 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

√3𝑛 − 2 √2𝑛 − 2 √2𝑛 − 2 ⋯ 0 0 0 ⋯ 0

√2𝑛 0 0 ⋯ 0 0 0 ⋯ 0

√2𝑛 0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

√2𝑛 0 0 ⋯ 0 0 0 ⋯ 0 ]
 
 
 
 
 
 
 
 
 

. 

 
The Nirmala matrix of 𝛤𝐷2𝑛

 can be expressed as the following block matrices  

𝑁(𝛤𝐷2𝑛
) = [

0 √3𝑛 − 2𝐽1×(𝑛−1) √2𝑛𝐽1×𝑛

√3𝑛 − 2𝐽(𝑛−1)×1 √2𝑛 − 2(𝐽 − 𝐼)𝑛−1 0(𝑛−1)×𝑛

√2𝑛𝐽𝑛×1 0𝑛×(𝑛−1) 0𝑛

].  

Hence, by Theorem 3.1 with 𝑎 = √3𝑛 − 2, 𝑏 = √2𝑛 and 𝑐 = √2𝑛 − 2, we get 

 𝑃𝑁(𝛤𝐷2𝑛)(𝜆) = 𝜆𝑛−1(𝜆 + √2𝑛 − 2)𝑛−2 (𝜆3 − √2𝑛 − 2(𝑛 − 2)𝜆2 − (2𝑛2 + (3𝑛 − 2)(𝑛 − 1))𝜆 + 2𝑛2√2𝑛 − 2(𝑛 − 2)). 

     □ 

 

Conclusion 
 

In this note, we present the characteristic polynomial of a square matrix to simplify the process for 
formulating the determinant. We have shown the characteristic polynomial of the power graph of 𝐷2𝑛, 

𝑛 ≥ 3, based on the maximum degree, the minimum degree, the greatest common divisor degree, the 
first Zagreb, the second Zagreb, the misbalance degree, and the Nirmala matrices. 
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