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The shear strength (Vs) computation of reinforced concrete (RC) beams has been a 
major topic in structural engineering. Several methodologies have been introduced for 
the Vs prediction; however, the modeling accuracy is relatively low owing to the 
complex character of the resistance mechanism involving the dowel effect of 
longitudinal reinforcement, concrete in the compression zone, the contribution of the 
stirrups if existed, and the aggregate interlock. It is difficult, if not impossible, to shear 
design RC beams with and without stirrups utilizing laboratory trials. The span-to-
depth proportion, web width, and reinforcement proportion are only a few of the 
various factors that must be considered concurrently. Additionally, empirical 
techniques for shear design are developed within the confines of their testing regimes 
owing to the complicated shear failure process. As a result, these methodologies have 
limited generalizability and application. To overcome this problem, this work applies 
machine learning strategies for shear design. The current thesis is adopting the 
developing the Random Forest (RF) model as a robust machine learning (ML) 
predictive model for Vs prediction for reinforced concrete beams. The proposed ML 
model is developed based on collected experimental data 349, including the beam 
geometric and concrete properties parameters. Nine input combinations are constructed 
based on the associated input parameters for the proposed predictive model. The 
validation was conducted against the support vector machine (SVM) model, considered 
a well-established ML model introduced in the literature. In addition, several empirical 
formulations (EFs) are calculated for comparison. Research findings evidenced the 
potential of the proposed RF model for modeling the Vs reinforced concrete beams. 
Based on quantitative metric for the testing phase modeling, the RF model achieved the 
best results of the seventh input combination with root mean square error (RMSE = 
89.68 KN), mean absolute error (MAE = 35.59 KN), mean absolute percentage error 
(MAPE = 0.16). The modeling accuracy performance comparison with the established 
ML models and the EFs confirmed the capacity of the proposed model. Results 
indicated that all the parameters utilized beam geometric and concrete properties are 
significant for the development of the predictive model. However, the model structure 
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emphasizes the incorporation of seven predictors by excluding (beam flange thickness 
and coefficient). In general, the research provided a reliable a robust soft computing 
model for Vs of RC beams computation that contributes to the basic knowledge of 
structural engineering design and sustainability.                  
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MOHAMMED HAYDER RIYADH MOHAMMED 

Jun 2022 

Pengerusi   : Assoc. Prof. Sumarni Ismail, PhD 
Fakulti    : Reka Bentuk dan Senibina 

Pengiraan kekuatan ricih (Vs) rasuk konkrit bertetulang (RC) telah menjadi topik 
utama dalam kejuruteraan struktur. Beberapa metodologi telah diperkenalkan untuk 
ramalan Vs; walau bagaimanapun, ketepatan pemodelan adalah agak rendah 
disebabkan oleh ciri kompleks mekanisme rintangan yang melibatkan kesan dowel 
tetulang membujur, konkrit dalam zon mampatan, sumbangan rakap jika wujud, dan 
pasak agregat. Sukar, namun tidak mustahil untuk memotong reka bentuk rasuk RC 
dengan dan tanpa rakap menggunakan ujian makmal. Perkadaran rentang 
kedalaman, lebar jaringan dan perkadaran tetulang adalah antara beberapa faktor 
yang perlu dipertimbangkan secara serentak. Selain itu, teknik empirikal untuk reka 
bentuk ricih dibangunkan dalam lingkungan rejim ujian mereka kerana proses 
kegagalan ricih yang rumit. Akibatnya, metodologi ini mempunyai 
kebolehgeneralisasian dan aplikasi yang terhad. Oleh itu, strategi pembelajaran 
mesin untuk reka bentuk ricih digunakan bagi mengatasi masalah ini. Tesis semasa 
diterima pakai mengenai pembangunan model Random Forest (RF) sebagai model 
ramalan pembelajaran mesin (ML) yang mantap untuk ramalan Vs serta rasuk 
konkrit bertetulang. Model ML yang dicadangkan dibangunkan berdasarkan data 
eksperimen yang dikumpul 349 termasuk parameter sifat geometri rasuk dan 
konkrit. Terdapat sembilan kombinasi input yang dibina berdasarkan parameter 
input yang berkaitan, dibuat untuk model ramalan yang dicadangkan. Pengesahan 
telah dibuat terhadap model mesin vektor sokongan (SVM) kerana dianggap model 
ML mantap yang diperkenalkan melalui literatur. Di samping itu, beberapa rumusan 
empirikal (EF) dikira untuk perbandingan. Penemuan penyelidikan membuktikan 
potensi model RF yang dicadangkan untuk memodelkan rasuk konkrit bertetulang 
Vs. Berdasarkan metrik kuantitatif untuk pemodelan fasa ujian, model RF mencapai 
keputusan terbaik bagi kombinasi input ketujuh dengan ralat purata kuasa dua akar 
(RMSE = 89.68 KN), min ralat mutlak (MAE = 35.59 KN), min ralat peratusan 
mutlak (MAPE = 0.16). Perbandingan prestasi ketepatan pemodelan dengan model 
ML dan EF yang telah ditetapkan, mengesahkan keupayaan model yang 
dicadangkan. Keputusan menunjukkan bahawa semua parameter sifat geometri 
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rasuk dan konkrit yang digunakan adalah penting untuk pembangunan model 
ramalan. Walau bagaimanapun, penekanan struktur model dalam penggabungan 
tujuh peramal dengan mengecualikan (ketebalan bebibir rasuk dan pekali). Secara 
amnya, penyelidikan menyediakan model pengkomputeran lembut yang teguh dan 
boleh dipercayai untuk Vs pengiraan rasuk RC yang menyumbang kepada 
pengetahuan asas reka bentuk kejuruteraan dan kelestarian. 
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CHAPTER 1  

INTRODUCTION 
 
 
1.1 Research Background 

Early in the 1990s, intelligent agents became the focus of artificial intelligence 
research. These intelligent agents may be utilised for web surfing, online shopping, and 
news retrieval services. Agents or bots are other names for intelligent agents. They 
have increasingly transformed into chatbots and digital virtual assistants with the aid of 
Big Data applications. The solving of nonlinear problems is developed by using 
machine learning, a branch of artificial intelligence. It still serves as a building element 
for AI even though it has grown into a different sector, doing jobs like taking phone 
calls and giving a small selection of suitable replies. Deep learning and machine 
learning are now crucial components of artificial intelligence. 

In its widest definition, the phrase "artificial intelligence" (AI) refers to a machine's 
capacity to carry out the same kinds of tasks that distinguish human intellect. As 
alternatives to more traditional or classical methodologies, a number of artificial 
intelligence techniques are being applied more often. They have been utilised to 
resolve challenging real-world issues in a variety of fields, including engineering, 
economics, medical, the military, marine, etc., and are gaining popularity today. They 
have been effectively incorporated into the field of structural engineering in a number 
of domains, including structural analysis and design (Zhang and Subbarayan, 2002a, 
2002b), damage assessment (Levin and Lieven, 1998; Perera et al., 2009a, 2007), and 
constitutive modelling (Zhao and Ren, 2002). 

There has been a diverse engineering structural applications using the reinforced 
concrete (RC). For instance, urban infrastructures, buildings, industrial facilities and 
thus protective structures may be subjected to different types of loadings. In recent 
decades, due to the demand for higher safety and better sustainability, more reliable 
and robust design of RC structures has become a necessity. Reinforced concrete beams 
are used for load distribution in a wide range of structures; for example, in tall 
buildings, offshore gravity structures, as transfer girders, pile caps, folded plates, and 
foundation walls. 

The production of reinforced concrete beams involves the embedding of steel 
reinforcing bars into concrete mixtures to resist bending, shear, and tensile failures 
(Ruan et al., 2020; Shioya et al., 1990). During the design of reinforced concrete (RC) 
beams, one of the important parameters considered is the shear behaviour of the 
concrete structural members (Wu et al., 2021). Shear failure (SF) is mostly happened 
due to a lack of ductility and minor deflections and occurs suddenly without any early 
marks and observation for failure (Babar et al., 2015; Jumaa’h et al., 2019).   
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SF which is the most critical failure mode is induced by a combination of shear force, 
axial loads and moments (G. Zhang et al., 2020). Before the SF, almost little or no 
warning can be identified. This is unlike flexural failure that is caused by the gradual 
development of deflection upon yielding of the rebars (Abambres and Lantsoght, 2020; 
Abdulrahman and Mahmood, 2019; Institute, 2012). The share transfer mechanism 
after shear cracks initiation is uncertain. The possible consequences of SF of any 
component of RC may include structural collapse, disasters, casualties, and loss of 
properties (Abdulrahman et al., 2020; Carino et al., 1983). It is there expected that an 
RC beam should exhibit a high level of shear resistance that can support the flexural 
failure not the SF. 

SF is a complicated process that involves several parameters whose impact makes the 
mechanism of SF a debatable matter. Until now, empirical methods are being used to 
derive the guidelines and design codes for the shear strength of RC beams (Committee 
and Standardization, 2008); such empirical methods are limited in physical simulation 
as practice, paving the way for the development of an effective mathematical technique 
that will provide better estimates of the accuracy of the shear strength of RC beams 
(Ibrahim et al., 2019; Majdzadeh et al., 2006). Generally, several methods introduced 
over the literature to design the shear strength that are incorporated a trial batches in 
the laboratory to satisfy the required shear strength (Mahmood and Mohammad, 2019; 
Shahnewaz et al., 2020). For instance, by assuming the essential shear strength is 200 
kN, this purpose can be achieved by combining series of influencing variables 
arbitrarily. However, despite the high number of influencing variables involved, time 
and money will still be wasted in the preparation of several samples that will be tested 
for shear strength. 

It is worth to mention that, in the field of structural engineering, some of the nagging 
problems encountered are the analysis of beam behaviour, beam response to loading, 
analysis of beam SF; these problems require the prediction of the behaviour of the 
system using few laboratory observations (Birtel and Mark, 2006; Mahmood and 
Mohammad, 2019; Najafgholipour et al., 2017). Most of the time, mathematical 
models are developed for the prediction and analysis of the performance of the system 
through scientific extrapolation of the laboratory test results on an undefined system 
(Shiohara, 2001). These problems can be solved using artificial intelligence (AI) based 
machine learning algorithms which are mathematical tools that can detect patterns in a 
given dataset and extract such patterns for analysis purposes. 

The complex nature of the theoretical studies in this domain drives the use of some 
simplified techniques for practical designs. However, only the deformed shape is 
considered in the first vibration mode of this method (Quasi-static). The application of 
this method is only restricted to the determination of the flexural response of simple 
structures like beams and slabs due to its over-simplification (Reddy, 1997). 
Furthermore, the use of this method to analyse a structure can only provide the history 
of the structures’ maximum displacement time at the critical point without providing 
any information about the stress distribution in the other parts of the structure (Saatci 
and Vecchio, 2009). As such, it has been the view of many scholars that, for high 
impulsive loads, the maximum shear force prediction at the supports using the 
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simplified techniques may produce inaccurate results (Hart-Smith, 1998; Mangalathu 
and Jeon, 2018; van Wees and Peters, 1995). 

Advanced mathematical models, such as machine learning (ML) approaches, can be 
used to significantly resolve the problems of the simplified methods in this domain and 
facilitate the theoretical study of the detailed structural responses. With this, it will be 
possible to critically examine failure modes & stiffness deterioration; it can also enable 
the determination of the time history of stresses and strains in different regions of an 
element. Despite the capability of ML models to analyse structures with varying 
geometries and load case dynamics, scholars are still striving towards building the ML 
models of the dynamic response of RC, especially the shear mechanism of RC (Ben 
Chaabene et al., 2020). Meanwhile, ML models can serve as alternative tools to the 
experimental studies (which are more costly) of the impacts of different parameters, 
such as concrete strength, different geometries, and boundary conditions, as well as 
placement and amount of reinforcement on the shear strength (Vs) response of RC 
beams. The performance of such models can serve as a guide for the development of 
simplified methods and design guidelines for practical design purposes. 

1.2 Statement of Problem 

The RC beam shear strength resistance is considered as critical shear element in the RC 
beam what it is defined over the literature as a challenging issue in the structural and 
architectural engineering (Mansouri et al., 2021). It is yet an interesting subject in the 
academic domain to be studied and better understood its phenomenal (Hassan and 
Elmorsy, 2021). As a matter of fact, RC beam shear behavior is totally stochastic and 
not easily can be comprehended owing to the influence of several parameters including 
the dimensional, and concrete properties, which define the whole system as 
interdependency and complicated issues (Zhao et al., 2021). Over the literature, several 
EFs have been introduced to solve the shear strength problem. However, those EFs 
have shown several limitations on solving this complex engineering problem such as 
the shortcoming on the understanding the shear behavior due to the variance of the 
concrete properties, beam dimensions, loading types and direction. Hence, this problem 
has brought a serious attention for the structural engineers and designers to find better 
and reliable solution for shear strength determination. 

Empirical or semi-empirical approaches and code guidelines are mostly used these 
days to predict Vs due to the complex nature of SF in RC beams. Hence, these 
approaches are not capable of mimicking or providing the physical explanation of the 
SF mechanism encountered in practice; therefore, they are only used in testing the 
regimes they were derived from. Considering these limitations, this study proposed a 
more advanced technology that can suit any type of concrete, reinforcement, and 
geometry for better explanation and simulation of the shear pattern of RC beams. The 
suitability of the proposed method in the quantification of the Vs of RC beams using 
different parameters was also evaluated in this work. 



© C
OPYRIG

HT U
PM

4 

 

With the great development of modern computer aid and computational models, 
computational science and engineering have accomplished a massive success in the 
structural engineering. AI models have profound application in structural engineering 
owing to the ability to provide remarkable solutions (Flood and Kartam, 1994; Ly et 
al., 2020; Solhmirzaei et al., 2020). AI models can provide solutions to problems 
associated with high stochasticity, non-linearity, and non-stationarity. They can be 
used to map incomplete system data into a description state of the system (Khalaf et 
al., 2021). In structural engineering, incomplete and unorganized datasets are 
interpreted and recognized for the formulation of problems. One common example is 
the detection of damage in a structure with numerous components via the collection of 
data at different locations on the structure (Avci et al., 2021; Figueiredo et al., 2011). 
This is considered an inverse problem and requires that a state should be determined 
from the observed system behaviour (Ben Chaabene et al., 2020). The problems are 
first analyzed before finding the solution that will aid in achieving the desired system 
behavior while those that will not improve performance are filtered out (Solhmirzaei et 
al., 2020). AI models can be used to map the behavior of a given system to a space of 
system attributes that can guarantee the expected behavior. Hence, it is required that 
system engineers be able to predict the behavior of the complex systems based on the 
known system configuration and the external loads that the system is subjected to. This 
implies a problem of mapping the cause to effect, this is achievable using AI models.  

To the best knowledge of the current thesis, the feasibility of newly explored machine 
learning model called random forest (RF) was tested to predict the Vs of reinforced 
concrete beams. The validation of the proposed model was conducted in comparison 
with support vector machine (SVM) and EFs. A deep analysis and prediction accuracy 
comparison were performed. 

1.3 Research Significant and Motivation 

The shear forces always behave in the form of combination with other types of loads 
such as flexure, axial load and sometimes torsion, further complicating the problem. 
Therefore, precise determination of shear capacity (SC) is paramount since SF is 
catastrophic and could occur without warning. The existence of the uncertainty, 
nonlinearity, and nonstationary characteristics in the engineering structural problems, 
have necessitated the analysis of nonlinear systems with stochastic parameters, input, 
and boundary conditions. Stochastic methodologies present a rational basis for system 
analysis and sustainable design. Consequently, the advancement on the utilization of 
theoretical research has been an essential motivation toward simulating the stochastic 
behavior of complex system, prediction, and the nonlinear dynamic phenomena. 
Implementing and adopting new theoretical methodologies can offer a robust and 
reliable tool for diverse engineering applications. 
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Although the shear design of a RC beam is considered a straightforward process, its 
accurate prediction is quite difficult unlike flexural strength; hence, it is yet to be 
perfectly understood (Michael P Collins et al., 2008; Fenwick and Paulay, 1968) by 
engineers as they are most times unable to justify the results of their designs and 
cannot explain what such results represent. Shear design is a complicated 2D problem 
that differs significantly from flexural design as it deals with the response of the web 
region of beams over multiple sections while flexural design deals with the analysis of 
just one or a few numbers of critical sections of the beam. SF can occur suddenly 
without warning, unlike flexural failure which develops gradually. This is more 
significant for RC beams that contain little or no shear reinforcement where the 
chances of a brittle failure mechanism are high (Kuo et al., 2010). 

The importance of shear can best be demonstrated by the 1955 event at the Wilkins Air 
Force Warehouse where there was a collapse of the rigid frame section (Anderson, 
1957). More insights on the failure modes and crack patterns of three RC beams with 
different levels of shear reinforcement are provided in Figure 1.1. The first two beams 
displayed in Figs. 1.1a and b exhibited only a small level of ductility before their 
sudden and brittle failure. On the other hand, the beam displayed in Fig. 1.1(c) 
exhibited a ductile failure mode due to the yielding of the tension steel (flexural 
failure). Hence, flexural failure can be considered a favourable failure mode (should a 
beam fail at all) while SF must be prevented. 

 
 
Figure 1.1: (a) Shear failure in a reinforced concrete beam containing no shear 
reinforcement; (b) shear failure in a reinforced concrete beam with improper 
shear detailing; and (c) typical flexural failure. Note the large residual deflection 
sustained by the beam shown at the bottom (Suryanto et al., 2016) 
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1.4 Research Questions 

i. What is the capacity of exploring new machine learning model called 
Random Forest (RF) for predicting the shear strength (Vs) of reinformed 
concrete beam? 

ii. What is the influence of the geometric and concrete properties parameters 
on the Vs prediction? 

iii. What is the prediction accuracy of the proposed model against the 
support vector machine (SVM) and several well-established EFs? 

1.5 Research Aim and Objectives 

The current research aims to present a statistical evaluation of a machine learning 
model as shear strength prediction on reinforced concrete beam using two algorithms 
SVM and RF models using 349 data set. 

In order to obtain the aim of the thesis, the following objectives could be stated to: 

i. To propose a new computer aided model called Random Forest (RF) to 
predict shear strength of reinforced concrete beams simulation. 

ii. To investigate different input combinations that include different associated 
parameters of concrete properties and beam geometry based on correlation 
statistical analysis. 

iii. To validate the proposed model against support vector machine (SVM) to 
several well-established EFs called from the literature. 

1.6 Research Scope and Limitation  

The random forest (RF) technique, one of several ML algorithms, offers numerous 
benefits over other models and is often used to resolve issues in structural engineering. 
Furthermore, because only two hyperparameters need to be modified, RF is quite 
simple to implement. In classification and regression issues, the random forest model 
(RF) is often employed; it builds a number of random trees and depends on the 
bootstrapping technique. In regression tasks, the RF's responsibilities include breaking 
up the input variables into smaller sections and calculating the difference between the 
actual and projected values. Each portion's sum of squared errors (SSE) is calculated, 
and the best part is chosen based on the lowest SSE. The samples are picked at random 
during the training process, and those that were not chosen are referred to as out-of-bag 
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samples. These samples are used to determine the most important variable based on 
how accurately the output is predicted. 

A supervised technique for determining the input-output connection while developing 
predictive models is the support vector machine (SVM). The SVM's kernel function, 
lack of local minima as a result of the learning process, and control mechanism using 
arranged support vectors and margin value are its key peculiarities. Using a nonlinear 
kernel function, the input variables for SVM are converted into a high-dimensional 
space. This transformation enables the algorithm to choose the ideal hyperplane ((  = 

 =1  ( ))) for separating the data set. SVM can now handle both linear 
and nonlinear functions thanks to this functionality. When compared to another 
algorithm, such as ANN, the SVM model has shown its capacity to reach the ideal 
point in the learning process. The SVM model does have certain limitations when 
dealing with huge data sets; these limitations relate to the need for memory and the 
choice of kernel functions. SVM was first suggested by for use in classification 
problems. But the addition of the - insensitive loss function by increased the SVM's 
usefulness to regression problems. 

Therefore, the scope of the current thesis is to applied the two indicated algorithms 
random forest (RF) and support vector machine (SVM) to predict the concrete shear 
strength for different concrete types and conditions.  

The limitation of the current research mainly resulting from mathematical relationships 
between RC shear strength and the influencing variables (Mathey and Watstein, 1963). 
Also, the nonlinear relationship of the shear strength with the number of influencing 
variables makes the determination of the parameters of these models difficult. 
Furthermore, the lack of sufficient experimental data and the presence of missing 
variables are among the factors that limit the use of empirical or semi-empirical models 
in the design of the code provisions (Abuodeh et al., 2020; Song et al., 2010). This 
makes it possible to get different prediction results from different models. Hence, shear 
strength prediction of RC beams is a recurring task that is yet to be addressed. 

1.7 Expected Contribution 

The current study expected contribution is to find a robust and reliable emerging 
technology based on computer aid models to simulate the beam shear strength. Based 
on the use of the open source of experimental dataset, the proposed methodology was 
initiated and inspected for its reliability. In conclusion, the finding of the thesis is 
expecting to come up with handful tool that can help structural engineers for beam 
design and optimal structure sustainability. 
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1.8 Thesis Outlines 

The thesis is established consisted five main chapters. First chapter is exhibited the 
research background on the studied shear strength of RC beam, problem of statement, 
limitation and scope of the study, research significant and motivation and research 
objective. The second chapter is revealed the introduced related EFs established for the 
shear strength calculation in addition to the adopted machine learning based models 
related studies. Based on the reported literature review, several aspects were assessed 
and evaluated. Research gap identification was reported as well. Chapter 3 is reported 
the methodological and data explanation. Chapter 4 is described the application results, 
analysis and discussion. Finally, chapter 5 is stated the research conclusion, limitation 
of the current study and possible future research. 
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