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The TrafficRiskClassifier model introduced in this study adopts an innovative approach that
incorporates migration learning, image classification, and self-supervised learning, aiming
to significantly improve the accuracy and efficiency of traffic accident risk analysis.
Compared with traditional traffic safety analysis techniques, this model focuses on utiliz-
ing contextual information and situational data of traffic accidents to achieve a higher level
of risk classification accuracy. The core of this approach is to deeply mine and analyze the
detailed information in the accident environment, to provide more scientific and effective
support for traffic accident risk prevention and response. Initially, by integrating migration
learning with image classification techniques, the model proficiently extracts pivotal fea-
tures from intricate traffic scenarios and formulates initial assessments of accident risks.
Subsequently, self-supervised learning is incorporated in this study, augmenting the mod-
el’s capability to comprehend and categorize accident imagery. The TrafficRiskClassifier
model exhibits a generalization ability of 91.82%, 85.16%, and 80.92% on individual classi-
fication tasks, respectively, signifying its robust learning capacity and proficiency in
managing unseen data. Furthermore, the TrafficRiskClassifier model delineates a functional
nexus between accident risk and variables such as weather, road conditions, and personal
factors, employing a polynomial regression approach. This methodology not only amplifies
the predictive precision of the model but also renders it versatile across diverse scenarios.
Through the analysis of various polynomial functions, the model achieves enhanced accu-
racy in classifying disparate risk levels. The outcomes demonstrate that the
TrafficRiskClassifier model can efficaciously amalgamate contextual information within
traffic scenarios, thereby achieving more precise classification of traffic accident risks,
and consequently serving as an invaluable instrument for urban traffic safety management.
� 2024 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Globally, traffic accidents have escalated into a significant public health issue, resulting in an extensive number of fatal-
ities and injuries annually. As per the Global Status Report on Road Safety 2018 by the World Health Organization (WHO),
approximately 1.35 million individuals perish in road accidents worldwide annually, with traffic-related injuries emerging as
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the primary cause of mortality among individuals aged 5 to 29 years (World Health Organization, 2018). Consequently, the
prevention and diminution of traffic accidents on an international scale represent an imperative necessity.

During our investigation into the effects of urbanization on traffic accidents, it was discerned that human factors are cru-
cial in influencing traffic accident occurrences in numerous countries and regions. Data collected form World Health Orga-
nization (WHO) indicate that approximately 10% of road traffic deaths are related to drink driving; this corresponds to self-
reported rates of 16–21% of people admitting to drink driving in a survey conducted by the European Survey Research Asso-
ciation (ESRA). The same self-reports reveal that nearly 50% of drivers across 48 countries report exceeding the speed limit
outside built-up areas (World Health Organization, 2023). Speeding, drink-driving, driver fatigue, distracted driving, and
non-use of safety belts, child restraints and helmets are among the key behaviours contributing to road injury and death
(World Health Organization, 2021). Vulnerable road users such as pedestrians, cyclists, moped riders, and motorcyclists
are particularly at high risk of severe or fatal injury when motor vehicles collide with them because of their lack of protection
(Economic and Social Commission for Asia and the Pacific, 2020). Specifically in Morocco, human factors are identified as one
of the primary reasons behind the nation’s roads ranking among the most perilous globally. A survey in Sudan revealed that
individual factors contributed to 60.6% of traffic accidents, with suboptimal road conditions (45.5%), animal-related factors
(5.6%), and vehicle scarcity (1.4%) following suit (Deme, 2019). The Czech In-depth Accident Study (CzIDAS) indicates that
distraction constitutes a factor in 40% of the analyzed accidents. Distractions may originate from diverse causes, encompass-
ing attention overload (35%), distracted driving (19%), and monotonous driving (13%) (Bucsuházy et al., 2020). Furthermore,
the likelihood of road traffic accidents is directly correlated with environmental factors such as rainfall, extreme low tem-
peratures, fog, and hot weather conditions. The incident rates of accidents are 34%, 25%, 21%, and 20% respectively, attribu-
table to fog, rain, temperature variances, and additional weather-related factors (Hammad et al., 2019). From a geographical
standpoint, the proportion of fatal traffic collisions is notably higher in rural regions (66%) as compared to urban areas (34%).
Accidents predominantly occur on straight roads, succeeded by curved roads, intersections, and Y/T intersections, which wit-
ness the highest rates of traffic fatalities. The minimal incidence of traffic fatalities was observed at roundabouts and over-
passes (Darma et al., 2017). This paragraph accentuates the impact of human factors, environmental conditions, and
geographical location on the rates of traffic accidents, factors that are especially critical in the context of urbanization.
Urbanization directly influences road use patterns and traffic flow, thereby significantly impacting traffic safety.

However, challenges remain in the realm of traffic safety research. The issue of data lack in traffic accident studies is a
persistent concern (Fiorentini & Losa, 2020; Parsa et al., 2019; Zhang et al., 2023), as is the need for greater interpretability
and transparency in traffic safety risk analysis (Adadi & Berrada, 2018; Coeckelbergh, 2020; Gilpin et al., 2019). Additionally,
while much research has focused on local attributes of traffic accidents, there is a growing recognition of the importance of
incorporating contextual information from the entire scene for a more explicit and classification (Hu et al., 2023; Kumar
et al., 2020; Panda et al., 2022).

The TrafficRiskClassifier model introduced in this study adopts an innovative approach that incorporates migration learn-
ing, image classification, and self-supervised learning, aiming to significantly improve the accuracy and efficiency of traffic
accident risk analysis. This model successfully addresses the shortcomings of traditional traffic risk analysis methods by
combining multiple hybrids learning strategies such as migration learning, image classification and self-supervised learning.
Compared with previous traffic safety analysis techniques, this model especially emphasizes the use of contextual informa-
tion and situational data of traffic accidents to improve the accuracy of risk classification. Its core advantage lies in the in-
depth mining and analysis of detailed information in the accident context, which provides a more scientific and effective
method for preventing and responding to traffic accident risks. The incorporation of transfer learning and image classifica-
tion techniques enables the TrafficRiskClassifier to extract key features from intricate traffic scenarios, facilitating an initial
risk assessment. This assessment is further refined using self-supervised learning, which allows the model to better catego-
rize and understand accident imagery. Moreover, the application of polynomial regression in this model allows for an intri-
cate examination of the relationship between accident risk and various factors such as weather conditions, road quality, and
personal attributes. This approach not only enhances the predictive accuracy of the TrafficRiskClassifier but also affords it the
versatility to adapt to diverse scenarios. Through comparative analysis of various polynomial functions, the model achieves a
remarkable level of accuracy in classifying different levels of risk.

Next, Chapter 2 is a literature review that reviews previous studies in the relevant field. Chapter 3 describes in detail the
research methodology used in this study. Chapter 4 presents the results of the study and its discussion. Chapter 5 summa-
rizes the main findings of the study while pointing out limitations and directions for improvement in future work.
2. Literature review

Within the scholarly discourse on traffic accident severity classification, accidents are typically categorized into three dis-
tinct types: ‘‘fatal”, ‘‘serious”, and ‘‘minor”. Fatal crashes, defined as accidents resulting in the death of one or more individ-
uals, have a profound global impact. Research underscores this, noting that on average, 1.35 million people perish annually
in traffic accidents (Ahmed et al., 2023; Chand et al., 2021). Serious accidents refer to incidents that culminate in substantial
injuries, albeit non-fatal in nature. The severity of these accidents is typically assessed based on the quantity of individuals
injured and the extent of direct property damage incurred (Jianfeng et al., 2019). Minor accidents are characterized by less
severe injuries, and while the direct discourse on such incidents is limited, ancillary research implicitly addresses these
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minor injuries through the analysis of various accident types and their influence on overall accident severity (Z. Yang et al.,
2022b). These classifications offer a foundational framework for comprehending the diverse severities of injuries sustained
in traffic accidents.

An review of the literature pertaining to factors influencing traffic accidents reveals that meteorological conditions, road-
way conditions, and individual factors are integral in determining the frequency and severity of traffic accidents. Meteoro-
logical conditions exert a substantial impact on traffic accidents, with varying weather conditions influencing different types
of accidents in distinct manners, for instance, snowy conditions predominantly affect cycling accidents, whereas daylight
glare significantly elevates the risk of multi-vehicle collisions on highways (Becker et al., 2022; Drosu et al., 2020;
Edwards, 1998; Lio et al., 2019; Xing et al., 2019). Roadway conditions, encompassing aspects such as traffic congestion
and the state of the pavement, play a pivotal role in the incidence of accidents. Research has elucidated an inverse correlation
between traffic congestion and the frequency of accidents, while the condition of the road surface is also found to signifi-
cantly influence the occurrence of accidents (Ahmed et al., 2023; Mkwata & Chong, 2022; Retallack & Ostendorf, 2019). Indi-
vidual factors, particularly those encompassing driver error and fatigue, exert a profound impact on the incidence of road
accidents. While existing research has delved into the relationship between personal factors and traffic accidents, a notable
research gap remains regarding the precise assessment of the impact of personal factors, particularly in relation to drivers’
psychological and physiological states on accidents (Gopalakrishnan, 2012; Paramasivan et al., 2022; Wang et al., 2014).

Conventional traffic accident data analysis methodologies are utilized in road safety research, encompassing a broad
spectrum of aspects ranging from road condition analysis to driving behaviour assessment and the development of collision
warning systems. Plain Bayesian classifiers have gained prominence in applications such as pavement detection and the
safety assessment of driving behaviour (Tijani et al., 2022; F.-J. Yang, 2018; L. Yang et al., 2022a). Logistic regression has been
used to analyse accident severity and driving behaviour (Ashqar et al., 2021; Eboli et al., 2020; Otte et al., 2018), whereas
linear regression has played an important role in studies on the relationship between economic dynamics, road design
improvements and traffic safety (Aldala’in et al., 2020; Hauer, 2015; Ranadive et al., 2023). KNN algorithms have shown their
clustering and classification capabilities in accident prediction and case retrieval (X. Dong & Lu, 2019; Hatti, 2022). K-mean
clustering and auto coders have been used to extract hidden information from traffic accident data and to performing acci-
dent hotspot identification (Anderson, 2009; Priyanka & Jayakarthik, 2020, 2020; Puspitasari et al., 2020). Transfer learning
and transformer techniques have shown potential in traffic accident risk prediction and detection (Hajri & Fradi, 2022; Kang
et al., 2022; Liu et al., 2023; Saleh et al., 2022; Sohail et al., 2023; Tamagusko et al., 2022).

Existing research in traffic accident analysis focuses on three main areas: traffic accident prediction, real-time traffic
behavior analysis, and driver fatigue and distraction detection. Research in traffic accident prediction is mainly aimed at
understanding the factors that lead to accidents and applying various machine learning models to make predictions, espe-
cially on highways and arterial roads (Ahmed et al., 2023; Silva et al., 2020; Z. Yang et al., 2022b). In terms of real-time traffic
behavior analysis, the application of advanced technologies is not limited to linking vehicle data to assess traffic safety in real
time and analyzing the driving behavior of city bus drivers (Mussah & Adu-Gyamfi, 2022; Sohail et al., 2023). Further
research extends to real-time accident prediction and real-time conflict prediction models that use real-time data to predict
scenarios and behavioral patterns that may lead to accidents. For example, Formosa et al. demonstrated the significant pre-
dictive performance of deep neural networks in identifying high-risk situations by predicting potential traffic conflicts
through deep learning (Formosa et al., 2020). Zhang et al. developed a real-time model for predicting pedestrian conflicts
at signalized intersections using machine learning with the aim of improving traffic management (Zhang and Abdel-Aty,
2022). Katrakazas et al. proposed a method for detecting conflict-prone traffic conditions in real-time to enhance the predic-
tive capability of collision prevention (Katrakazas et al., 2017). Hossain et al. provided a review of real-time crash prediction
models, discussing the design paths and requisites for these models, emphasizing the enhancement of predictive capabilities
(Hossain et al., 2019). Finally, Zheng and Sayed introduced a new method for predicting real-time crash risk at signalized
intersections using traffic conflict data, highlighting the importance of transferability of real-time crash pre-diction models
(Zheng and Sayed, 2020). The Theofilatos et al. study compares for the first time the performance of ML and DL models in
predicting real-time traffic and weather da-ta combined with historical crash data on the Attica Toll Road in Greece. It is
emphasized that the DL model outperforms the other models in terms of performance metrics such as accuracy, sensitivity,
specificity, and area under the curve (AUC), demonstrating the potential and advantages of the DL model in dealing with such
problems (Theofilatos et al., 2019). Also, Orsini et al. used the Real-Time Conflict Prediction Model (RTConfPM), which pre-
dicts motor vehicle tailgating conflicts based on time-to-collision (TTC) values recorded by radar sensors, and compared the
performance of multiple classifiers, including KNN, NB, DA, DT, and SVM. It is emphasized that KNN and SVM significantly
outperform the other models in terms of recall metrics, illustrating the effectiveness and application potential of different ML
classifiers in real-time conflict prediction (Orsini et al., 2021). The importance of these findings is that they provide the first
performance comparison between machine learning and deep learning approaches in real-time collision/conflict prediction
modeling. On the other hand, research in the field of driver fatigue and distraction detection focuses on the development of
effective detection methods and systems, including the use of machine learning techniques for the identification of (B.-T.
Dong et al., 2022; Kashevnik et al., 2021; Koay et al., 2022). These studies reveal the multifaceted and complex nature of road
safety research, while identifying limitations of current research and providing perspectives for future research directions.

Research in contextual information analysis of traffic accidents focuses on understanding personality and behavioural
traits in traffic accidents, utilising nationwide traffic accident datasets, and applying advanced technologies such as the
Internet of Vehicles (IoV) and Artificial Intelligence (AI) for accident prediction and prevention. Research has shown that dri-
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ver personality and behavioural patterns have a significant impact on traffic safety (Aswad et al., 2015; Legree et al., 2003;
Moosavi et al., 2019; Sümer, 2003; Zhu et al., 2017). In addition, the use of metadata and meta-features is becoming increas-
ingly important in crash analysis, as these techniques can improve the accuracy and efficiency of crash detection, understand
the relationship between driving behaviour and crash risk, and perform long-term trend analysis (Af Wåhlberg et al., 2017;
Barraclough et al., 2016; Selmoune et al., 2019; Yong-Kul Ki et al., 2006). Collectively, these studies underscore the signifi-
cance of comprehending contextual factors in traffic accidents and exemplify the implementation of sophisticated tech-
niques such as artificial intelligence, machine learning, and contextaware systems in exhaustive traffic accident analysis.
Finally, while current research methodologies have made significant strides in traffic safety analysis, there is an ongoing
need to refine these approaches.

3. Research methodology

The primary objective of this research is to develop a sophisticated traffic accident risk classification model, termed Traf-
ficRiskClassifier. This model is dedicated to extracting salient features influencing traffic accidents and employs a combina-
tion of self-supervised learning and deep learning within a transfer learning framework. The fundamental aim of this study is
to categorize the risk level of traffic accidents through the TrafficRiskClassifier model, integrating the analysis of both visual
data and textual reports related to traffic incidents.

3.1. Basic models introduction

In this section, the concepts underlying the TrafficRiskClassifier model are introduced, including transfer learning, self-
supervised learning, multimodal data fusion, and self-attention mechanisms. These concepts as Table 1 are key to under-
standing and implementing the TrafficRiskClassifier model.

3.2. Research methodology

In this section, the research process of the TrafficRiskClassifier model is described in detail, as shown in Fig. 1. The model
construction is divided into several key steps, including data preprocessing, feature extraction, model architecture design,
training and optimization.

3.3. Data collection and preprocess

Data collection is the first step in building the TrafficRiskClassifier model, which involves obtaining multimodal data
about traffic accidents from multiple sources. The following as Fig. 2 is the detailed data collection process.

3.4. Feature extraction

Feature extraction is a key step in building the TrafficRiskClassifier model, which involves extracting useful information
from multimodal data. The following is the detailed process of visual and textual feature extraction:

3.4.1. Visual feature extraction

� Using Convolutional Neural Networks: It automatically extracts features from an image using convolutional layers, elim-
inating the need to encode these features manually (Al-Saffar et al., 2017).

� Pre-processing: Image data is usually pre-processed before feature extraction, including resizing to 224*224 and normal-
ising to 64 pixels.

� Convolutional Layers: Each convolutional layer uses a set of learnable filters to capture specific patterns in the image.
� Pooling Layer: After the convolutional layers, a pooling layer is used to reduce the spatial dimensionality of the feature
map, which helps to reduce the amount of computation and increase the efficiency of feature extraction.
Table 1
Basic concept of technology.

Technique Concepts

Transfer Learning (Weiss et al.,
2016)

In the case of traffic accident risk classification, using pre-trained deep learning models and adapting them to the
analysis of traffic accident data.

Self-Supervised Learning (Jaiswal
et al., 2020)

This is a form of unsupervised learning in which the model uses part of its input data to predict the rest. In traffic
accident risk classification, this helps the model to learn from unlabeled traffic accident data.

Multimodal Data Fusion
(Gao et al., 2020)

This involves combining different types of data, such as images and text, to gain a more comprehensive
understanding of the accident scene.

4



Fig. 1. Flow chart of TrafficRiskClassifier.

Fig. 2. Data collection and preprocess.
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� Feature Vectors: After a series of convolution and pooling layers, the image is converted into one-dimensional feature
vectors that capture key information about the image for subsequent classification tasks.

3.4.2. Text feature extraction

� Feature fusion: Combining manually filtered text features with image feature vectors as Table 2 so that the model can
take both types of information into account.

� Feature encoding: The text classification results are hot-coded as Table 3 and fed into the classification model together
with the image features.

3.5. Model architecture design

The model design proposed in this study, shown in Fig. 3, is overall divided into three key parts to deal with the specific
problem of traffic accident classification. First, the model is based on the VGG16 architecture, which is widely used in image
classification algorithms, for basic training of images from different traffic accident scenarios. This step exploits the powerful
feature extraction capabilities of VGG16 for visual tasks and specializes the model through a finetuning process to adapt it to
the specific needs of traffic accident classification.

The second part involves a self-supervised learning technique that generates new image data by learning the original data
collected in the study. Subsequently, a migration learning approach is used to perform further learning based on the weights,
parameters, and features of the trained base model to enhance the model’s ability to understand and classify the new image
data.

The third part focuses on the fusion of text data extracted from traffic accident reports and establishes the functional
equation between the contextual information of traffic accidents and different traffic categories and factors by constructing
a polynomial regression model. This process not only extracts textual features, but also trains the model to accurately por-
tray the complex relationships between different traffic accident categories.

The final stage is multimodal feature fusion, which combines the visual features extracted through the VGG16model with
the textual features obtained through the polynomial regression method. This merging process is realized through a concate-
nation operation that generates a feature representation containing both visual and textual information. After the multi-
modal feature fusion, the classifier’s task is to make the final classification decision based on these fused features to
achieve accurate classification and prediction of traffic accident risks. With such a detailed and systematic methodology,
the model is able to effectively combine features from different data sources, providing a new, multidimensional solution
for traffic accident classification.
3.6. Train and optimization

Following the model architecture design in this study, the subsequent step focuses on the training and optimization of the
developed model. This phase is crucial as it involves finetuning the model parameters to ensure optimal performance in clas-
sifying traffic accidents.
3.6.1. Training procedure
Table 2
Define variable.

Items Features Label

Individual Drinking 1
Normal 2
Operating 3
Talking 4
Texting 5

Road Dry 1
Ice 2
Snowy 3
Wet 4

Weather Cloudy 1
Overcast 2
Rainy 3
Snowy 4
Sunny 5
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Table 3
Severity level.

Items Levels Label

Severity Fatal
Serious
Light

1
2
3

Fig. 3. An overview of the TrafficRiskClassifier.
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� Data Preparation: The data set is divided into training, validation, and testing sets. The training set is used for learning the
model parameters, the validation set for tuning the hyperparameters, and the testing set for evaluating the model’s
performance.

� Model Training: The VGG16 part of the model, pre-trained on a large image dataset, undergoes finetuning with the traffic
accident image data. For the textual data, the polynomial regression method extracts textual features, which are then
used to train the model to understand the relationship between text data and traffic accident categories.

� Fusion and Classifier Training: The multimodal feature fusion combines visual and textual features. The concatenated fea-
tures are then fed into a series of fully connected layers.
F xð Þ ¼
F severity 1ð Þ
F severity 2ð Þ
F severity 3ð Þ

8><
>: ð1Þ
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F severityð Þ ¼ interceptþ
X

coefficient � featureð Þ ð2Þ
*The value of F(x) is based on the comparison of the size of the three severity function relationships.
3.6.2. Optimization strategies
Hyperparameter Tuning: Hyperparameters such as learning rate, batch size, and the number of epochs is adjusted based

on the performance on the validation set. And regularization techniques like dropout and weight decay are employed to pre-
vent overfitting as Table 4.

Loss Function: Crossentropy loss for classification tasks, is chosen to measure the difference between the predicted and
actual labels. The crossentropy loss function measures the difference between two probability distributions and is used to
measure the difference between the distribution of actual labels and the probability distribution predicted by the model.
Loss ¼
XM

c¼1
yo;clog po;c

� � ð3Þ
* 1. M is the total number of categories. 2. yo;c is an indicator. If the category c is an observation o’s true category, then 1,
otherwise 0. 3. po;c is the probability that observation o is predicted to be of category c by the model.

In order to assess the generalization ability of the model and reduce the risk of overfitting, the study uses 5 k-fold cross-
validation technique, where the dataset is randomly divided into k subsets, and each time, one of the subsets is selected as
the test set and the rest as the training set, and k times of training and testing are carried out to ensure that the assessment
results are stable and reliable. In this way, the performance of the model on different data subsets can be assessed, and thus
the model parameters can be optimized.

Optimizer Selection: In terms of choosing an optimizer, this paper employs the Adam optimizer to minimize the loss
function. The key advantage of the Adam optimizer is that it adaptively adjusts the learning rate for each parameter by con-
sidering the second-order moment estimates (variances) of the gradient. This approach is particularly helpful in coping with
the different learning rate requirements that different parameters may have. Adam reduces the bias of the model in the early
stages of training by correcting the first and second-order moment estimates, allowing the algorithm to perform parameter
updates more efficiently at the beginning of training. These properties make Adam a popular choice for optimizing the
parameters of neural networks, as it typically converges faster and is less sensitive to the choice of initial learning rate.

Compute the first-order moment estimate of the gradient:
mt ¼ b1 �mt�1 þ 1� b1ð Þ � gt ð4Þ
Compute the second-order moment estimate of the gradient:
v t ¼ b2 � v t�1 þ 1� b2ð Þ � g2
t ð5Þ
Corrections to the estimates of first-order moments and second-order moments:
bmt ¼ mt

1� bt
1

ð6Þ
bv t ¼ v t

1� bt
2

ð7Þ
Updating parameters:
htþ1 ¼ ht � lffiffiffiffiffiffibv t

p
þ e

� bmt ð8Þ
* 1. gt is the gradient at time step t; 2.mt is the first order moment estimate of the gradient; 3. v t is the second order moment
estimate of the gradient; 4. b1 and b2 is the decay rate; 5. l is the learning rate; 6. e is a very small number in case the denom-
inator is zero; 7. ht is the learning rate at time step t of the parameter.
Table 4
Hyperparameter tuning setting.

Hyperparameter Setting

Learning Rate Start with 0.0001, use learning rate decay strategy to reduce to 0.1 every 20 epochs.
Batch Size Select 32 as the batch size.
Training Rounds Set to 100 epochs and use the Early Stop strategy.
Dropout Use a dropout rate of 0.5 for fully connected layers close to the output layer.
Weight Decay Set to 1e-4 to avoid overfitting.

8
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3.7. Evaluation Metrics

Metrics such as accuracy, and F1-score are used to evaluate the model’s performance on the validation and test sets. In the
evaluation of models, ‘‘Adaptability” and ‘‘Generalizability” are two key concepts that describe the ability of a model to be
applied in different environments and to perform on unseen data, respectively.

Accuracy is the number of correct predictions as a proportion of the total number of predictions and is applicable to
assessing overall model performance.
Accuracy ¼ TruePositives TPð Þ þ TrueNegatives TNð Þ
TotalPredictions

ð9Þ
The F1 score is the reconciled mean of precision and recall, and is a composite of precision and recall, particularly appli-
cable to those cases where the categories are unbalanced.
F1Score ¼ 2 � Precision� Recall
Precisionþ Recall

ð10Þ
Mean Squared Error (MSE):
MSE ¼ 1
m

Xm
i¼1

yi � yið Þ2 ð11Þ
Root Mean Squared Error (RMSE):
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

yi � yið Þ2
vuut ð12Þ
Mean Absolute Error (MAE):
MAE ¼ 1
m

Xm
i¼1

yi � yið Þj j ð13Þ
Coefficient of Determination (R-squared):
R2 ¼ 1�
P

i yi � yið Þ2P
i yi � yið Þ2

ð14Þ
4. Results and discussion

The purpose of this study is to improve the accuracy of traffic accident classification by analyzing contextual and situa-
tional data from current traffic. In the research methodology, the study chose personal factors, roadway factors, and weather
factors as the objects of study, and based on traffic accident reports as well as videos in the city, the study delves into their
relationship with the types of risk of traffic accidents and classifies the traffic accident scenarios. The following are the exper-
imental results of the study’s proposed methodology.

In the proposed TrafficRiskClassifier model of the study, the model is trained and evaluated for different influencing fac-
tors using the separation model approach. In Fig. 4a, the model over 50 training cycles shows that both the training loss and
the validation loss gradually decrease with increasing cycles. Ideally, both should decrease and converge, indicating that the
model is learning and able to generalize well to unseen data. Fig. 4b shows the increase in accuracy over the training period.
We expect the accuracy to increase over time and that the validation accuracy should closely follow the training accuracy,
indicating that the model is not overfitting the training data. The comparison of training and validation losses in Fig. 4c
shows a clear difference. The training loss continues to decrease while the validation loss rises, indicating that the model
is overfitting the training data and not generalizing well to the validation data. The training and validation accuracy com-
parison in Fig. 4d presents a similar problem: the training accuracy is high and continues to improve, while the validation
accuracy is low and does not improve significantly, further reinforcing the signs of overfitting. The training and validation
loss comparison in Fig. 4e shows the training loss (blue curve) continues to decrease as the training period increases, which
shows that the model’s fitting effect on the training data is gradually improving. Validation loss (orange curve) drops rapidly
in the first few epochs, then levels off and even rises with slight fluctuations. This indicates that after an initial improvement
in the model’s performance on unseen validation data, it begins to stagnate or even slightly overfit. Finally, the Fig. 4f has
both training and validation accuracies improving over time, but there is a gap between the two, suggesting some degree
of overfitting of the model. In general, the TrafficRiskClassifier model shows varying degrees of performance and generaliza-
tion ability under different experimental settings. In some cases, the model performed well on the training data and poorly
on the validation data, clearly indicating overfitting.
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Fig. 4. Loss and accuracy of different factors.
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Fig. 5a (Categorization of Personal Behavior) shows the PR curves for the categories ‘‘Normal”, ‘‘Texting”, ‘‘Drinking”, ‘‘
Talking” and ‘‘Eating”. It can be observed that the ‘‘Normal” category has a very high precision rate when the recall is high,
indicating that the model performs well in normal behavior classification. The curves for the other categories have high pre-
cision in regions with low recall, but the precision drops rapidly as the recall increases. Fig. 5b (Weather conditions catego-
10



Fig. 5. Precision-Recall line of different factors.
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rization) shows the P-ratio of the four categories ‘‘Dry”, ‘‘Ice”, ‘‘Snow”, and ‘‘Wet ” PR curves for the four categories. In this
figure, the PR curve for the category ‘‘Dry” performs the best, showing high precision and high recall. The PR curves for the
other categories have lower precision at high recall, but still maintain some degree of precision. Fig. 5c (Road Condition Clas-
sification) reflects the results of the ‘‘Clear”, ‘‘Overcast”, ‘‘Rainy”, ‘‘ Snowy” and ‘‘Foggy”. The precision rate of the ‘‘Clear” cat-
egory stays high when the recall rate is high, while the precision rates of the other categories drop significantly when the
recall rate increases. In review, the TrafficRiskClassifier model performs well in identifying ‘‘Normal” behaviors in personal
behavior classification, while the precision rate of identifying other behaviors decreases at high recall rates. In weather con-
dition classification, the accuracy of recognizing ‘‘Dry” weather is high, while the accuracy of recognizing other weather con-
ditions decreases with increasing recall. In road condition classification, the model recognizes ‘‘Clear” condition with high
precision and recall, while the precision for other conditions decreases with increasing recall.

In the personal behavior classification task as shown in Table 5, the confusion matrix indicates that the model has high
accuracy in recognizing the five categories ‘‘Drinking”, ‘‘Normal”, ‘‘Operating”, ‘‘Talking” and ‘‘Texting” with high accuracy.
For the ‘‘Drinking” behavior, the model correctly identified 417 cases, and only 38 cases were misclassified, showing high
recognition ability. For the ‘‘Normal” state, the model performed the best, correctly classifying 442 cases and only 27 cases
were misclassified. The categories ‘‘Operating”, ‘‘Talking” and ‘‘Texting” also perform well, with 429, 418 and 401 cases cor-
rectly categorized, respectively. The three categories of ‘‘Talking” and ‘‘Texting” also performed very well, with 429, 418 and
401 correctly categorized respectively. The main trend of misclassification is the tendency to misclassify behaviors as ‘‘Nor-
mal”, which may be due to the prevalence of ‘‘Normal” data or the model’s tendency to be conservative in identifying non-
specific behaviors.

In the road condition categorization task as shown in Table 6, the model shows a high level of confusion in distinguishing
the four categories ‘‘Dry”, ‘‘Ice”, ‘‘Snowy” and ‘‘Wet”. The model shows high classification accuracy in distinguishing the four
categories ‘‘Dry”, ‘‘Ice”, ‘‘Snowy” and ‘‘Wet”. Especially for the categories ‘‘Dry” and ‘‘Snowy”, the model correctly identified
831 and 801 cases, respectively, with very fewmisclassifications. For the categories ‘‘Wet” and ‘‘Ice”, the model also performs
well, correctly classifying 808 and 417 cases. The misclassification cases are fewer and more evenly distributed, showing no
significant bias.

In the weather condition categorization task as shown in Table 7, the models were not able to categorize the weather
conditions in ‘‘Cloudy”, ‘‘Overcast”, ‘‘Rainy”, ‘‘Snowy” and ‘‘Sunny” are also recognized with high accuracy. Among them,
the ‘‘Cloudy” and ‘‘Sunny” states were particularly accurately recognized, with 895 and 589 cases correctly classified, respec-
tively. The model is also quite accurate in recognizing the ‘‘Overcast”, ‘‘Rainy” and ‘‘Snowy” states. The misclassified cases are
more scattered, indicating that the model’s ability to recognize different weather conditions is relatively balanced.

Table 8 shows the performance of traditional approaches on different performance metrics, including single multi-task
models (e.g., VGG16, VGG19, ResNet50, ResNet101, InceptionV3, MobileNet, EfficientNet) and segmentation models (e.g.,
ResNet50), as well as our proposed TrafficRiskClassifier model. In the comparative accuracy analysis, among the traditional
single multi-task models, VGG16 and MobileNet perform better on the individual classification task, with accuracies of
71.88% and 72.81%, respectively. However, these models have lower accuracy on road and weather classification tasks. In
addition, the segmentation model ResNet50 performed well on all tasks, especially on the individual and road classification
tasks with accuracies of 88.62% and 87.06%, respectively. Finally the TrafficRiskClassifier model achieves 92.6% accuracy on
the personal classification task when using the ‘‘Normal” setting and also shows excellent performance on the road and
weather classification.

In terms of computation time, traditional models such as VGG19 and ResNet101 have long computation times, which may
limit their use in real-time applications. However, the TrafficRiskClassifier model has a significantly reduced computation
time in the ‘‘Normal” setting, which increases the usability of the model in real-time or resource-constrained environments.
In terms of model size factor, traditional models such as VGG19 and ResNet101 are large in terms of model size, which
increases the storage and memory requirements. However, the TrafficRiskClassifier model significantly reduces the model
size, which makes it more suitable for mobile devices or embedded systems.

MobileNet and the segmentation model ResNet50 show high adaptability when it comes to achieving adaptability for
small datasets, 77.43% and 86.73%, respectively. The TrafficRiskClassifier model in the study also shows high adaptability
under the ‘‘Normal” setting, which indicates that the model can effectively adapt to different data distributions.

Finally, when confronted with the generalizability of the models, the segmentation model ResNet50 demonstrated 89.91%
generalizability on the individual classification task, while MobileNet also demonstrated high generalizability (78.34%) on
Table 5
Individual Confusion Matrix.

Actual Predict

Drinking Normal Operating Talking Texting

Drinking 417 20 8 6 4
Normal 9 442 4 13 1
Operating 3 16 429 8 0
Talking 8 17 11 418 9
Texting 1 10 0 1 401
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Table 6
Road Confusion Matrix.

Actual Predict

Dry Ice Snowy Wet

Dry 831 4 5 2
Ice 7 417 6 0
Snowy 3 6 801 4
Wet 10 7 3 808

Table 7
Weather Confusion Matrix.

Actual Predict

Cloudy Overcast Rainy Snowy Sunny

Cloudy 895 9 4 6 6
Overcast 1 539 6 9 5
Rainy 9 4 526 16 9
Snowy 12 2 2 543 4
Sunny 6 6 1 7 589

Table 8
Performance values obtained for traditional methods.

Performance Measures Accuracy
(%)

Time
(s)

Size
(MB)

Adaptability
(%)

Generalizability
(%)

Single multi-task model VGG16 Individual 71.88 1175.5 169.7 51.18 66.21
Road 66.94 48.12 71.43
Weather 62.69 26.43 68.67

VGG19 Individual 61.88 1282.7 230.49 48.75 56.43
Road 68.21 24.31 68.73
Weather 63.71 19.43 62.36

ResNet50 Individual 16.25 1086.3 273.87 28.31 15.24
Road 53.44 29.81 52.32
Weather 6.56 19.75 6.78

ResNet101 Individual 54.38 1101.4 492.5 50.93 55.16
Road 7.5 36.37 9.76
Weather 21.24 21.18 7.8

InceptionV3 Individual 69.45 1036.1 254 6825 62.54
Road 62.5 69.06 73.65
Weather 64.06 68.5 71.24

MobileNet Individual 72.81 971.8 39.1 77.43 78.34
Road 9.38 9.66 7.67
Weather 8.44 6.56 7.23

EfficientNet Individual 10.94 1029.1 49.4 46.68 9.56
Road 6.25 51.49 2.76
Weather 7.19 20.99 6.89

Split model VGG16 Individual 20.03 677.1 174.6 19.87 19.26
Road 25.02 873.4 174.5 24.78 25.11
Weather 47.57 1091.2 174.6 45.54 46.45

ResNet50 Individual 88.62 632.52 294.51 86.73 89.91
Road 87.06 864.27 294.5 85.45 78.67
Weather 59.91 1062.2 294.5 57.87 50.82

TrafficRiskClassifier No transfer Individual 52.69 68.83 0.43 51.27 49.26
Road 27.69 63.89 0.43 25.34 29.45
Weather 24.75 82.97 0.44 23.51 27.71

Normal Individual 92.6 389.72 58.17 85.36 91.82
Road 95.26 355.31 58.16 93.72 85.16
Weather 81.62 475.88 58.17 80.17 80.92
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the individual classification task. The proposed TrafficRiskClassifier model shows 91.82% generalization ability on the indi-
vidual classification task under the ‘‘Normal” setting, which indicates that the model has good learning ability and can han-
dle unseen data.

In this study, a 5-fold crossvalidation method was used to evaluate the performance of three different models (Individual,
Road, and Weather) in TrafficRiskClassifier as shown in Table 9. The Individual model showed high stability in the five tests,
with an average accuracy of 89.73%, and the fluctuation of its accuracy ranged from 88.79% to 90.81%, this result shows that
13



Table 9
Performance values obtained for 5 k-fold cross-valida-
tion in TrafficRiskClassifier.

Accuracy Individual Road Weather

1st 88.79% 91.10% 80.69%
2nd 90.81% 91.48% 79.69%
3rd 88.80% 93.80% 85.44%
4th 88.79% 92.90% 82.06%
5th 90.21% 95.55% 82.64%
Average 89.73% 94.93% 82.51%
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the model has good adaptability and generalization ability to different data distributions. Meanwhile, the Road model has
the highest average accuracy of 94.93% among all the models, and exhibits the lowest volatility, with accuracy varying from
91.10% to 95.55%, demonstrating excellent performance and high stability. In contrast, the Weather model has an average
accuracy of 82.51%, which is the lowest of the three models, but the fluctuation in accuracy from 79.69% to 85.44% demon-
strates its improved performance and some generalization ability achieved through the crossvalidation process.

For the traffic accident risk class severity_1 (fatal risk), a polynomial regression model reveals the predictive contribution
of different weather conditions, road surface conditions, and individual behavioral characteristics to this risk class as
Table 10. The functional relationships of the model show that the primary and higher order terms of certain features, as well
as the interaction terms between the features, are significantly associated with the fatal risk class.

For example, the positive coefficient of weather_5 (representing sunny weather) indicates that sunny weather is posi-
tively associated with a higher lethal risk class, while the negative coefficient of weather_3 (representing rainy weather)
indicates that rainy weather is associated with a lower lethal risk class. This may be related to the fact that people drive fas-
ter or more adventurously in sunny weather, whereas rainy weather may cause drivers to be more cautious. In addition, the
positive interaction term coefficient for weather_1 road_1 emphasizes the possibility that specific weather conditions
together with specific road surface conditions may influence the risk rating. For severity_2 (severe risk) and severity_3
(slight risk), we observe significant effects of different combinations of features. For example, weather_4 presents a positive
coefficient in predicting the severity risk level, which may imply that a particular weather condition is associated with an
increase in crash severity. On the other hand, the feature presents a negative coefficient for minor risk levels, which may
indicate that the same weather condition exhibits different patterns of influence at different risk levels. The influence of dif-
ferent factors, such as the interaction between weather and road surface condition, shows the importance of their joint effect
on the accident risk level. For example, the negative interaction term coefficient of weather_2 road_3 may indicate that a
certain pavement condition may reduce the severity of accidents in each weather.

In the Fatal model as Table 11, an accuracy of 0.987 indicates that the model performs very well in predicting fatal risk.
This means that in almost all cases the model correctly distinguishes between fatal and non-fatal risks. In the Serious model,
an accuracy of 0.862 is satisfactory but indicates that there is room for improvement. This indicates that the model is accu-
rate in most cases when identifying serious risks, but there is still a percentage of false positives. In the Light model, the accu-
racy of 0.849 is relatively low, especially when compared to predictions of serious and fatal risks. This could mean that minor
risks are not characterized enough with serious or fatal risks.

A lower MSE on Fatal indicates a lower prediction error in the prediction of fatal risk. Whereas the MSE values for Serious
& Light: are 0.1186 and 0.1277 respectively, these values are relatively high, especially when compared to the fatal risk cat-
egory. This indicates greater error in predicting Serious and Light risks. The RMSE value for Fatal is 0.1130, which further
confirms that there is less error in the prediction of fatal risk. Serious & Light have RMSE values of 0.3443 and 0.3574 respec-
tively, these values are higher indicating greater instability and error in prediction. The value of MAE for Fatal is 0.0253
which indicates a small average error in fatal risk prediction. The MAE values for Serious & Light are 0.2369 and 0.2551,
respectively, and these higher values indicate a larger average error in predicting serious and minor risks. The R-squared val-
ues for all three traffic accident risk models are very close to zero.
Table 10
Significant characterization of coefficient heatmap of TrafficRiskClassifier.

Severity
level

Characteristics Coefficient Correlation Explanation

Fatal weather_5 Positive Positive correlation to high-risk category
Fatal weather_3 Negative Negative correlation to low-risk category
Fatal weather_1 and

road_1
Positive Interaction term emphasizes the combined effect of specific weather and road surface

Serious weather_4 Positive Positive correlation to higher risk category
Light weather_4 Negative Negative correlation to lower risk category
Fatal/Light weather_2 and

road_3
Negative A particular road surface condition may mitigate accident severity for a given set of weather

conditions
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Table 11
Performance values obtained for classification methods.

Performance Measures Accuracy MSE RMSE MAE R-squared

TrafficRiskClassifier Fatal 0.987 0.0127 0.1130 0.0253 0.0004
Serious 0.862 0.1186 0.3443 0.2369 0.0007
Light 0.849 0.1277 0.3574 0.2551 0.0009
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The TrafficRiskClassifier model performs well in predicting fatal risks, but its accuracy in predicting severe and minor
risks needs to be improved. In the prediction of fatal risk, the model’s errors (MSE, RMSE, and MAE) are all relatively low,
indicating that the model’s predictions are relatively accurate and stable in this category. In the prediction of severe and
minor risks, the error metrics are high, indicating that the model’s predictions are less accurate and stable on these
categories.
5. Conclusion

In this study, this research successfully developed a traffic accident risk classification model called TrafficRiskClassifier,
which employs an innovative combination of transfer learning, image classification, and self-supervised learning to effec-
tively utilize video, text, and image data of urban traffic accidents. Through detailed analysis and application of advanced
machine learning techniques, this study not only improves the accuracy of traffic accident risk identification, but also pro-
vides new perspectives and tools for future traffic safety management and accident prevention. The models perform well on
the individual classification task, where the TrafficRiskClassifier model demonstrates 91.82%, 85.16%, and 80.92% generaliza-
tion ability, respectively. In contrast, other traditional models such as ResNet50 and MobileNet, while also demonstrating
good generalization ability, were slightly less accurate than the TrafficRiskClassifier.This result suggests that the Traf-
ficRiskClassifier model has a significant advantage in dealing with unseen data and is able to more accurately predict and
classify traffic accident risks. In addition, by adopting the K-fold cross-validation technique, we further validate the stability
and generalization ability of the model, which strengthens the effectiveness of the model as a tool for predicting and clas-
sifying the risk of future traffic accidents. Although the TrafficRiskClassifier model demonstrated high accuracy and stability
in the prediction of fatal risks, there were limitations in the prediction of severe and minor risks. The high error of the model
on these categories suggests that further optimization of the model is needed in future work to improve its prediction ability
on all types of risk levels.

Accurate classification and prediction of traffic accident risks is essential in current transportation system management
and safety assessment. This not only helps to identify high-risk traffic scenarios, but also can provide a scientific basis for
transportation planning, road design, and the implementation of safety measures. The model developed in this study demon-
strates a high degree of accuracy and efficiency by integrating multimodal data and employing advanced data analysis tech-
niques, especially in handling complex nonlinear relationships and fusing multiple types of data. This enables us to classify
traffic accident risks more accurately and thus identify potential risk factors and risk scenarios more effectively.

Overall, the TrafficRiskClassifier model proposed in this study has made significant progress in classifying traffic accident
risks. Future research should focus on further optimizing the model structure and algorithms to improve the prediction accu-
racy for serious and minor accident risks. A major limitation of this study is that it did not adequately address the unbalanced
categorization of the data. Although this study adopted other strategies to improve the overall accuracy of the model, resam-
pling techniques such as SMOTE were not employed to directly target the under-sampling of a few classes. In previous
research, significant improvements in the model’s ability to handle unbalanced data have been demonstrated through the
application of resampling techniques, particularly in real-time collision/conflict prediction models. Future work will consider
the use of such techniques to improve the model’s prediction accuracy for minority classes, thereby further enhancing the
model’s generalization ability and utility. In addition, consideration should be given to applying the model to a wider range
of traffic scenarios and conditions to verify its effectiveness and applicability in different environments. Through continuous
iteration and improvement, TrafficRiskClassifier is expected to become an important tool for improving urban traffic safety
and reducing traffic accidents.
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doi.org/10.1007/s12046-017-0694-9.

Deme, D., 2019. Review on factors causes road traffic accident In Africa. J. Civil Eng. Res. Technol. 1–8. https://doi.org/10.47363/JCERT/2019(1)101.
Dong, B.-T., Lin, H.-Y., Chang, C.-C., 2022. Driver fatigue and distracted driving detection using random forest and convolutional neural network. Appl. Sci. 12

(17), 8674. https://doi.org/10.3390/app12178674.
Dong, X., Lu, M., 2019. Optimal road accident case retrieval algorithm based on k -nearest neighbor. Adv. Mech. Eng. 11, (2). https://doi.org/10.1177/

1687814018824523 168781401882452.
Drosu, A., Cofaru, C., Popescu, M.V., 2020. Relationships between accident severity and weather and roadway adherence factors in crashes occurred in

different type of collisions. In: Dumitru, I., Covaciu, D., Racila, L., Rosca, A. (Eds.), The 30th SIAR International Congress of Automotive and Transport
Engineering. Springer International Publishing, pp. 251–264 https://doi.org/10.1007/978-3-030-32564-0_30.

Eboli, L., Forciniti, C., Mazzulla, G., 2020. Factors influencing accident severity: an analysis by road accident type. Transp. Res. Procedia 47, 449–456. https://
doi.org/10.1016/j.trpro.2020.03.120.

Edwards, J.B., 1998. The relationship between road accident severity and recorded weather. J. Saf. Res. 29 (4), 249–262. https://doi.org/10.1016/S0022-4375
(98)00051-6.

ESCAP, U., 2020. Road safety: saving lives beyond 2020 in the Asia-Pacific region. https://repository.unescap.org/handle/20.500.12870/2881.
Fiorentini, N., Losa, M., 2020. Handling imbalanced data in road crash severity prediction by machine learning algorithms. Infrastructures 5 (7), 61. https://

doi.org/10.3390/infrastructures5070061.
Formosa, N., Quddus, M., Ison, S., Abdel-Aty, M., Yuan, J., 2020. Predicting real-time traffic conflicts using deep learning. Accid. Anal. Prev. 136, 105429.
Gao, J., Li, P., Chen, Z., Zhang, J., 2020. A Survey on Deep Learning for Multimodal Data Fusion. Neural Comput. 32 (5), 829–864. https://doi.org/10.1162/

neco_a_01273.
Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L., 2019. Explaining Explanations: An Overview of Interpretability of Machine Learning

(arXiv:1806.00069). arXiv. http://arxiv.org/abs/1806.00069.
Gopalakrishnan, S., 2012. A public health perspective of road traffic accidents. J. Family Med. Primary Care 1 (2), 144. https://doi.org/10.4103/2249-

4863.104987.
Hajri, F., Fradi, H., 2022. Vision Transformers for Road Accident Detection from Dashboard Cameras. In: 2022 18th IEEE International Conference on

Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8. https://doi.org/10.1109/AVSS56176.2022.9959545.
Hammad, H.M., Ashraf, M., Abbas, F., Bakhat, H.F., Qaisrani, S.A., Mubeen, M., Fahad, S., Awais, M., 2019. Environmental factors affecting the frequency of

road traffic accidents: a case study of sub-urban area of Pakistan. Environ. Sci. Pollut. Res. 26 (12), 11674–11685. https://doi.org/10.1007/s11356-019-
04752-8.

Hatti, M., (Ed.)., 2022. Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities: Case Study: Tipasa Vol. 361. https://doi.org/10.1007/
978-3-030-92038-8.

Hauer, E., 2015. The art of regression modeling in road safety. Springer International Publishing. https://doi.org/10.1007/978-3-319-12529-9.
Hossain, M., Abdel-Aty, M., Quddus, M.A., Muromachi, Y., Sadeek, S.N., 2019. Real-time crash prediction models: State-of-the-art, design pathways and

ubiquitous requirements. Accid. Anal. Prev. 124, 66–84.
Hu, Z., Zhou, J., Zhang, E., 2023. Improving traffic safety through traffic accident risk assessment. Sustainability 15 (4), 3748. https://doi.org/

10.3390/su15043748.
Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F., 2020. A Survey on contrastive self-supervised learning. Technologies 9 (1), 2. https://doi.org/

10.3390/technologies9010002.
Jianfeng, X., Hongyu, G., Jian, T., Liu, L., Haizhu, L., 2019. A classification and recognition model for the severity of road traffic accident. Adv. Mech. Eng. 11,

(5). https://doi.org/10.1177/1687814019851893 168781401985189.
Kang, M., Lee, W., Hwang, K., Yoon, Y., 2022. Vision transformer for detecting critical situations and extracting functional scenario for automated vehicle

safety assessment. Sustainability 14 (15), 9680. https://doi.org/10.3390/su14159680.
Kashevnik, A., Shchedrin, R., Kaiser, C., Stocker, A., 2021. Driver distraction detection methods: a literature review and framework. IEEE Access 9, 60063–

60076. https://doi.org/10.1109/ACCESS.2021.3073599.
Katrakazas, C., Quddus, M., Chen, W.H., 2017. A simulation study of predicting real-time conflict-prone traffic conditions. IEEE Trans. Intell. Transp. Syst. 19

(10), 3196–3207.
16

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1016/j.trf.2016.10.009
https://doi.org/10.1002/hsr2.1240
https://doi.org/10.1007/978-3-030-32816-0_51
https://doi.org/10.1109/ICRAMET.2017.8253139
https://doi.org/10.1016/j.aap.2008.12.014
https://doi.org/10.1016/j.aap.2008.12.014
https://doi.org/10.1109/ITSC48978.2021.9564405
https://doi.org/10.4108/icst.iccasa.2014.257334
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0045
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0045
https://doi.org/10.1186/s12544-022-00561-2
https://doi.org/10.1016/j.trpro.2020.03.057
https://doi.org/10.1016/j.matpr.2021.05.415
https://doi.org/10.1007/s11948-019-00146-8
https://doi.org/10.1007/s12046-017-0694-9
https://doi.org/10.1007/s12046-017-0694-9
https://doi.org/10.47363/JCERT/2019(1)101
https://doi.org/10.3390/app12178674
https://doi.org/10.1177/1687814018824523
https://doi.org/10.1177/1687814018824523
https://doi.org/10.1007/978-3-030-32564-0_30
https://doi.org/10.1016/j.trpro.2020.03.120
https://doi.org/10.1016/j.trpro.2020.03.120
https://doi.org/10.1016/S0022-4375(98)00051-6
https://doi.org/10.1016/S0022-4375(98)00051-6
https://repository.unescap.org/handle/20.500.12870/2881
https://doi.org/10.3390/infrastructures5070061
https://doi.org/10.3390/infrastructures5070061
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0115
https://doi.org/10.1162/neco_a_01273
https://doi.org/10.1162/neco_a_01273
http://arxiv.org/abs/1806.00069
https://doi.org/10.4103/2249-4863.104987
https://doi.org/10.4103/2249-4863.104987
https://doi.org/10.1109/AVSS56176.2022.9959545
https://doi.org/10.1007/s11356-019-04752-8
https://doi.org/10.1007/s11356-019-04752-8
https://doi.org/10.1007/978-3-030-92038-8
https://doi.org/10.1007/978-3-030-92038-8
https://doi.org/10.1007/978-3-319-12529-9
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0155
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0155
https://doi.org/10.3390/su15043748
https://doi.org/10.3390/su15043748
https://doi.org/10.3390/technologies9010002
https://doi.org/10.3390/technologies9010002
https://doi.org/10.1177/1687814019851893
https://doi.org/10.3390/su14159680
https://doi.org/10.1109/ACCESS.2021.3073599
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0185
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0185


W. Sun, L.N. Abdullah, Fatimah binti Khalid et al. International Journal of Transportation Science and Technology xxx (xxxx) xxx
Ki, Y.-K., Kim, J.-W., Baik, D.-K., 2006. A traffic accident detection model using metadata registry. Fourth International Conference on Software Engineering
Research, Management and Applications SERA’06, 255–259. https://doi.org/10.1109/SERA.2006.8.

Koay, H.V., Chuah, J.H., Chow, C.-O., Chang, Y.-L., 2022. Detecting and recognizing driver distraction through various data modality using machine learning: a
review, recent advances, simplified framework and open challenges (2014–2021). Eng. Appl. Artif. Intel. 115,. https://doi.org/10.1016/j.
engappai.2022.105309 105309.

Kumar, S., Mahima, S.D.K., Kharya, P., Sachan, N., Kiran, K., 2020. Analysis of risk factors contributing to road traffic accidents in a tertiary care hospital. A
hospital based cross-sectional study. Chin. J. Traumatol. 23 (3), 159–162. https://doi.org/10.1016/j.cjtee.2020.04.005.

Legree, P.J., Heffner, T.S., Psotka, J., Martin, D.E., Medsker, G.J., 2003. Traffic crash involvement: experiential driving knowledge and stressful contextual
antecedents. J. Appl. Psychol. 88 (1), 15–26. https://doi.org/10.1037/0021-9010.88.1.15.

Lio, C.-F., Cheong, H.-H., Un, C.-H., Lo, I.-L., Tsai, S.-Y., 2019. The association between meteorological variables and road traffic injuries: a study from Macao.
PeerJ 7, e6438.

Liu, X., Lu, J., Chen, X., Fong, Y.H.C., Ma, X., Zhang, F., 2023. Attention based spatio-temporal graph convolutional network with focal loss for crash risk
evaluation on urban road traffic network based on multi-source risks. Accid. Anal. Prev. 192,. https://doi.org/10.1016/j.aap.2023.107262 107262.

Mkwata, R., Chong, E.E.M., 2022. Effect of pavement surface conditions on road traffic accident—a review. E3S Web Conf. 347, 01017. https://doi.org/
10.1051/e3sconf/202234701017.

Moosavi, S., Hossein, M., Parthasarathy, S., Teodorescu, R., Ramnath, R., 2019. Accident Risk Prediction based on Heterogeneous Sparse Data. New Dataset
and Insights.

Mussah, A.R., Adu-Gyamfi, Y., 2022. Machine Learning Framework for Real-Time Assessment of Traffic Safety Utilizing Connected Vehicle Data.
Sustainability 14 (22), 15348. https://doi.org/10.3390/su142215348.

Orsini, F., Gecchele, G., Gastaldi, M., Rossi, R., 2021. Real-time conflict prediction: a comparative study of machine learning classifiers. Transp. Res. Procedia
52, 292–299.

Otte, D., Facius, T., Brand, S., 2018. Serious injuries in the traffic accident situation: Definition, importance and orientation for countermeasures based on a
representative sample of in-depth-accident-cases in Germany. Int. J. Crashworthiness 23 (1), 18–31. https://doi.org/10.1080/13588265.2017.1301694.

Panda, C., Dash, A.K., Dash, D.P., 2022. Assessment of risk factors of road traffic accidents: a panel model analysis of several states in India. Vision: J. Bus.
Perspect. https://doi.org/10.1177/09722629221113251 097226292211132.

Paramasivan, K., Subburaj, R., Sharma, V.M., Sudarsanam, N., 2022. Relationship between mobility and road traffic injuries during COVID-19 pandemic—the
role of attendant factors. PLoS One 17 (5), e0268190. https://doi.org/10.1371/journal.pone.0268190.

Parsa, A.B., Taghipour, H., Derrible, S., Mohammadian, A., (Kouros)., 2019. Real-time accident detection: Coping with imbalanced data. Accid. Anal. Prev. 129,
202–210. https://doi.org/10.1016/j.aap.2019.05.014.

Priyanka, G., Jayakarthik, D.R., 2020. ROAD SAFETY ANALYSIS BY USING K-MEANS ALGORITHM.
Puspitasari, D., Wahyudi, M., Rizaldi, M., Nurhadi, A., Ramanda, K., Sumanto., 2020. K-means algorithm for clustering the location of accident-prone on the

highway. J. Phys. Conf. Ser. 1641, (1). https://doi.org/10.1088/1742-6596/1641/1/012086 012086.
Ranadive, M.S., Das, B.B., Mehta, Y.A., Gupta, R., (Eds.)., 2023. Recent Trends in Construction Technology and Management: Select Proceedings of ACTM 2021

Vol. 260. https://doi.org/10.1007/978-981-19-2145-2.
Retallack, A.E., Ostendorf, B., 2019. Current understanding of the effects of congestion on traffic accidents. Int. J. Environ. Res. Public Health 16 (18), 3400.

https://doi.org/10.3390/ijerph16183400.
Saleh, K., Grigorev, A., Mihaita, A.-S., 2022. Traffic Accident Risk Forecasting using Contextual Vision Transformers. 2022 IEEE 25th International Conference

on Intelligent Transportation Systems (ITSC), 2086–2092. https://doi.org/10.1109/ITSC55140.2022.9921978.
Selmoune, N., Derbal, K., Alimazighi, Z., 2019. Spatial Data Warehouse Multidimensional Design Approach and Geo-Decisional Tool for Road Accidents

Analysis. 2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), 1–8. https://doi.org/10.
1109/ICT-DM47966.2019.9032938.

Silva, P.B., Andrade, M., Ferreira, S., 2020. Machine learning applied to road safety modeling: a systematic literature review. J. Traffic Transp. Eng. (Engl. Ed.)
7 (6), 775–790. https://doi.org/10.1016/j.jtte.2020.07.004.

Sohail, A., Cheema, M.A., Ali, M.E., Toosi, A.N., Rakha, H.A., 2023. Data-driven approaches for road safety: a comprehensive systematic literature review. Saf.
Sci. 158,. https://doi.org/10.1016/j.ssci.2022.105949 105949.

Sümer, N., 2003. Personality and behavioral predictors of traffic accidents: testing a contextual mediated model. Accid. Anal. Prev. 35 (6), 949–964. https://
doi.org/10.1016/S0001-4575(02)00103-3.

Tamagusko, T., Correia, M.G., Huynh, M.A., Ferreira, A., 2022. Deep learning applied to road accident detection with transfer learning and synthetic images.
Transp. Res. Procedia 64, 90–97. https://doi.org/10.1016/j.trpro.2022.09.012.

Theofilatos, A., Chen, C., Antoniou, C., 2019. Comparing machine learning and deep learning methods for real-time crash prediction. Transp. Res. Rec. 2673
(8), 169–178.

Tijani, A., Molyet, R., Alam, M., 2022. Collision warning system using naïve bayes classifier. Technium: Romanian J. Appl. Sci. Technol. 4 (5), 39–56. https://
doi.org/10.47577/technium.v4i5.6653.

Wang, J., Li, K., Lu, X.-Y., 2014. Effect of Human Factors on Driver Behavior. In: Advances in Intelligent Vehicles. Elsevier, pp. 111–157. https://doi.org/
10.1016/B978-0-12-397199-9.00005-7.

Weiss, K., Khoshgoftaar, T.M., Wang, D., 2016. A survey of transfer learning. J. Big Data 3 (1), 9. https://doi.org/10.1186/s40537-016-0043-6.
World Health Organization, 2018. Global status report on road safety 2018. World Health Organization. https://appswho.int/iris/handle/10665/276462.
World Health Organization, 2021. Global Plan for the Decade of Action for Road Safety 2021–2030. World Health Organization. https://wwwwho.int/

teams/social-determinants-of-health/safety-and-mobility/decade-of-action-for-road-safety-2021-2030.
World Health Organization, 2023. Global status report on road safety 2023. World Health Organization. https://wwwwho.int/publications/i/item/

9789240086517.
Xing, F., Huang, H., Zhan, Z., Zhai, X., Ou, C., Sze, N.N., Hon, K.K., 2019. Hourly associations between weather factors and traffic crashes: Non-linear and lag

effects. Anal. Meth. Acc. Res. 24,. https://doi.org/10.1016/j.amar.2019.100109 100109.
Yang, F.-J., 2018. An Implementation of Naive Bayes Classifier. International Conference on Computational Science and Computational Intelligence (CSCI)

2018, 301–306. https://doi.org/10.1109/CSCI46756.2018.00065.
Yang, L., Aghaabbasi, M., Ali, M., Jan, A., Bouallegue, B., Javed, M.F., Salem, N.M., 2022a. Comparative analysis of the optimized KNN, SVM, and ensemble DT

models using bayesian optimization for predicting pedestrian fatalities: an advance towards realizing the sustainable safety of pedestrians.
Sustainability 14 (17), 10467. https://doi.org/10.3390/su141710467.

Yang, Z., Zhang, W., Feng, J., 2022b. Predicting multiple types of traffic accident severity with explanations: a multi-task deep learning framework. Saf. Sci.
146,. https://doi.org/10.1016/j.ssci.2021.105522 105522.

Zhang, S., Abdel-Aty, M., 2022. Real-time pedestrian conflict prediction model at the signal cycle level using machine learning models. IEEE Open J. Intel.
Transp. Syst. 3, 176–186.

Zhang, Z., Niu, Z., Li, Y., Ma, X., Sun, S., 2023. Research on the influence factors of accident severity of new energy vehicles based on ensemble learning. Front.
Energy Res. 11, 1329688. https://doi.org/10.3389/fenrg.2023.1329688.

Zheng, L., Sayed, T., 2020. A novel approach for real time crash prediction at signalized intersections. Transp. Res. Part C: Emerg. Technol. 117, 102683.
Zhu, X., Yuan, Y., Hu, X., Chiu, Y.-C., Ma, Y.-L., 2017. A Bayesian Network model for contextual versus non-contextual driving behavior assessment. Transp.

Res. Part C: Emerg. Technol. 81, 172–187. https://doi.org/10.1016/j.trc.2017.05.015.
17

https://doi.org/10.1109/SERA.2006.8
https://doi.org/10.1016/j.engappai.2022.105309
https://doi.org/10.1016/j.engappai.2022.105309
https://doi.org/10.1016/j.cjtee.2020.04.005
https://doi.org/10.1037/0021-9010.88.1.15
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0210
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0210
https://doi.org/10.1016/j.aap.2023.107262
https://doi.org/10.1051/e3sconf/202234701017
https://doi.org/10.1051/e3sconf/202234701017
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0225
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0225
https://doi.org/10.3390/su142215348
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0235
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0235
https://doi.org/10.1080/13588265.2017.1301694
https://doi.org/10.1177/09722629221113251
https://doi.org/10.1371/journal.pone.0268190
https://doi.org/10.1016/j.aap.2019.05.014
https://doi.org/10.1088/1742-6596/1641/1/012086
https://doi.org/10.1007/978-981-19-2145-2
https://doi.org/10.3390/ijerph16183400
https://doi.org/10.1109/ITSC55140.2022.9921978
https://doi.org/10.1109/ICT-DM47966.2019.9032938
https://doi.org/10.1109/ICT-DM47966.2019.9032938
https://doi.org/10.1016/j.jtte.2020.07.004
https://doi.org/10.1016/j.ssci.2022.105949
https://doi.org/10.1016/S0001-4575(02)00103-3
https://doi.org/10.1016/S0001-4575(02)00103-3
https://doi.org/10.1016/j.trpro.2022.09.012
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0310
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0310
https://doi.org/10.47577/technium.v4i5.6653
https://doi.org/10.47577/technium.v4i5.6653
https://doi.org/10.1016/B978-0-12-397199-9.00005-7
https://doi.org/10.1016/B978-0-12-397199-9.00005-7
https://doi.org/10.1186/s40537-016-0043-6
https://apps.who.int/iris/handle/10665/276462
https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/decade-of-action-for-road-safety-2021-2030
https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/decade-of-action-for-road-safety-2021-2030
https://www.who.int/publications/i/item/9789240086517
https://www.who.int/publications/i/item/9789240086517
https://doi.org/10.1016/j.amar.2019.100109
https://doi.org/10.1109/CSCI46756.2018.00065
https://doi.org/10.3390/su141710467
https://doi.org/10.1016/j.ssci.2021.105522
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0365
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0365
https://doi.org/10.3389/fenrg.2023.1329688
http://refhub.elsevier.com/S2046-0430(24)00049-2/h0375
https://doi.org/10.1016/j.trc.2017.05.015

	Classification of traffic accidents’ factors using TrafficRiskClassifier
	1 Introduction
	2 Literature review
	3 Research methodology
	3.1 Basic models introduction
	3.2 Research methodology
	3.3 Data collection and preprocess
	3.4 Feature extraction
	3.4.1 Visual feature extraction
	3.4.2 Text feature extraction

	3.5 Model architecture design
	3.6 Train and optimization
	3.6.1 Training procedure
	3.6.2 Optimization strategies

	3.7 Evaluation Metrics

	4 Results and discussion
	5 Conclusion
	Conflict of Interest
	CRediT authorship contribution statement
	References


