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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
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DYNAMIC TASK OFFLOADING ALGORITHM FOR OPTIMISING IoT 

NETWORK QUALITY OF SERVICE IN THE MOBILE-FOG-CLOUD 

SYSTEM 

By 

NWOGBAGA NWESO EMMANUEL 

March 2023 

Chairman :   Associate Professor Rohaya binti Latip, PhD  

Faculty :   Computer Science and Information Technology 

The application of the Internet of Things (IoT) is increasing to almost all aspects of 

human endevour. IoT aims at getting everything (wearable, smart cameras, home 

appliances, vehicles, and hospital equipment) connected to the Internet. These devices 

continuously generate a massive amount of data on the network. The IoT (mobile) 

devices that generate these data are limited in terms of processing capacity and energy, 

because of these limitations of the mobile devices, they cannot process all generated 
tasks in the IoT application environment. Cloud computing and Fog computing are 

introduced to assist mobile devices to respond to environmental demand. Most times, 

the approach of relying on cloud infrastructure for IoT application analysis may be 

inefficient in terms of the limited battery life of the mobile devices, resource allocation 

algorithm delay, and computational offloading processes that sometimes increases the 

response time. Furthermore, many IoT applications are time sensitive such as health 

monitory systems, augmented reality services, agriculture, pest control, online natural 

language processing, smart home applications, smart cities, safe driving, waste 

management, emergency response systems, and traffic control systems. Therefore, 

offloading a massive amount of data from mobile devices to the fog or cloud introduces 

another problem of delay in choosing the optimal resources for processing the tasks 

resulting in incurring delay by the resource allocation algorithms. This problem 
sometimes makes the application of IoT inefficient in sensitive cases that require low 

response time. However, the problem of offloading large data sizes for analysis at the 

remote processing layer (fog or cloud) and efficient scheduling of tasks and resources is 

addressed in this study. Therefore, an Energy-Efficient Canonical Polyadic 

Decomposition (EECPD) scheduling algorithm to minimize the mobile device energy 

consumption in the system is proposed.  Secondly, a hybrid Genetic Algorithm and 

Enhanced Inertia Weight Particle Swarm Optimization (GAEIWPSO) algorithm for 

optimal resource allocation to minimize the delay is proposed. Finally, a Dynamic Task 

Offloading Algorithm (DTOA) based on rank accuracy estimation model to efficiently 

schedule tasks and resources in the Mobile-Fog-Cloud system is proposed. The proposed 
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algorithms achieved minimized data reduction ratio, number of deployed tasks, energy 

consumption, delay; and in addition, increased throughput, and better resource 

utilization, which in all enhanced the overall network quality of service. The attribute 

reduction technique is implemented with Matlab. The EECPD and GAEIWPSO 

algorithms are implemented with Python and Networkx simulators while DTOA 
algorithm is implemented with iFogSim to demonstrate the efficiency of the proposed 

scheme. The results proved that the proposed scheme performed better than the 

benchmark results.  
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ALGORITMA PEMUNGGAHAN TUGASAN DINAMIK UNTUK 

MENGOPTIMALKAN KUALITI PERKHIDMATAN RANGKAIAN IoT 

DALAM SISTEM PENGKOMPUTERAN KABUS MUDAH ALIH 

Oleh 

NWOGBAGA NWESO EMMANUEL 

Mac 2023 

Pengerusi :   Profesor Madya Rohaya binti Latip, PhD 

Fakulti :   Sains Komputer dan Teknologi Maklumat 

Aplikasi Internet Benda (IoT) semakin meningkat kepada hampir semua aspek usaha 

manusia. IoT bertujuan untuk membolehkan segala-galanya (boleh pakai, kamera pintar, 

peralatan rumah, kenderaan dan peralatan hospital) disambungkan ke Internet. Peranti-

peranti ini secara berterusan menjana sejumlah besar data pada rangkaian. Peranti IoT 

(mudah alih) yang menjana data ini terhad dari segi kapasiti pemprosesan dan tenaga, 

kerana batasan peranti mudah alih ini, mereka tidak dapat memproses semua tugas yang 
dijana dalam persekitaran aplikasi IoT. Pengkomputeran Awan dan pengkomputeran 

Kabus diperkenalkan untuk membantu peranti mudah alih bertindak balas terhadap 

permintaan persekitaran. Selalunya, pendekatan yang bergantung pada infrastruktur 

awan untuk analisis aplikasi IoT ini mungkin tidak cekap dari segi jangka hayat bateri 

yang terhad bagi peranti mudah alih, kelewatan algoritma peruntukan sumber, dan 

pengkomputeran proses pemunggahan yang kadangkala meningkatkan masa tindak 

balas. Tambahan pula, banyak aplikasi IoT adalah sensitif masa seperti sistem 

pemantauan kesihatan, perkhidmatan realiti tambahan, pertanian, kawalan perosak, 

pemprosesan bahasa semula jadi dalam talian, aplikasi rumah pintar, bandar pintar, 

pemanduan selamat, pengurusan sisa, sistem tindak balas kecemasan dan sistem kawalan 

trafik. Oleh itu, memunggah sejumlah besar data daripada peranti mudah alih ke kabus 

atau awan memperkenalkan satu lagi masalah kelewatan disebabkan pemilihan sumber-
sumber yang optimal untuk memproses tugasan yang mengakibatkan kelewatan oleh 

algoritma peruntukan sumber. Masalah ini kadangkala menjadikan aplikasi IoT tidak 

cekap dalam kes sensitif yang memerlukan masa tindak balas yang rendah. Walau 

bagaimanapun, masalah memunggah saiz data yang besar untuk analisis pada lapisan 

pemprosesan jauh (kabus atau awan) dan penjadualan tugas dan sumber yang cekap 

ditangani dalam kajian ini. Oleh itu, algoritma penjadualan Penguraian Polyadic 

Canonical Cekap Tenaga (EECPD) untuk meminimumkan penggunaan tenaga peranti 

mudah alih dalam sistem dicadangkan. Kedua, Algoritma Genetik hibrid dan 

Pengoptimuman Partikel Berat Inersia Dipertingkat (GAEIWPSO) untuk peruntukan 

sumber yang optimum bagi meminimumkan kelewatan dicadangkan. Akhir sekali, 
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Algoritma Pemunggahan Tugas Dinamik (DTOA) berdasarkan model anggaran 

ketepatan kedudukan untuk menjadualkan tugas dan sumber dengan cekap dalam sistem 

pengkomputeran kabus mudah alih dicadangkan. Algoritma-algoritma yang 

dicadangkan mencapai penurunan nisbah pengurangan data, bilangan tugasan yang 

diatur, penggunaan tenaga, kelewatan; dan tambahan pula meningkatkan daya 
pemprosesan serta pengunaan sumber yang lebih baik. Teknik pengurangan atribut 

dilaksanakan dengan Matlab. Algoritma EECPD dan GAEIWPSO dilaksanakan dengan 

simulator Python dan Networkx manakala algoritma DTOA dilaksanakan dengan 

iFogSim untuk menunjukkan kecekapan skema yang dicadangkan. Keputusan 

membuktikan bahawa skema yang dicadangkan menunjukkan prestasi yang lebih baik 

daripada keputusan penanda aras. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Study 

Cloud computing emerged in the field of distributed computing as the provision of on-

demand computing services (Shen, Li, Yan, & Wu, 2010). There are so many definitions 
of cloud computing both in academia and industry, but the U.S. NIST (National Institute 

of Standards and Technology) definition seems more appropriate because it includes the 

most common key terms commonly used in the Cloud Computing environment. They 

defined cloud computing as a model for allowing suitable, access to a shared pool of on-

demand network configurable computing devices or resources  (such as servers, services, 

applications, and storage) that can be easily provisioned and released with reduced effort 

or service provider management interaction (Dillon, Wu, & Chang, 2010). Cloud 

services range from applications, storage, and networks, to services that are offered over 

the internet usually on a pay-as-you-use basis. Instead of owning computing 

infrastructure or data centers, companies may decide to rent access to applications, 

storage, or processing power from cloud providers. Cloud computing enables 

organizations to cut costs and the complexity of owning and maintaining their own 
computing infrastructure, and instead pay for what they use only when they use it. On 

the other hand, the cloud providers benefits from the significant economies of scale by 

offering their services to the users of their infrastructures and services. Because of these 

advancements in the area of distributed computing, the limited processing, storage and 

high cost of maintenance of IT infrastructures are minimized. These improvements gave 

rise to the use of IoT devices which are gaining entrance in all sphere of human endevour.  

The term IoT covers several topics in the area of the application of sensors to monitor, 

measure, and communicate environmental information. The architecture always differs 

from problems to available resources and skills of the administrator. Because of the 

above reasons, it is always difficult to provide a single architecture to identify the IoT 

(Di Martino et al., 2018). The use of smart sensors and devices is becoming more 

common in everyday life. IoT has become a pervasive reality. Smartphones are the most 

common IoT device which every person carries around. Smartphones with all the sensors 

have to remain the major means of connection to the internet. There are other smart 

sensors in our environment used for different applications such as in the smart city, smart 
home, security, internet of vehicular networks, telemedicine, etc. (Nguyen, Thi, Binh, & 

Anh, 2019). IoT refers to the ability of smart devices to sense signals from the 

environment, collect data and sometimes analyze the data and share the data across the 

internet or local area network and also respond based on the information received from 

the processed data. One of the main features of IoT devices is sharing data. Sharing is 

the only way data can be resourcefully handled and used for various purposes. The 

following are different ways that IoT has been applied: 

 

• wearable and phones are used for tracking movement; registering exercises, 

habits, and daily activities. Wearable devices can detect dangers if equipped 
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with special sensors and can communicate such dangers to the wearer or other 

people elsewhere via the internet. 

• self-parking cars use proximity sensors to detect nearby objects. 

• the vehicle tracking system uses IoT devices with GPS devices or even 

smartphones to determine the position of the vehicle or to detect traffic 

congestion on the road.  

• domestic gadgets use IoT to provide real smart home experiences like an 

intelligent bulb that can be turned on or off based on people’s movements. 

Indoor temperature can be controlled based on environmental conditions etc. 

 

 

However, IoT devices have different approaches to how they interact among themselves 

and with the outside world. The differences in the approaches are a result of the 

differences in their characteristics. There are different scenarios or paradigm which is 

made up of one or combinations of the following: 

 

a. Mobile Computing 

b. Mobile Edge Computing or Fog Computing 

c. Cloud Computing 

 

 

There are situations where two or three of the above basic paradigms are combined 

depending on the need of the network administrator. In all these architectures, if the data 

is not executed at the user device (mobile computing) then the data needs to be offloaded 

(moved) from the point of generation to the point of execution. Moving data/offloading 

involves an additional delay in getting the desired result. 

In this research, the problems of mobile devices in mobile edge computing are 

considered. The study focused on how to optimize the device energy consumption, 

delay, and response time of the IoT devices by proposing task scheduling, resource 

allocation, and offloading algorithms respectively to solve the problems. Specifically, 

this study proposed a canonical Polyadic decomposition-based tasks scheduling 

algorithm for mobile device energy consumption, an enhanced hybrid meta-heuristics 
algorithm for minimizing delay, and computation offloading for reducing the response 

time, improving the network throughput, and resource utilization. 

1.2 Motivation for the Study  

There are so many IoT devices connected in the present-day cyber-physical environment 

(smart home, Telemedicine, self-driving cars, smart city, etc.). Within these IoT 

application environments, various devices are interconnected through advanced wireless 

technologies for different purposes such as security, communication, social media, 
surveillance, messaging, defense, health monitoring, etc. These deployments are usually 

associated with different deployment models including mobile computing, edge 

computing or fog computing, and cloud computing. All these deployments aim at 
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improving the quality of service in the system in terms of energy consumption of the 

mobile devices, delay in receiving task request responses, network throughput, and 

resource utilization. The radical changes in society due to the increasingly pervasive use 

of information and communications technology in all sphere of human endeavour is 

raising research concerns. Such advancement is triggered by the introduction of the 
Internet of Things, in which smart sensing devices can be incorporated into the objects 

surrounding human daily activities. This increase in the application of mobile devices 

increases the network traffic, energy consumption of the mobile devices, delay in 

responding to device requests, and increases the mobile device usage of its processing 

ability.  Internet connection extends IoT further than traditional smart devices like 

smartphones to a various range of devices and things such as sensors, machines, cars, 

etc. to accomplish many different applications and services such as healthcare, 

telemedicine, traffic control, energy management, vehicular networks, etc. The 

increasing demand for the analysis of the data generated by these IoT devices, manage 

the data, and store such data by the applications built on top of such sensory networks 

demands new architectures, such as mobile edge computing or fog computing, cloud 

computing, or a combination of these architectures, which are presently the hot topics in 
research (Di Martino et al., 2018). This internet connectivity of IoT devices generates a 

large volume of data that needs to be processed.  These huge amounts of data need to be 

stored, processed, and analyzed to obtain valuable information needed by the user on 

time. Again, the number and complexity of applications and services are also growing 

speedily, which entails more scalable processing approaches. 

The limitations of smart devices such as battery life, processing capability, storage, and 

network resources are the main challenges facing the application of IoT in so many areas, 

especially when it involves time-sensitive tasks such as health-related areas, traffic, and 

intrusion detection. These problems can be minimized by offloading time-consuming 

and resource-intensive tasks to a higher computing platform like Fog computing or 

Cloud computing while the less time-consuming and low-resource intensive tasks are 

handled at the smart devices. 

The Cloud computing paradigm, which supports ubiquitous access to share and provides 

resources to users flexibly via virtualization, can be a good platform for IoT applications.  

However, when combining IoT and Cloud computing, introduces a new problem, the 

transmission delay (Nguyen et al., 2019).  

According to (John A. Stankovic, Tu Le, and Abdeltawab Hendawi, 2019) the number 

of IoT devices connected to the internet will increase to  75.4 billion by 2025. With this 

dramatic increase in the number of connected devices, the traditional centralized Cloud 

architecture processing characteristics whereby computing and storage resources are 

centralized at a remote location and placed in several data centers will not be able to 

service the requirements of IoT applications need. This is because of the distance and 

bandwidth issues between the Cloud and IoT devices. The data transmission between 

the IoT devices and the Cloud through the Internet will worsen traffic congestion. The 

transmission delay will affect the network quality of service (QoS), which will affect the 

main aim of IoT applications, especially for time-sensitive tasks. To address the 
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transmission delay, cisco introduced Fog computing. The concept of Fog computing is 

to extend Cloud computing capabilities closer to IoT devices. The devices at the edge of 

the network such as routers, switches, gateways, smartphones, personal computers, etc. 

that have more processing capability, communication capability, and storage can be used 

as Fog devices. Fog computing transforms a network edge into a distributed computing 
infrastructure, which enables the implementation of IoT applications by the users. Fog 

computing architecture brings the cloud capabilities closer to the IoT devices thereby 

reducing the transmission and making the processing and storage faster. Fog devices can 

be deployed anywhere closer to the user and within the network connectivity such as 

power poles, vehicles, organization buildings, factory premises, and commercial centers.  

With Fog computing, the resources are at the edge of the network closer to the user, the 

time it takes for data to reach a processing node is therefore reduced hence Fog 

computing optimizes task transmission time. However, the processing capability of a 

Fog Node is higher than the processing capability at the user devices but less than the 

processing capability at the cloud node. Therefore, it is not every task that can be handled 

at the Fog node. Fog nodes can handle small tasks or processing requests with a short 

delay while heavy tasks requiring high computational capability will be prioritized to be 

processed on cloud computing infrastructure. Therefore, Fog computing complements 

Cloud computing to form a new computing paradigm, Cloud–Fog computing. 

Though Cloud–Fog computing architecture has several advantages, such as low response 

time, reduced network traffic, and more energy efficiency, however, this Cloud–Fog 

computing architecture also comes with its challenges. The problems of Cloud–Fog 

computing architecture are computational tasks scheduling, resource allocation, and 

offloading. Cloud–Fog computing architecture is a highly distributed system that needs 
efficient and scalable tasks scheduling, resource allocation, and offloading algorithms 

that can withstand the scalability nature of IoT applications in society today.  

1.3 Problem Statement 

There are so many mobile devices in the present environment that produce signals, which 

need to be processed to enable the system to take the necessary action required by the 

user. Mobile/IoT devices are always limited in power supply as they are powered by 

batteries. Inefficient task scheduling causes the network to increase the energy 

consumption of mobile devices. Most of the time, it cannot meet up with the time 
required to respond to task requests based on the incoming data (H. Li, Ota, & Dong, 

2018).  

Cloud computing was introduced to ameliorate the limitation of mobile devices. The 

distance between the mobile devices and the cloud infrastructure together with network 
bandwidth issues introduced another problem of delay in resources allocation. The fog 

was introduced to minimize the distance traveled in sending data from the mobile device 

to the point of processing. Though Fog computing is seen as the cloud closer to the user, 

it is not a substitute for the cloud. It only complements the cloud because its storage and 

processing capability cannot be compared to that of the cloud. 
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Another problem of fog computing is the problem of computation offloading which deals 

with deciding on which task to offload and where to process the task. The decision on 

whether to process the task at the mobile layer, fog/edge layer, or cloud layer is known 

as computation offloading (Gnana Jeevan & Maluk Mohamed, 2018), which is still 

another problem in this area. Computation offloading is a challenge in Fog computing. 
This challenge is because the sources of the tasks to be offloaded are many and they are 

to be offloaded to different processing devices. It is therefore an NP-hard problem 

(Braun et al., 2001; Madni, Latiff, Coulibaly, & Abdulhamid, 2016). These types of 

problems do not have one straight solution. To solve this type of problem, there are two 

approaches which are the heuristics approach and the meta-heuristic approach.  

This research focused on the problem of mobile devices' tasks scheduling, resource 

allocation, and computation offloading to address high energy consumption, delay in 

selecting the processing device, and high response time in IoT applications. This 

research also aims at addressing the problem of offloading computational intensive tasks 

with large data presented in (Alli & Alam, 2019).  Solutions are proposed to address the 

following specific problems at the mobile device in the mobile-fog-cloud computing 

architecture. 

The specific problems addressed in this research are the problems of:-  

 

i. high energy consumption by mobile devices during scheduling large input tasks 

generated from the environment. This problem is addressed through the data 

reduction ratio and the number of deployed tasks (H. Li et al., 2018). 

ii. choosing the optimal resource by resource allocation algorithms which causes 

a delay in the IoT environment because the resources are dynamically changing 
and the resource allocation algorithms need to dynamically recalculate the 

available processing capacities to determine which resource to be selected for 

the task processing  (Deng, Sun, Li, Luo, & Wan, 2021). 

iii. high response time, low throughput, and uneven resource utilization issues 

resulting from offloading tasks with large data sizes by computation offloading 

algorithms (Alli & Alam, 2019). 

 

 

1.4 Objectives of the Study 

The aim is to optimize the IoT quality of service. To achieve this aim, an attribute 

reduction algorithm was proposed to minimize the data size of the scheduled tasks. 

Followed by a hybrid meta-heuristic algorithm in particular the hybrid genetic algorithm 

and enhanced inertia weight particle swarm optimization for resource allocation. The 

optimal device selection algorithm enhanced resource allocation to reduce the overall 

transmission delay in IoT task processing. Finally, the computation offloading algorithm 

was proposed to optimize the overall network quality of service in Mobile-Fog-Cloud 

computing architecture.  
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The following are the specific objectives of the study: 

 

i. to propose an Energy-Efficient Canonical Polyadic Decomposition (EECPD) 

algorithm to addresses the problem of tasks scheduling in Mobile-Cloud system 

which leads to mobile devices' high energy consumption by reducing the input 

data size at the user device.  

ii. to develop a hybrid Genetic Algorithm and Enhanced Inertia Weight Particle 

Swarm Optimization (GAEIWPSO) algorithm to addresses the transmission 

delay problem of resource allocation in choosing the optimal device, which 

prolongs the device usage and increases energy consumption of the device.  

iii. to propose a Dynamic Task Offloading Algorithm (DTOA) based on a Rank 

Accuracy Estimation Model (RAEM) for solving the offloading problems in 

Mobile-Fog-Cloud system which result to high response time, low throughput, 

and uneven resource utilization of the existing offloading algorithms.  

 

 

1.5 Research Scope  

The focus of this research is on the task scheduling algorithm, resource allocation 

algorithm, and computational offloading algorithm used for task processing in Mobile 

Edge Computing (MEC) and Mobile Cloud Computing (MCC) architecture. The task 
scheduling algorithm used image data sets for determining the data reduction ratio. The 

scheduling algorithm is limited to determining the number of deployed tasks on the 

mobile layer of the MEC environment.  

The second algorithm focused on resource allocation. The algorithm focused on a 
Metaheuristic approach to reduce delay and energy consumption of the mobile layer in 

a mobile edge computing environment. The last algorithm is the offloading algorithm 

which focused on reducing response time in MCC that involves 10 mobile devices, five 

fog devices, and one hybrid cloud.  

1.6 Organization of the Thesis  

This thesis is on the topic “Computational offloading based on attributes reduction 

approach for optimization of IoT network quality of service (QoS) in the mobile-fog-

cloud system”. This work contributed to mobile edge computing task scheduling 
algorithms, resource allocation algorithms, and computation offloading algorithms. The 

remainder of this thesis is organized as follows- 

Chapter 2 is dedicated to the literature review on cloud computing, fog computing, and 

mobile computing. The reviews of related work in task scheduling, resource allocation, 
and computation offloading are also presented, which is the scope of this study. The 

problems of these areas are presented. The existing solutions in this field are illustrated, 

discussed, and their drawbacks are highlighted.  
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Chapter 3 presented the system’s model and methodology used for research. 

Chapter 4 presented the proposed Energy-Efficient Canonical Polyadic decomposition 

(EECPD) based task scheduling algorithm, the experimental setup, and the evaluation of 

the results.   

Chapter 5 presented the proposed hybrid Genetic Algorithm and Enhanced Inertia Weight 

Particle Swarm Optimization (GAEIWPSO) algorithm by discussing the proposed 

algorithm, experimental setup, and evaluation of results.   

Chapter 6 discussed the Dynamic Tasks Offloading Algorithm (DTOA) based on the 

Rank Accuracy Estimation Model (RAEM), the experimental setup, and the evaluation 

of the result. 

Chapter 7 concluded the study, its research contributions, and recommendations for 

future works.  
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