
© C
OPYRIG

HT U
PM

i

SECURITY TESTING OF WEB APPLICATIONS FOR DETECTING AND

REMOVING SECOND-ORDER SQL INJECTION VULNERABILITIES

By

NAJLA'A ATEEQ MOHAMMED DRAIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2022

 FSKTM 2022 27

© C
OPYRIG

HT U
PM

iii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons,

photographs, and all other artwork, is copyright material of Universiti Putra Malaysia
unless otherwise stated. Use may be made of any material contained within the thesis for

non-commercial purposes from the copyright holder. Commercial use of material may

only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

iv

DEDICATION

حِيمِِ حْمٰنِِ ٱلرَّ ِِ ٱلرَّ
ٰ
 بِسْمِِ ٱلّل

This work is dedicated to my husband, Ahmed Ali Alsulaimani, for his continuous

support, patience, understanding, love, and tolerance. Without his support, this work

would not have been possible.

And

to my beloved family, my parents, my kids, my brothers and my sister for their endless

love, prayer, and support.

https://en.wiktionary.org/wiki/%D8%B1%D8%AD%D9%8A%D9%85#Arabic
https://en.wiktionary.org/wiki/%D8%B1%D8%AD%D9%85%D9%86#Arabic
https://en.wiktionary.org/wiki/%D8%A7%D9%84%D9%84%D9%87#Arabic
https://en.wiktionary.org/wiki/%D8%A7%D8%B3%D9%85#Arabic

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

SECURITY TESTING OF WEB APPLICATIONS FOR DETECTING AND

REMOVING SECOND-ORDER SQL INJECTION VULNERABILITIES

By

NAJLA'A ATEEQ MOHAMMED DRAIB

November 2022

Chairman : Professor Abu Bakar Md Sultan, PhD

Faculty : Computer Science and Information Technology

Structured query language injection vulnerability (SQLIV) is one of the most prevalent

and severe web application vulnerabilities. It is usually exploited by SQL injection

attacks (SQLIA) for the purpose of gaining unauthorised access to the back-end

databases by altering the original SQL statements through input data manipulation. A

successful attack can hinder integrity, privacy, and information availability in the

database. As a particular type of SQL injection (SQLI), the second-order SQLIA tends

to be more severe and difficult to detect. It has a more significant impact on the back-
end database than the first-order SQLIA, simply because its respective SQL injection is

seeded first into the application's persistent storage, which is usually deemed a trusted

source, before its actual exploitation. In order to protect a web application from a

malicious user, test procedures for identifying and removing SQLIVs must be

implemented earlier in the software development life cycle (SDLC) of web applications,

specifically before bringing it onto production and possibly becoming available to a

malicious attack. Critically, several efforts have been devoted to detecting SQLIVs and

preventing their exploitation, and the majority focused on approaches that address the

detection of first-order SQL injection vulnerabilities. However, the mechanisms needed

to detect first-order SQLIV, which may lead to SQLIA on the application level, may not

afford to catch second-order SQLIV. This is specifically because the malicious inputs

supplied by the attacker can be concatenated with the SQL statement at the database
level. Moreover, the existing techniques only reported the detected vulnerabilities, and

they left their removal as a burden on the programmer. As far as the literature shows,

none of the current automated methods exhibited the ability to deal with this

phenomenon. Hence, the actual fixing process of any vulnerabilities is left for the human

developer to handle. However, manual removal of such vulnerabilities is tedious, error-

prone, and costly. Second-order injections are also difficult to prevent as the point of

injection differs from the point of attack, and therefore more care should be taken to

detect and prevent them. Both attack points should be validated carefully (i.e., point of

injection and point of attack). In order to address the weaknesses above and the identified

research gaps, this study invents a white-box testing technique for automated detection

© C
OPYRIG

HT U
PM

ii

and removal of the second-order SQLIVs in web applications using source code static

analysis. Static analysis is devoted to identifying candidate pairs of vulnerable paths to

second-order SQLI. It statically detects when the data comes from tainted sources, when

they are stored in the back-end database, and when they are retrieved later in another

point to build a new SQL statement without proper sanitisation. This technique also
applies the removing algorithm, which uses escaping method to remove the detected

vulnerabilities. The prototype tool, called Second-order SQL injection Protector

(SoSQLiP), was developed and implemented to test the proposed technique. The test

was conducted using eleven PHP Web applications: ten applications available on the

internet and that other researchers have used and one application that the researcher

developed. The results were empirically evaluated with an existing tool to determine the

effectiveness of the automatic detection of second-order SQLIVs. Promising results have

been obtained from both of these evaluations. The experiments show that the proposed

technique has a detection rate of 100% and a vulnerability removal rate of 100%. The

proposed technique has shown a better vulnerability detection rate than the state-of-the-

art tool (i.e., SQLMAP). However, future studies should expand the scope of the research

to include more types of vulnerabilities, such as second-order XSS vulnerabilities.

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

PENGUJIAN KESELAMATAN APLIKASI WEB BAGI MENGESAN DAN

MENGHAPUS KERENTANAN SUNTIKAN SQL PERINGKAT KEDUA

Oleh

NAJLA’A ATEEQ MOHAMMED DRAIB

November 2022

Pengerusi : Profesor Abu Bakar Md Sultan, PhD

Fakulti : Sains Komputer dan Teknologi Maklumat

Kerentanan suntikan bahasa pertanyaan berstruktur (SQLIV) adalah salah satu

kerentanan aplikasi web yang sangat lazim dan teruk. Ia biasanya dieksploitasi oleh

serangan suntikan SQL (SQLIA) untuk tujuan mendapatkan capaian yang tidak

dibenarkan ke pangkalan data bahagian belakang dengan mengubah arahan-arahan SQL

asal melalui cara manipulasi data input. Serangan yang berjaya boleh menghalang

integriti, privasi dan ketersediaan maklumat dalam pangkalan data. Merujuk kepada

jenis suntikan SQL tertentu (SQLI), SQLIA peringkat kedua cenderung lebih teruk dan
sukar dikesan. Ia mempunyai kesan yang lebih ketara pada pangkalan data bahagian

belakang berbanding SQLIA peringkat pertama kerana suntikan SQL tersebut

dimasukkan terlebih dahulu ke dalam storan kekal aplikasi, yang biasanya dianggap

sebagai sumber yang dipercayai, sebelum eksploitasi sebenar. Untuk melindungi

aplikasi web daripada pengguna yang berniat jahat, prosedur ujian untuk mengenal pasti

dan mengalih keluar SQLIV wajib dilaksanakan terlebih dahulu dalam kitaran hayat

pembangunan perisian (SDLC) aplikasi web, terutamanya sebelum membawanya ke

fasa produksi dan kemungkinan terdedah kepada serangan berniat jahat. Secara

kritikalnya, beberapa usaha telah diusahakan untuk mengesan SQLIV dan mencegah

eksploitasinya dan kebanyakannya memberi tumpuan kepada pendekatan pengesanan

kerentanan suntikan SQL peringkat pertama. Bagaimanapun, mekanisme yang

diperlukan untuk mengesan SQLIV peringkat pertama yang mungkin membawa kepada
SQLIA pada tahap aplikasi mungkin tidak mampu untuk menangkap SQLIV peringkat

kedua. Terutamanya adalah kerana input berniat jahat yang dibekalkan oleh penyerang

boleh digabungkan dengan pernyataan SQL di aras pangkalan data. Tambahan lagi,

teknik yang sedia ada cuma melaporkan pengesanan kerentanan, dan mengabaikan

penyingkirannya sebagai beban pada pengaturcara. Setakat yang ditunjukkan oleh kajian

terdahulu, tiada kaedah automatik semasa yang berupaya untuk menangani fenomena

ini. Oleh itu, proses pembaikan sebarang kerentanan ditinggalkan untuk dikendalikan

oleh pembangun perisian. Bagaimanapun, penyingkiran kerentanan secara manual

tersebut amat rumit, terdedah kepada kesilapan, dan mahal. Suntikan SQLIV peringkat

kedua juga sukar untuk dicegah kerana titik suntikan adalah berbeza dari titik serangan,

© C
OPYRIG

HT U
PM

iv

dan oleh itu lebih banyak usaha diperlukan untuk mengesan dan mencegahnya. Kedua-

dua titik serangan perlu disahkan dengan teliti (iaitu, titik suntikan dan titik serangan).

Bagi menangani kelemahan di atas dan jurang penyelidikan yang dikenalpasti, kajian ini

mencipta teknik ujian kotak putih untuk pengesanan automatik dan penyingkiran SQLIV

peringkat kedua dalam aplikasi web menggunakan analisis statik kod sumber. Analisis
statik dikhaskan untuk mengenal pasti pasangan calon laluan rentan ke SQLI peringkat

kedua. Ianya mengesan secara statik apabila data berasal dari sumber yang tercemar, bila

ianya disimpan dalam pangkalan data bahagian belakang, dan apabila ia dicapai semula

dalam bentuk yang lain untuk membina pernyataan SQL baharu tanpa pembersihan yang

betul. Teknik ini juga menggunakan algoritma penyingkiran yang menggunakan kaedah

pengelakan untuk menghapus kerentanan yang dikesan. Alat prototaip, yang dipanggil

Pelindung suntikan SQL Peringkat Kedua (SoSQLiP), telah dibangunkan dan

dilaksanakan untuk menguji teknik yang dicadangkan. Ujian ini dijalankan

menggunakan sebelas aplikasi Web PHP: sepuluh aplikasi yang terdapat di internet dan

yang telah digunakan oleh penyelidik lain, dan satu aplikasi yang dibangunkan oleh

penyelidik. Hasilnya telah dinilai secara empirikal dengan tool sedia ada untuk menilai

sejauh mana efektifnya pengesanan otomatik SQLIV peringkat kedua. Keputusan-
keputusan yang memberansangkan telah diperolehi daripada kedua-dua penilaian.

Experimentasi menunjukkan teknik yang dicadangkan mencapai tahap pengesanan

100% and kadar penyingkiran kerentanan juga 100%. Teknik yang dicadangkan juga

menunjukkan pengesanan keretanan lebih baik berbanding tool canggih (contoh.,

SQLMAP). Walau bagaimanapun, kajian masa hadapan harus memperluaskan skop

penyelidikan dengan mengambil kira lebih banyak jenis kerentanan, seperti kerentanan

XSS peringkat kedua.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

In the name of Allah, the most gracious, the most merciful.

All praise and glory to Almighty Allah (S.W.T.) for His greatness and for giving me the

strength, health, opportunity, and endurance to carry out this work.

I would like to express my unrestrained appreciation to my supervisor Professor Dr. Abu

Bakar Md Sultan, for his patience, generous guidance, and encouragement in carrying

out the research work. My appreciation also goes to my co-supervisor, Professor Dr.

Hazura Zulzalil, for her constant support, advice, and expertise, and to my late co-

supervisor Professor Dr. Abul Azim bin Abd Ghani for his guidance in the right direction

and for his inspiration which kept me moving forward in my research.

A big thank you goes to Dhamar University, Yemen, for providing me with a scholarship

to pursue a PhD at Universiti Putra Malaysia. Their financial and moral support made

my study possible.

I also acknowledge the effort of the entire staff of Universiti Putra Malaysia in the

Faculty of Computer Science and Information Technology, School of Graduate Studies,

to understand the difficulties I faced and gave me the chance to complete my PhD

project, and for all support given. I also would like to express my special gratitude to my

labmate, Isatu Hydara, whom I travelled with, shared knowledge and encouraged each
other in this long journey.

I would not have been able to succeed in this study without the endless support of my

family and friends, for whom I have the utmost love and appreciation. Particular

appreciation goes to my husband for his wonderful and endless love and support.

A million thanks to all the friends I met during my study at UPM for making this place

a second home away from home. Finally, I thank ALLAH (S.W.T), for HE always

directs my path, answers my prayers, accepts my supplications, and guides me to be a

successful and helpful member of the Muslim Ummah.

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the Supervisory Committee were as follows:

Abu Bakar bin Md Sultan, PhD

Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

Abdul Azim bin Abd Ghani, PhD

Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Hazura binti Zulzalil, PhD

Associate Professor
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 11 May 2023

© C
OPYRIG

HT U
PM

viii

Declaration by the Graduate Student

I hereby confirm that:

• this thesis is my original work;

• quotations, illustrations and citations have been duly referenced;

• this thesis has not been submitted previously or concurrently for any other degree at

any institutions;

• intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)

Rules 2012;

• written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and innovation) before thesis is published (in the form of

written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture

notes, learning modules or any other materials as stated in the Universiti Putra
Malaysia (Research) Rules 2012;

• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)

Rules 2012. The thesis has undergone plagiarism detection software

Signature: Date:

Name and Matric No: Najla’a Ateeq Mohammed Draib

© C
OPYRIG

HT U
PM

ix

Declaration by Members of the Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;

• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of Chairman
of Supervisory

Committee:

Professor Dr. Abu Bakar bin Md Sultan

Signature:

Name of Member

of Supervisory

Committee:

Professor Dr. Abdul Azim bin Abd Ghani

Signature:

Name of Member

of Supervisory
Committee:

Associate Professor Dr. Hazura binti Zulzalil

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xv

CHAPTER

1 INTRODUCTION 1
1.1 Research background 1
1.2 Problem Statement 5
1.3 Objectives of The Research 8
1.4 Scope of the Study 8
1.5 Contributions of the Study 10
1.6 Thesis Organization 10

2 LITERATURE REVIEW 12
2.1 Introduction 12

2.1.1 General Overview 12
2.1.2 Security Vulnerabilities 13

2.2 SQL Injection Vulnerabilities and Attacks 16
2.2.1 SQL Injection Vulnerabilities (SQLIVs) 17
2.2.2 SQL Injection Attacks (SQLIAs) 18

2.3 Approaches for Automated Detection and Prevention of

SQLIVs 28
2.3.1 Construction Phase Approaches 30
2.3.2 Testing Phase Approaches 30

2.4 SQLIVs Elimination Approaches 44
2.4.1 Automated Vulnerability Removal Approaches 45
2.4.2 Manual Defensive Coding Practices 48

2.5 Discussion 49
2.6 Summary 50

3 RESEARCH METHODOLOGY 51
3.1 Introduction 51
3.2 Phase I: Literature Study 53
3.3 Phase II: Design of Proposed Technique 53
3.4 Phase III: Implementation of Software Prototype Tool 54

3.4.1 Main Algorithm 54
3.4.2 Detecting the Injection Process Algorithm 56
3.4.3 Detecting the Triggering Process 58
3.4.4 Removing Detected Vulnerabilities 60

© C
OPYRIG

HT U
PM

xi

3.5 Phase IV: Conducting Empirical Evaluation 61
3.5.1 Experimental Definition 62
3.5.2 Dataset 64
3.5.3 Performance Measures 65
3.5.4 Experimental design 67
3.5.5 Analysis and Interpretation 68

3.6 Summary 68

4 DETECTING AND REMOVING SECOND-ORDER SQLIVS

WITH STATIC ANALYSIS 69
4.1 Introduction 69
4.2 Overview of the Proposed Technique 69
4.3 Running Example and Challenges 71

4.3.1 Running Example 71
4.3.2 Challenges 73

4.4 Detecting and Removing Second-order SQLIVs by Static

Analysis 75
4.4.1 The Architecture of the Technique 76
4.4.2 Detecting Pairs of Vulnerable Paths to Second-

order SQLIVs 78
4.4.3 Fixing the Source Code 84

4.5 Prototype Implementation 87
4.6 Summary 90

5 EMPIRICAL EVALUATION 91
5.1 Introduction 91
5.2 Performance and Experimental Results Analysis 91

5.2.1 Experimental Results 91
5.2.2 Validating the Results 95
5.2.3 Comparison with Related Work 99
5.2.4 Vulnerability Removal Confirmation 107

5.3 Discussion 108
5.4 Evaluation Challenges 110
5.5 Selected Second-order SQL injection vulnerabilities 110
5.6 Threats to Validity 112
5.7 Summary 113

6 CONCLUSION AND FUTURE WORK 114
6.1 Conclusion 114
6.2 Future Work 115

REFERENCES 117
APPENDICES 132
BIODATA OF STUDENT 133
LIST OF PUBLICATIONS 134

© C
OPYRIG

HT U
PM

xii

LIST OF TABLES

Table Page

1.1 OWASP Report on SQL Injection 2

2.1 Most common security flaws that lead to SQLIVs 18

2.2 Comparison between first-order and second-order SQLIAs 26

2.3 Testing phase approaches for SQLIVs detection and/or removal 33

2.4 Some web application vulnerability scanners 42

2.5 Observations on SQLIVs Detection and removal Approaches 49

3.1 Basic information about the subject applications 65

3.2 Confusion Matrix for Collecting Measurements 66

3.3 Design of the Study 67

5.1 Experimental results for SoSQLiP 2nd-order SQLIVs detection and

removal 93

5.2 Results validation for applications with known vulnerabilities 96

5.3 Results validation for applications with unknown vulnerabilities 98

5.4 Summary of the experimental results obtained by SoSQLiP 99

5.5 Overview of Experiment Environment Software 100

5.6 Experimental results for SQLMap second-order SQLIVs detection 101

5.7 The performance comparison of SoSQLiP and SQLMap 102

5.8 Normality Test for measurement SQLIVs detected 103

5.9 Statistics of Normality Test 103

5.10 Descriptive Statistics for Detection Rate Data 106

5.11 Test Statistics for Detection Rate Hypothesis Testing 106

5.12 Threats to Validity 112

© C
OPYRIG

HT U
PM

xiii

LIST OF FIGURES

Figure Page

1.1 Second-order SQLI mechanism in web application 3

1.2 Scope of the research 9

2.1 Differences between OWASP 10 2017 and OWASP 10 2021 15

2.2 Main types of SQLIAs 19

2.3 SQL query example of Tautology attack 20

2.4 An example of Logically incorrect queries 20

2.5 An SQL statement retrieves data from the database 21

2.6 An example of an SQL Union query attack 21

2.7 An example of a Peggy-backed attack query 22

2.8 Vulnerable stored procedure to SQLIA 22

2.9 An Alternate encoding SQLIA 24

2.10 An example of a Blind Injection query attack 25

2.11 An example of a Timing Attack 25

2.12 The Phases of Second-order SQLIA 28

2.13 SQLIVs defenses in SDLC 29

2.14 General Mapping of SQLIV eliminating approaches 45

3.1 Research Methodology Overview 52

3.2 Detecting Injection Points Algorithm 55

3.3 Algorithm for detecting injection points 57

3.4 Algorithm for detecting triggering points 60

3.5 Second-order vulnerability removal Algorithm 61

3.6 Overview of the Experimental Process 62

4.1 A high-level overview of the proposed technique 71

4.2 Example of second-order SQLIV 72

© C
OPYRIG

HT U
PM

xiv

4.3 Second-order SQLIA process 73

4.4 A vulnerable code's input source to sensitive sink data flow 74

4.5 SoSQLiP architecture including main modules 77

4.6 Taintedness propagation of the user’s input to the sensitive sink 79

4.7 Taintedness propagation of the retrieved data from the database 81

4.8 Taintedness propagation of data retrieved from the database 82

4.9 Taintedness propagation of data retrieved from the database 83

4.10 Flowchart of SoSQLiP Prototype 86

4.11 Flowchart Comparison between WAP and SoSQLiP 89

5.1 Comparison of vulnerabilities detected to the size of applications 94

5.2 Comparison of the detection performance of SoSQLiP and SQLMap 105

5.3 Comparison of Percentage of Second-order SQLIVs Removed 108

5.4 Insertion Point in newadminuser.php 110

5.5 Triggering Point in Login.php 111

5.6 Insertion Point in login.php 111

5.7 Triggering Point in view.php 111

© C
OPYRIG

HT U
PM

xv

LIST OF ABBREVIATIONS

SQL Structured Query Language

SQLIV SQL Injection Vulnerabilities

SQLIA SQL Injection Attack

SDLC Software Development Life Cycle

SoSQLiP Second-order SQL injection Protector

OWASP Open Web Application Security Project

AST Abstract Syntax Tree

CFG Control Flow Graph

WVS Web application Vulnerability Scanners

SSA Static Security Analysis

MST Main Symbol Table

sqlStm SQL Statement

SoSqli Second-order SQL Injection

© C
OPYRIG

HT U
PM

1

CHAPTER 1

1 INTRODUCTION

1.1 Research background

Web applications are nowadays the backbone of the modern internet. Their popularity

and acceptance are growing rapidly due to the high level of convenience, accessibility
and ubiquitous they offer. These online applications are reliable and efficient solutions

to business challenges. Aside from delivering information and services and serving as a

great communication medium, web applications store and process vast amounts of

potentially sensitive data for a large number of users. The processed data is usually stored

or retrieved into and from the back-end database. Timely, web application users should

move with the back-end database via user interfaces for many tasks: extracting

information, making queries, and updating data, among others. Hence, the attacker’s

unauthorised access to sensitive data can threaten data confidentiality, integrity, and

application availability.

Typically, web applications are designed with hard time restrictions; and therefore, they

are often deployed with varying degrees of unexpected security vulnerabilities that

hackers exploit through different types of attacks (Kaur & Kaur, 2016; Kieyzun et al.,

2009; Medeiros et al., 2016).

Due to their high global exposure and the presence of vulnerabilities besides the critical

assets that web applications usually store, web applications are considered attractive and

ideal targets for security attackers who continue to hunt for vulnerabilities that allow

them to pervade an organisation. For example, a vulnerable web application could pave

the way for unauthorised access to underlying systems, access to the back-end database,

and/or simply cause a denial of service (Olivo et al., 2015).

In the same vein, Structured Query Language Injection Vulnerabilities (SQLIVs) have

been consistently top-ranked among web application vulnerabilities for the past few

years (Acunetix, 2020; OWASP, 2021; SANS/CWE, 2019; TRUSTWAVE, 2018).

SQLIVs refer to potential software security flaws associated with database-driven web

applications that can be exploited by means of SQL Injection Attacks (SQLIAs).

Typically, SQLIV takes place in code when user-supplied data (i.e., URL parameters or

HTML form input) is allowed to propagate from an input source to a security-critical

operation (e.g., database queries) without proper sanitisation. The vulnerability is caused
by code fragments where unsensitised input is interpreted as SQL code instead of being

treated as data (Johari & Sharma, 2012; Shar & Tan, 2013; Verma & Kaur, 2015).

SQLIA is a notorious hacking technique in which the attacker exploits SQLIV of a web

application connected to a database to inject SQL code fragments into vulnerable input

parameters (e.g., HTTP requests). The malicious code masquerades as user input and is

embedded in the SQL query.

© C
OPYRIG

HT U
PM

2

The consequences of an SQLIA can be devastating. A successful attack can hinder the

privacy, integrity and availability of information in the database. The attacker can use

this attack to bypass the authentication process (loss of authentication), extract data from

the back-end database (loss of confidentiality), and/or modify existing data (loss of

integrity) (Alwan & Younis, 2017; Faker et al., 2017; Hu et al., 2020; Johari & Sharma,
2012; Mishra et al., 2014). According to OWASP Top Ten 2017, the overall security

risk to an organisation can be determined based on a number of factors, including the

likelihood associated with the threat agent, attack vectors, security vulnerabilities and

the business impact on the organisation. Table 1.1 shows attack vectors, security

weaknesses, and the impact of SQL injection, as reported by OWASP (2017).

Table 1.1 : OWASP Report on SQL Injection

Threat

agent
Exploitability Security Weakness Impacts

 Prevalence Detectability Technical

Impact

Business

Impact

Application-

Specific

Easy Common Average Severe Depending on
web

application
needs and data

Hackers have developed many types of SQLIAs to exploit SQLIVs. Several studies

classified these attacks, based on the injection technique, into seven basic types:

tautologies, illegal/logically incorrect queries, union query, piggy-backed, stored

procedure, alternate encoding, and inference-based attacks (Faker et al., 2017; Johari &

Sharma, 2012; Kaur & Kaur, 2016; Singh, 2017).

Practically, SQL injection can be introduced into vulnerable web applications using two

main mechanisms based on the injection order: first-order SQL injection and second-

order SQL injection (Faker et al., 2017; Halfond et al., 2008; Kim & Lee, 2014; Liu &

Wang, 2018).

First-order SQL injection is the primary type of SQL injection attack. In such an attack,

the attacker inserts SQL commands into a vulnerable input field that flows directly from

an entry point (e.g., $_GET) to a sensitive sink (e.g., mysqli_query). The successful

injection results are delivered immediately upon user-input submission. However, if the

malicious code has been an argument of an escape method, it can be blocked, but it is

stored in the database and can cause second-order SQLIA later. In practice, first-order

SQL injection attacks can be launched using any one of the aforementioned attack types

by injecting malicious input through user input, cookies, or server vulnerabilities (Faker

et al., 2017).

Second-order SQL injection, also called stored or persistent SQLIA is a particular type

of SQLIA that is more serious, more difficult to be detected, and has strong concealment

(Choudhury et al., 2016; Liu & Wang, 2018; Muraleedharan, 2015; Ping, 2017). This

technique can be applied successfully to all kinds of injections mentioned above

© C
OPYRIG

HT U
PM

3

(Muraleedharan, 2015). In such attacks, the attacker first seeds SQL commands into the

database and then uses that input at a later stage in a sensitive sink for launching the

attack. Unlike first-order SQLIA, the malicious code in second-order SQLIA is not

initiated immediately. However, it is first stored in the application’s back-end database

and then retrieved and activated by the victim/attacker (Dahse & Holz, 2014). The
security violations of such attacks can be disastrous; they may include identity theft, loss

of confidential or sensitive data, taking control of data, and destroying the back-end

database (Sharma & Jain, 2014).

A Second-order SQL injection attack is developed on a first-order SQL injection attack.

To illustrate, Figure 1.1 presents a typical architecture of the second-order SQLIA.

Figure 1.1 : Second-order SQLI mechanism in web application

A technique for detecting SQLIA at the application level cannot defend against the

second-order SQLIA attack because the malicious input supplied by the attacker is

concatenated with the SQL statement at the database level (Dahse & Holz, 2014). Indeed,

second-order vulnerability does not appear when the user submits regular content but

requires unique SQL injection attack strings to trigger it. Therefore, ordinary tools can

hardly detect second-order vulnerabilities (Liu & Wang, 2018). Furthermore, preventing

first-order SQLIVs using available techniques such as prepared statements and escape

© C
OPYRIG

HT U
PM

4

techniques is not sufficient to prevent second-order SQLIVs. The developer might

successfully escape user input and deem it safe. However, later when the data is reused

to create different queries, the previously sanitised input may result in a second-order

SQL injection attack.

Although different web programming languages provide different data validation

mechanisms for protection against SQLIVs, however, they do not guarantee secure web

applications. Inexperienced developers and those rushing to get a product to market may

not employ language-provided mechanisms properly. Moreover, experienced

programmers often create applications with software errors and vulnerabilities.

Therefore, testing online applications for SQLIV detection and removal before

deployment is indispensable to safeguarding them from exploitation. As in conventional

software applications, software applications’ testing always makes it easier to detect and

fix errors.

Due to the importance of producing secure web applications, the research community

has investigated the area of automated detection and removal of SQLIVs over the years

and proposed many approaches to the problem.

Static analysis techniques are among the most widely used approaches for the detection

and removal of SQLIVs during the test phase of web application development. Although

there has been a considerable number of static analysis techniques for SQLIVs detection,

the area of second-order SQLIVs detection has not been adequately explored (Cao et al.,
2018; Kronjee et al., 2018; Liu & Wang, 2018; Medeiros et al., 2016; Trinh et al., 2014;

Yan et al., 2014a; Yan et al., 2018). In fact, very few static analysis techniques addressed

the detection of second-order SQLIVs.

Nevertheless, a thorough investigation of the literature reveals that most of the testing
and analysing techniques proposed to automate the SQLIVs assessment were incapable

of handling the second-order SQLIVs. They only focused on the detection of first-order

SQLIVs since they only analysed SQL queries generated at the application level, but

they ignored those generated at the database level. This may be due to two common

explanations: First, when the first-order vulnerability is detected and prevented, the

second-order vulnerability is not exploitable anymore. Second, when successfully

escaped, malicious input is deemed safe. However, the downside of these propositions

is that the attack can be launched later in different times and contexts by exploiting the

second-order vulnerabilities that make use of that data to create different SQL queries.

Indeed, the mechanism to detect SQLIV, which may lead to SQLIA on the application

level, may not afford to detect second-order SQLIV as the malicious inputs supplied by

the attacker are concatenated with the SQL statement at the database level, not the

application level.

In addition, most existing SQLIV removal techniques are predominantly manual Steiner

et al. (2017) and Umar et al. (2014a). They only automate fix generation and leave the

actual source code modification for applying the auto-generated fix in the hands of the

© C
OPYRIG

HT U
PM

5

developer, despite the fact that manual bug fixing is prone to errors and human

limitations.

Obviously, it would be highly desirable to have a technique that can analyse the source

code of vulnerable web applications for identifying the vulnerable paths to second-order

SQLIAs and produce a reliable and secure version ready for deployment in to live

environment.

This type of technique would reduce the human efforts and expenses associated with the

testing phase of web application development, resulting in higher quality software.

The aforementioned weaknesses of existing techniques motivate further research in the

area, with the objective of defining an accurate and precise method of achieving

automated detection and removal of second-order SQLIVs for web applications.

Consequently,this study introduces a new static analysis technique for the automated

detection of second-order SQLIVs. In addition, the technique inserts fixes to remove the

detected vulnerabilities automatically.

Static analysis is devoted to identifying possible or candidate pairs of vulnerable paths

(target paths) to second-order SQLI. It statically detects when data comes from tainted

sources and is stored in the back-end database for the purpose of using and retrieving

them again without proper sanitisation. Then, the technique applies escaping techniques

to the detected vulnerabilities to remove them.

1.2 Problem Statement

The process of automated web application testing for SQLIVs detection and remediation

is particularly delicate, challenging, and costly due to the complex infrastructure of web

applications and the extreme heterogeneity of SQL injection attack vectors (Akrout et

al., 2014; Di Lucca & Fasolino, 2006; Doǧan et al., 2014; Li et al., 2014). Detection and

prevention of second-order injections can be particularly difficult because the injection

point is located separately from where the attack occurs.

Several black-box vulnerability scanning techniques have been developed to support

web application testing for SQLIV detection because they are easy to use, automated,

and independent of the underlying web application technology (Akrout et al., 2014;

Aliero et al., 2019; Chen & Wu, 2010; Djuric, 2013; Huang et al., 2003; Kals et al., 2006;

Patil et al., 2016; Thomé et al., 2014). However, black-box testing techniques cannot

guarantee precision and completeness as they do not explore all possible program paths

of applications. Moreover, existing black-box vulnerability scanners are limited to

detecting first-order SQLIVs, and they are not capable of detecting second-order

SQLIVs. This tendency is due to two main reasons: First, black box techniques cannot

confirm whether the injected code is already in storage or not. Second, they may have

© C
OPYRIG

HT U
PM

6

trouble linking the initial injection event with triggering the stored injected code.

Furthermore, black-box scanners are based on the idea of knowing little about the

internal workings of the application. In the case of a first-order injection, this is less

relevant because the scanner can directly verify that the attack worked. However, with a

second-order SQL injection, the scanner must not only implement the attack but also has
to find a way to force the application to trigger the attack without knowing the

application's source code, i.e., it must select the right attack vectors that are able to detect

and exploit the second-order SQLIVs.

Empirical evidence has shown that existing black box scanners have difficulty
confirming that the attack code has been successfully injected into the database and

maintaining the state of the database, which is critical to perform a second pass and

search for new pages that would execute the injected attack code and launch the second-

order SQLIA (Anagandula & Zavarsky, 2020; Bau et al., 2012; Deepa & Thilagam,

2016; Doupé et al., 2010; Hofman & Ibrahimi, 2022; Khoury et al., 2011; Parvez et al.,

2016; Stanford et al., 2010).

White-box testing approach, specifically static source code analysis, is found very

attractive in addressing the aforementioned weaknesses of black-box vulnerability

scanners and their inability to support code modification for automated vulnerability

removal. However, the research on second-order SQL injection technology and the

detection accuracy of the existing static analysis techniques for second-order

vulnerabilities is either unsatisfactory or such vulnerabilities are completely overlooked

(Dolatnezhad & Amini, 2019; Fernando & Abawajy, 2013; Ping, 2017; Saidu Aliero et

al., 2015; Xiao et al., 2017; Yan et al., 2014b).

Existing static analysis approaches utilise taint analysis and similar code analysis

techniques to detect SQLIVs by tracking the flow of intruders or tainted input values

throughout the application itself (Backes et al., 2017; Jovanovic et al., 2006; Medeiros

et al., 2016; Su & Wassermann, 2006; Xie & Aiken, 2006; Yan et al., 2018). However,

these techniques are not able to track the flow of input values across databases until the
final query, which makes it difficult to detect second-order SQLIVs. The attacker can

store malicious code in the database and trigger its execution at a later time by exploiting

improper sanitisation of the data retrieved from the database, resulting in a second-order

SQL injection attack. In the context of this thesis, improper sanitisation refers to the

failure to adequately filter, validate, or otherwise handle user-supplied input before it is

stored in the database or after it is retrieved from the database in a manner that ensures

that the data can be safely used to construct an SQL command.

Despite several existing studies on the applicability of taint analysis techniques, to the

best of our knowledge, very few works, such as Dahse & Holz (2014) and Yan et al.

(2014a), have addressed the automated detection of second-order SQL injection

vulnerabilities, while none have targeted the automated removal of second-order SQL

injection vulnerabilities.

© C
OPYRIG

HT U
PM

7

Unfortunately, existing approaches to remediating SQLIVs can be divided into two

extremes: On the one hand, some approaches only identify the vulnerability and then

implement or generate a fix that can address the vulnerability without modifying the

underlying code, leaving its remediation to the programmer (Abadi et al., 2011; Dysart

& Sherriff, 2008; Mui & Frankl, 2010; Panda, 2017; Rafnsson et al., 2020; Scholte et
al., 2012; Siddiq et al., 2021; Tasevski & Jakimoski, 2020; Thomas & Williams, 2007;

Umar et al., 2014b). On the other hand, there are techniques that automatically remove

vulnerabilities by modifying the source code. These techniques identify the root cause

of the vulnerability and then modify the source code to eliminate it. This is accomplished

by either applying scaping methods to the user input (Medeiros et al., 2016), inserting

parameterised queries (Rafnsson et al., 2020), or validating user input (Tommy et al.,

2017). However, these techniques are limited to addressing the first-order vulnerabilities

by handling the user input securely and preventing an attack from being launched at the

injection point since they only remove the vulnerability at the injection point and not at

the triggering point, which is not sufficient to protect the application from second-order

attacks, since the attack can be launched later by exploiting the second-order

vulnerabilities that use the malicious input stored in the database. Moreover, manual

removal of such vulnerabilities is tedious, error-prone and costly.

Obviously, vulnerability detection alone does not make web applications secure. Actual

remediation of detected vulnerabilities is required to secure the web application.
Therefore, an approach to automate the detection and removal of second-order SQL

injection vulnerabilities is highly desirable, even though this is still an open research area

in the current literature on web application vulnerabilities.

The aforementioned weaknesses and gaps clearly reveal the shortcomings and
inadequacies of existing techniques at achieving automated detection and removal of

second-order SQLIVs, thus, signifying the utmost importance of further research in this

area.

In order to address the issues raised above, this thesis suggests using a static analysis
technique to improve the automated detection and removal of second-order SQLIVs in

web applications' source code. Static analysis was chosen as the method for the proposed

solution because: (i) static analysis can be used to identify vulnerabilities early in the

development process before the code is deployed. This can help prevent vulnerabilities

from being introduced into production systems and reduce the risk of exploitation, (ii)

static analysis tools can be automated to efficiently and consistently analyse large code

bases, which can be particularly useful for identifying second-order vulnerabilities that

are more difficult to identify manually, (iii) static analysis can provide detailed

information about the source of the vulnerability, (iii) static analysis can provide detailed

information about the source of the vulnerability, the exact location of the injection and

triggering points, and the nature of the vulnerability, which improves developer

awareness of the risks associated with second-order vulnerabilities, (iv) static analysis
has the potential to explore all possible execution paths, which means a greater chance

of finding such vulnerabilities, and (v) static analysis methods design many types of rules

to detect vulnerabilities and therefore have the potential to identify second-order

vulnerabilities.

© C
OPYRIG

HT U
PM

8

1.3 Objectives of The Research

The main objective of this research work is to propose a new static analysing technique

for detecting second-order SQL injection vulnerabilities in web applications' source code

and automatically removing them. In order to achieve the main objective, the following

are the specific objectives of this thesis:

i. To propose a technique to detect and remove second-order SQLIV of a web

application by analysing its source codes

ii. To implement the proposed technique that enables automatic detection and

removal of second-order SQLIV in a web application.

iii. To evaluate the effectiveness of the proposed technique.

1.4 Scope of the Study

Software security testing is the process of identifying whether the security features of

software implementation are consistent with the design. Software security testing can be

divided into security functional testing and security vulnerability testing. The software

development process involves several development phases, including requirements,

design, coding, testing, and deployment. It is essential to take care of the security aspects

of the web application at each stage (Deepa & Thilagam, 2016). As stated in the

literature, several testing techniques specifically target each development phase

mentioned above (Jovanovic, 2009; Luo, 2001). The approach designed in this study

specifically focuses on software security testing for the detection and removal of second-

order SQLIVs during the testing phase of web application development.

The scope of software vulnerabilities is very broad, diverse, and complex. However,

previous reports on software security consider injection vulnerabilities the most severe

and prevalent vulnerabilities among other web application vulnerabilities (Acunetix,

2020; OWASP, 2021; SANS/CWE, 2019; TRUSTWAVE, 2018). SQLIVs are top-
ranked as the most severe and common injection vulnerabilities with hazardous

consequences. The lack of effective mechanisms for addressing the detection of second-

order SQLIVs which are associated with an increasing trend of reprocessing submitted

data and optimising its use increases the risks of an attack. Therefore, the focus of this

study is to address the problem of detecting and removing second-order SQLIVs in web

applications. Figure 1.2 illustrates the research direction. The bold lines that are

connected to the green boxes present the direction focused on this study, while the

dashed lines represent other paths that are not considered in this study.

Several techniques for removing SQL injection vulnerabilities include input validation,

parameterized queries, and sanitization. This research uses the sanitisation technique to

remove second-order SQL injection vulnerabilities in the source code. Sanitization is a

technique that removes potentially dangerous characters or metadata from user input to

prevent SQL injection attacks. This technique requires fewer changes to the code than

the other techniques, making it an effective solution for preventing SQL injection

© C
OPYRIG

HT U
PM

9

attacks, especially when applied automatically. In addition, sanitization can be faster and

more lightweight compared to parameterized queries and input validation. This can be

useful for applications that require high performance or processing large volumes of

data.

Several programming languages exist for developing web applications, such as JSP,

Python, PHP, and so forth. This research is concerned with web applications developed

by PHP as a subject of security testing. PHP is the most common programming language

used on the server (Hauzar & Kofroň, 2012; Positive Technologies, 2014; W3techs,

2021). Moreover, PHP is particularly prone to programming mistakes that may lead to

web application vulnerabilities, such as SQL injections (Backes et al., 2017).

Figure 1.2 : Scope of the research

© C
OPYRIG

HT U
PM

10

1.5 Contributions of the Study

This study made several contributions to the body of knowledge that include but are not

limited to the following:

a) It provides an automated technique based on static program analysis for an

effective analysis of web application source code to detect and remove

second-order SQLIVs.

b) It provides a support tool named SoSQLiP to automate the process of

detecting and removing second-order SQLIVs proposed by our technique.

c) It provides empirical evidence that the proposed technique is effective in

testing web applications compared to the existing technique.

Furthermore, this new technique will benefit developers of web applications by enabling

them to test their source codes and get rid of second-order SQLIVs before deploying

their applications.

1.6 Thesis Organization

The thesis comprises six chapters. A brief description of each chapter is given below.

This chapter provides an overview of the research area. It pinpoints the research problem,

objectives, scope of the study, main contributions, and the structure with which the

chapters are organised. The remaining chapters are organised as follows.

Chapter 2 provides a thorough review of key areas that serve as the foundation for this

study. This chapter discusses the existing approaches and techniques used to detect and

remove the SQLIVs of web applications and highlights the limitations, gaps, and issues

of existing SQLVs detection and removal approaches and techniques. The reviewed

literature provides a base for the technique proposed in this study.

Chapter 3 presents the methodology of the study. It shows the materials and methods

used for achieving the objectives of the study, namely, to propose a static analysis

technique to detect and remove the vulnerable points to second-order SQL injection
attacks, to implement a prototype software tool, and to discuss a test strategy to evaluate

the performance of the proposed technique.

Chapter 4 presents the newly proposed technique to detect and remove second-order

SQL injection vulnerabilities in the web application source file. The chapter discusses
the performance of the proposed technique and its architecture. It also explains the

development and implementation of SoSQLiP software prototype.

© C
OPYRIG

HT U
PM

11

Chapter 5 presents a comprehensive set of experiments that were carried out to

empirically evaluate the new technique, SoSQLiP, in terms of its ability to detect second-

order SQLIVs, second-order SQLIVs detection precision, second-order SQLIVs

detection recall, second-order SQLIVs detection F-Measure, and percentage of the

SQLIVs removed. In addition, the chapter contains the experimental results, analysis,

and discussion.

Chapter 6 provides a summary and highlights the contributions and limitations of this

study. It also gives directions for future research.

© C
OPYRIG

HT U
PM

117

7 REFERENCES

Abadi, A., Feldman, Y. a, & Shomrat, M. (2011). Code-motion for API migration:

Fixing SQL injection vulnerabilities in Java. WRT 2011 - Proceedings of the

4th Workshop on Refactoring Tools, Co-Located with ICSE 2011, 1–7.

https://doi.org/10.1145/1984732.1984734

Abdulridha Hussain, M., Alaa Hussien, Z., Ameen Abduljabbar, Z., Ma, J., Al Sibahee,

M. A., Abdulridha Hussain, S., Omollo Nyangaresi, V., & Jiao, X. (2022).

Provably throttling SQLI using an enciphering query and secure matching.

Egyptian Informatics Journal. https://doi.org/10.1016/J.EIJ.2022.10.001

Acunetix. (2020). Web Application Vulnerability. Acunetix, October, 26.

https://w3techs.com/technologies/history_overview/programming_language/

ms/y

Akrout, R., Alata, E., Kaaniche, M., & Nicomette, V. (2014). An automated black box

approach for web vulnerability identification and attack scenario generation.

Journal of the Brazilian Computer Society, 20(1), 1–16.

https://doi.org/10.1186/1678-4804-20-4

Alazab, A., Alazab, M., Abawajy, J., & Hobbs, M. (2011). Web Application Protection

against SQL Injection Attack. Icita, 1–7.

Alhuzali, A., Eshete, B., Gjomemo, R., & Venkatakrishnan, V. N. (2016). Chainsaw:

Chained automated workflow-based exploit generation. Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security,

641–652. https://doi.org/10.1145/2976749.2978380

Alhuzali, A., Gjomemo, R., Eshete, B., & Venkatakrishnan, V. N. (2018). NAVEX:

Precise and scalable exploit generation for dynamic web applications.

Proceedings of the 27th USENIX Security Symposium, 377–392.

Aliero, M. S., Ghani, I., Qureshi, K. N., & Rohani, M. F. (2019). An algorithm for

detecting SQL injection vulnerability using black-box testing. Journal of

Ambient Intelligence and Humanized Computing, 11(1), 249–2660.

https://doi.org/10.1007/s12652-019-01235-z

Aliero, M. S., Ghani, M., & Khan, M. M. (2015). Review on sql injection protection

methods and tools. Jurnal Teknologi, 77(13), 49–66.

https://doi.org/10.11113/jt.v77.6359

Almadhy, W., Alruwaili, A., & Hendaoui, S. (2022). Using SQLMAP to Detect SQLI

Vulnerabilities. 22(1), 234–240.

Aloraini, B., Nagappan, M., German, D. M., Hayashi, S., & Higo, Y. (2019). An

empirical study of security warnings from static application security testing

tools. Journal of Systems and Software, 158.

https://doi.org/10.1016/j.jss.2019.110427

© C
OPYRIG

HT U
PM

118

Alotaibi, M., Al-hendi, D., Alroithy, B., AlGhamdi, M., & Gutub, A. (2019). Secure

Mobile Computing Authentication Utilizing Hash, Cryptography and

Steganography Combination. Journal of Information Security and Cybercrimes

Research, 2(1), 73–82. https://doi.org/10.26735/16587790.2019.001

Alwan, Z. S., & Younis, M. F. (2017). Detection and Prevention of SQL Injection

Attack: A Survey. International Journal of Computer Science and Mobile

Computing, 6(8), 5–17. www.ijcsmc.com

Amankwah, R., Kwaku, P., & Yeboah, S. (2017). Evaluation of Software Vulnerability

Detection Methods and Tools: A Review. International Journal of Computer

Applications, 169(8), 22–27. https://doi.org/10.5120/ijca2017914750

Anagandula, K., & Zavarsky, P. (2020). An Analysis of Effectiveness of Black-Box Web

Application Scanners in Detection of Stored SQL Injection and Stored XSS

Vulnerabilities. Proceedings - 2020 3rd International Conference on Data

Intelligence and Security, ICDIS 2020, 40–48.

https://doi.org/10.1109/ICDIS50059.2020.00012

Anis, A., Zulkernine, M., Iqbal, S., Liem, C., & Chambers, C. (2018). Securing web

applications with secure coding practices and integrity verification.

Proceedings - IEEE 16th International Conference on Dependable, Autonomic

and Secure Computing, IEEE 16th International Conference on Pervasive

Intelligence and Computing, IEEE 4th International Conference on Big Data

Intelligence and Computing and IEEE 3, 618–625.

https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00112

Anley, C. (2002). Advanced SQL injection in SQL server applications. White Paper,

Next Generation Security Software. http://www.ngssoftware.com

Austin, A., & Williams, L. (2011). One Technique is Not Enough: A Comparison of

Vulnerability Discovery Techniques. 2011 International Symposium on

Empirical Software Engineering and Measurement, 97–106.

https://doi.org/10.1109/ESEM.2011.18

Avancini, A., & Ceccato, M. (2011). Security testing of web applications: A search-

based approach for cross-site scripting vulnerabilities. Proceedings - 11th IEEE

International Working Conference on Source Code Analysis and Manipulation,

SCAM 2011, 85–94. https://doi.org/10.1109/SCAM.2011.7

Awang, N. F., & Manaf, A. A. (2015). Automated security testing framework for

detecting SQL injection vulnerability in web application. Communications in

Computer and Information Science, 534, 160–171.

https://doi.org/10.1007/978-3-319-23276-8_14

Backes, M., Rieck, K., Skoruppa, M., Stock, B., & Yamaguchi, F. (2017). Efficient and

Flexible Discovery of PHP Application Vulnerabilities. Proceedings - 2nd

IEEE European Symposium on Security and Privacy, EuroS and P 2017, 334–

349. https://doi.org/10.1109/EuroSP.2017.14

© C
OPYRIG

HT U
PM

119

Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., & Vigna,

G. (2008). Saner: Composing static and dynamic analysis to validate

sanitization in web applications. Proceedings - IEEE Symposium on Security

and Privacy, 387–401. https://doi.org/10.1109/SP.2008.22

Bateman, H. V. (1998). Software vulnerability analysis. Purdue University, De-

Partment of Computer Sciences, 274.

Bau, J., Wang, F., Bursztein, E., Mutchler, P., & Mitchell, J. (2012). Vulnerability

Factors in New Web Applications: Audit Tools, Developer Selection &

Languages. Seclab.Stanford.Edu.

http://seclab.stanford.edu/websec/scannerPaper.pdf

Belyaev, M. V, Shimchik, N. V, Ignatyev, V. N., & Belevantsev, A. A. (2018).

Comparative Analysis of Two Approaches to Static Taint Analysis.

Programming and Computer Software, 44(6), 459–466.

https://doi.org/10.1134/S036176881806004X

Bhanderi, A., Rawal, N., & Student, P. G. (2007). A Review on Detection Mechanisms

for SQL Injection Attacks. International Journal of Innovative Research in

Science, Engineering and Technology (An ISO, 3297, 12446–12452.

https://doi.org/10.15680/IJIRSET.2015.0412145

Bisht, P., Sistla, A. P., & Venkatakrishnan, V. N. (2010). TAPS: Automatically

preparing safe SQL queries. Proceedings of the ACM Conference on Computer
and Communications Security, 645–647.

https://doi.org/10.1145/1866307.1866384

Braz, L., Fregnan, E., Calikli, G., & Bacchelli, A. (2021). Why don’t developers detect

improper input validation? Proceedings - International Conference on Software

Engineering, 499–511. https://doi.org/10.1109/ICSE43902.2021.00054

Cao, K., He, J., Fan, W., Huang, W., Chen, L., & Pan, Y. (2018). PHP vulnerability

detection based on taint analysis. 2017 6th International Conference on

Reliability, Infocom Technologies and Optimization: Trends and Future

Directions, ICRITO 2017, 2018-Janua, 436–439.

https://doi.org/10.1109/ICRITO.2017.8342466

Chaki, S. M. H., & Mat Din, M. (2019). A Survey on SQL Injection Prevention Methods.

International Journal of Innovative Computing, 9(1), 47–54.

https://doi.org/10.11113/ijic.v9n1.224

Chen, J. M., & Wu, C. L. (2010). An automated vulnerability scanner for injection attack

based on injection point. ICS 2010 - International Computer Symposium, 113–

118. https://doi.org/10.1109/COMPSYM.2010.5685537

CHEN, Y., PAN, Z., CHEN, Y., & LI, Y. (2022). DISOV: Discovering Second-Order

Vulnerabilities Based on Web Application Property Graph. IEICE

Transactions on Fundamentals of Electronics, Communications and Computer

Sciences. https://doi.org/10.1587/transfun.2022eap1045

© C
OPYRIG

HT U
PM

120

Chess, B., & Mcgraw, G. (2004). Static analysis for security. IEEE Security and Privacy,

2(6), 76–79. https://doi.org/10.1109/MSP.2004.111

Chess, B., & West, J. (2007). Secure Programming with static Analysis. In Addison-

Wesley Professional. https://doi.org/10.1017/CBO9781107415324.004

Choudhury, H., Roychoudhury, B., & Saikia, D. K. (2016). Efficient Detection of Multi-

step Cross-Site Scripting Vulnerabilities. International Journal of Network

Security, 18(6), 1041–1053. https://doi.org/10.1007/978-3-319-13841-1

Chowdhury, I., & Zulkernine, M. (2011). Using complexity, coupling, and cohesion

metrics as early indicators of vulnerabilities. Journal of Systems Architecture,

57(3), 294–313. https://doi.org/10.1016/j.sysarc.2010.06.003

Dahse, J., & Holz, T. (2014). Static Detection of Second-Order Vulnerabilities in Web

Applications. 23rd USENIX Security Symposium (USENIX Security 14), 989–

1003. https://www.usenix.org/conference/usenixsecurity14/technical-

sessions/presentation/dahse

Damele, B., & Stampar, M. (2016). sqlmap: automatic SQL injection and database

takeover tool. SQLMap. http://sqlmap.org/

Deepa, G., & Thilagam, P. S. (2016). Securing web applications from injection and logic
vulnerabilities: Approaches and challenges. Information and Software

Technology, 74, 160–180. https://doi.org/10.1016/j.infsof.2016.02.005

Di Lucca, G. A., & Fasolino, A. R. (2006). Testing Web-based applications: The state

of the art and future trends. Information and Software Technology, 48, 1172–

1186. https://doi.org/10.1016/j.infsof.2006.06.006

Díaz, G., & Ramón Bermejo, J. (2013). Static analysis of source code security:

Assessment of tools against SAMATE tests. Information and Software

Technology, 55, 1462–1476. https://doi.org/10.1016/j.infsof.2013.02.005

Ding, S., Tan, H. B. K., Shar, L. K., & Padmanabhuni, B. M. (2013). Towards a hybrid

framework for detecting input manipulation vulnerabilities. 2013 20th Asia-

Pacific Software Engineering Conference (APSEC), 1, 363–370.

https://doi.org/10.1109/APSEC.2013.56

Djuric, Z. (2013). A black-box testing tool for detecting SQL injection vulnerabilities.

2013 Second International Conference on Informatics & Applications (ICIA),

216–221. https://doi.org/10.1109/ICoIA.2013.6650259

Doǧan, S., Betin-Can, A., & Garousi, V. (2014). Web application testing: A systematic

literature review. Journal of Systems and Software, 91(1), 174–201.

https://doi.org/10.1016/j.jss.2014.01.010

Dolatnezhad, S., & Amini, M. (2019). Preventing SQL Injection Attacks by Automatic

Parameterizing Raw Queries Using Lexical and Semantic Analysis Methods.

Scientia Iranica, 6, 0–0. https://doi.org/10.24200/sci.2019.21229

© C
OPYRIG

HT U
PM

121

Doupé, A., Cova, M., & Vigna, G. (2010). Why Johnny can’t pentest: An analysis of

black-box web vulnerability scanners. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 6201 LNCS, 111–131. https://doi.org/10.1007/978-3-642-

14215-4_7

Draib, N., Sultan, A. B. M., Ghani, A. A. B. A., & Zulzalil, H. (2019). Evaluation of

SQL injection vulnerability detection tools. International Journal of

Engineering and Advanced Technology, 9(1), 1747–1751.

https://doi.org/10.35940/ijeat.A2648.109119

Dysart, F., & Sherriff, M. (2008). Automated fix generator for SQL injection attacks.

Proceedings - International Symposium on Software Reliability Engineering,

ISSRE, May, 311–312. https://doi.org/10.1109/ISSRE.2008.44

Evans, D., & Larochelle, D. (2002). Improving security using extensible lightweight

static analysis. IEEE Software, 19(1), 42–51.

https://doi.org/10.1109/52.976940

Faker, S. A., Muslim, M. A., & Dachlan, H. S. (2017). A Systematic Literature Review

on SQL Injection Attacks Techniques and Common Exploited Vulnerabilities.

International Journal of Computer Engineering and Information Technology,

9(12), 284–291.

Fangqi, S., Liang, X., & Su, Z. (2011). Static detection of access control vulnerabilities
in Vue applications. 20th USENIX Conference on Security, 11–21.

https://doi.org/10.1088/1742-6596/1646/1/012021

Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu, R., & Pretschner, A. (2016).

Security Testing: A Survey. In Advances in Computers (Vol. 101, pp. 1–51).

https://doi.org/10.1016/bs.adcom.2015.11.003

Fernando, H., & Abawajy, J. (2013). Malware detection and prevention in RFID

systems. Studies in Computational Intelligence, 460, 143–166.

https://doi.org/10.1007/978-3-642-34952-2_6

Fu, X., & Qian, K. (2008). SAFELI - SQL injection scanner using symbolic execution.

TAV-WEB 2008 - Proceedings of the Workshop on Testing, Analysis and

Verification of Web Software, 34–39.

https://doi.org/10.1145/1390832.1390838

Gautam, B., Tripathi, J., Singh, S., & Student, M. T. (2018). A Secure Coding Approach

For Prevention of SQL Injection Attacks. International Journal of Applied

Engineering Research, 13(11), 9874–9880. http://www.ripublication.com

Ghafarian, A. (2018). A hybrid method for detection and prevention of SQL injection
attacks. Proceedings of Computing Conference 2017, 2018-Janua(July), 833–

838. https://doi.org/10.1109/SAI.2017.8252192

Goseva-Popstojanova, K., & Perhinschi, A. (2015). On the capability of static code

analysis to detect security vulnerabilities. Information and Software

Technology, 68, 18–33. https://doi.org/10.1016/j.infsof.2015.08.002

© C
OPYRIG

HT U
PM

122

Halfond, W. G. J., Viegas, J., & Orso, A. (2008). A Classification of SQL Injection

Attacks and Countermeasures. In Preventing Sql Code Injection By Combining

Static and Runtime Analysis. https://doi.org/doi=10.1.1.95.2968

Hanif, H., Md Nasir, M. H. N., Ab Razak, M. F., Firdaus, A., & Anuar, N. B. (2021).

The rise of software vulnerability: Taxonomy of software vulnerabilities

detection and machine learning approaches. Journal of Network and Computer

Applications, 179(August 2020), 103009.

https://doi.org/10.1016/j.jnca.2021.103009

Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta, L. R., Rangamani, A.,
Hamilton, L. H., Centeno, G. I., Key, J. R., Ellingwood, P. M., Antelman, E.,

Mackay, A., McConley, M. W., Opper, J. M., Chin, P., & Lazovich, T. (2018).

Automated software vulnerability detection with machine learning.

ArXiv:1803.04497. http://arxiv.org/abs/1803.04497

Hauzar, D., & Kofroň, J. (2012). On security analysis of PHP web applications.

Proceedings - International Computer Software and Applications Conference,

577–582. https://doi.org/10.1109/COMPSACW.2012.106

Hofer, T. (2010). Evaluating Static Source Code Analysis Tools. Master’s Thesis, School

of Com- Puter and Communications Science, Ecole Polytechnique Federale de

Lausanne.

Hofman, S. J., & Ibrahimi, E. (2022). State of the Art: Performance Overview of Black-
Box Web Application Scanners. 19th SC@RUG 2022 Proceedings 2021-2022,

9–14.

Hu, J., Zhao, W., & Cui, Y. (2020). A Survey on SQL Injection Attacks, Detection and

Prevention. ACM International Conference Proceeding Series, 483–488.

https://doi.org/10.1145/3383972.3384028

Huang, Y., Huang, S.-K., Lin, T.-P., & Tsai, C.-H. (2003). Web application security

assessment by fault injection and behavior monitoring. Proceedings of the

Twelfth International Conference on World Wide Web - WWW ’03, 148.

https://doi.org/10.1145/775152.775174

Johari, R., & Sharma, P. (2012). A survey on web application vulnerabilities (SQLIA,

XSS) exploitation and security engine for SQL injection. Proceedings -

International Conference on Communication Systems and Network
Technologies, CSNT 2012, May 2012, 453–458.

https://doi.org/10.1109/CSNT.2012.104

Johnson, J. (2022). Internet and social media users in the world 2022. Statista.

https://www.statista.com/statistics/617136/digital-population-worldwide/

Joseph, S., & K.P, J. (2016). Evaluating the Effectiveness of Conventional Fixes for SQL

Injection Vulnerability Secure Software Development View project Mobile

Application Security View project Swathy Joseph Evaluating The Effectiveness

Of Conventional Fixes For SQL Injection Vulnera. https://doi.org/10.1007/978-

81-322-2529-4_44

© C
OPYRIG

HT U
PM

123

Joshi, C., & Singh, K. (2016). Performance Evaluation of Web Application Security

Scanners for More Effective Defense. International Journal of Scientific and

Research Publications, 6(6), 660. www.ijsrp.org

Jovanovic, I. (2009). Software Testing Methods and Techniques. The IPSI BgD

Transactions on Internet Research, 5(1), 30–41. internetjournals.net

Jovanovic, N., Kruegel, C., & Kirda, E. (2006). Pixy: A static analysis tool for detecting

Web application vulnerabilities. 2006 IEEE Symposium on Security and

Privacy (S&P’06), 260–263. https://doi.org/10.1109/SP.2006.29

Jovanovic, N., Kruegel, C., & Kirda, E. (2010). Static analysis for detecting taint-style

vulnerabilities in web applications. Journal of Computer Security, 18(5), 861–

907. https://doi.org/10.3233/JCS-2009-0385

Kagorora, F., Li, J., Hanyurwimfura, D., Camara, L., & Student, P. G. (2017).

Effectiveness of Web Application Security Scanners at Detecting
Vulnerabilities behind AJAX/JSON. International Journal of Innovative

Research in Science, Engineering and Technology (An ISO, 4(6), 11068–

11076. https://doi.org/10.15680/IJIRSET.2015.0406079

Kals, S., Kirda, E., Kruegel, C., & Jovanovic, N. (2006). SecuBat: A Web Vulnerability

Scanner. Proceedings of the 15th International Conference on World Wide Web

- WWW ’06, 247. https://doi.org/10.1145/1135777.1135817

Kaur, D., & Kaur, P. (2016). Empirical Analysis of Web Attacks. Physics Procedia,

78(December 2015), 298–306. https://doi.org/10.1016/j.procs.2016.02.057

Kaur, P., & Kour, K. P. (2016). SQL injection: Study and augmentation. Proceedings of

2015 International Conference on Signal Processing, Computing and Control,

ISPCC 2015, 102–107. https://doi.org/10.1109/ISPCC.2015.7375006

Khoury, N., Zavarsky, P., Lindskog, D., & Ruhl, R. (2011). An analysis of black-box

web application security scanners against stored SQL injection. Proceedings -

2011 IEEE International Conference on Privacy, Security, Risk and Trust and

IEEE International Conference on Social Computing, PASSAT/SocialCom

2011, 1095–1101. https://doi.org/10.1109/PASSAT/SocialCom.2011.199

Kieyzun, A., Guo, P. J., Jayaraman, K., & Ernst, M. D. (2009). Automatic creation of

SQL Injection and cross-site scripting attacks. 2009 IEEE 31st International

Conference on Software Engineering, 199–209.

https://doi.org/10.1109/ICSE.2009.5070521

Kim, M., & Lee, D. H. (2014). Data-mining based SQL injection attack detection using

internal query trees. Expert Systems with Applications, 41(11), 5416–5430.

https://doi.org/10.1016/j.eswa.2014.02.041

Kim, S., Kim, R. Y. C., & Park, Y. B. (2016). Software Vulnerability Detection

Methodology Combined with Static and Dynamic Analysis. Wireless Personal

Communications, 89(3), 777–793. https://doi.org/10.1007/s11277-015-3152-1

© C
OPYRIG

HT U
PM

124

Kindy, D. A., & Pathan, A.-S. K. (2013). A Detailed Survey on various aspects of SQL

Injection in Web Applications: Vulnerabilities, Innovative Attacks and

Remedies. In International Journal of Communication Networks and

Information Security (IJCNIS) (Vol. 5, Issue 2).

http://irep.iium.edu.my/31262/1/364-882-1-PB.pdf

Kronjee, J., Hommersom, A., & Vranken, H. (2018). Discovering software

vulnerabilities using data-flow analysis and machine learning. ACM

International Conference Proceeding Series, 1–10.

https://doi.org/10.1145/3230833.3230856

Kumar, P., & Pateriya, R. K. (2012). A survey on SQL injection attacks, detection and

prevention techniques. 2012 3rd International Conference on Computing,

Communication and Networking Technologies, ICCCNT 2012, 1–5.

https://doi.org/10.1109/ICCCNT.2012.6396096

Lala, S. K., Kumar, A., & Subbulakshmi, T. (2021). Secure web development using

OWASP guidelines. Proceedings - 5th International Conference on Intelligent

Computing and Control Systems, ICICCS 2021, Iciccs, 323–332.

https://doi.org/10.1109/ICICCS51141.2021.9432179

Lam, M. S., Martin, M., Livshits, B., & Whaley, J. (2008). Securing web applications

with static and dynamic information flow tracking. Proceedings of the 2008

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based

Program Manipulation - PEPM ’08, 3–12.

https://doi.org/10.1145/1328408.1328410

Landi, W. (1992). Undecidability of Static Analysis. In From acm Letters on

Programming Languages and Systems (Vol. 1, Issue 4).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.9722&rep=rep1

&type=pdf

Lashkaripour, Z., & Ghaemi Bafghi, A. (2013). A Simple and Fast Technique for

Detection and Prevention of SQL Injection Attacks (SQLIAs). International
Journal of Security and Its Applications, 7(5), 53–66.

https://doi.org/10.14257/ijsia.2013.7.5.05

Li, Y. F., Das, P. K., & Dowe, D. L. (2014). Two decades of Web application testing -

A survey of recent advances. In Information Systems (Vol. 43, pp. 20–54).

https://doi.org/10.1016/j.is.2014.02.001

Liu, M., & Wang, B. (2018). A Web Second-Order Vulnerabilities Detection Method.

IEEE Access, 6, 70983–70988.

https://doi.org/10.1109/ACCESS.2018.2881070

Luo, L. (2001). Software testing techniques. Institute for Software Research

International Carnegie Mellon University Pittsburgh, PA, 15232(1–19), 19.

http://www.cs.cmu.edu/~luluo/Courses/17939Report.pdf

© C
OPYRIG

HT U
PM

125

Makiou, A., Begriche, Y., & Serhrouchni, A. (2014). Improving Web Application

Firewalls to detect advanced SQL injection attacks. 2014 10th International

Conference on Information Assurance and Security, IAS 2014, 35–40.

https://doi.org/10.1109/ISIAS.2014.7064617

Marashdih, A. W., Zaaba, Z. F., & Suwais, K. (2022). Predicting input validation

vulnerabilities based on minimal SSA features and machine learning. Journal

of King Saud University - Computer and Information Sciences, 34(10), 9311–

9331. https://doi.org/10.1016/j.jksuci.2022.09.010

McClure, R. A., & Krüger, I. H. (2005). SQL DOM: Compile time checking of dynamic
SQL statements. Proceedings - 27th International Conference on Software

Engineering, ICSE05, 88–96. https://doi.org/10.1109/icse.2005.1553551

Medeiros, I., Neves, N., & Correia, M. (2013). WAP : Automatic Detection and

Correction of Web Application Vulnerabilities. 1–13.

Medeiros, I., Neves, N., & Correia, M. (2016). Detecting and Removing Web

Application Vulnerabilities with Static Analysis and Data Mining. IEEE

Transactions on Reliability, 65(1), 54–69.

https://doi.org/10.1109/TR.2015.2457411

Medeiros, N., Ivaki, N., Costa, P., & Vieira, M. (2020). Vulnerable Code Detection

Using Software Metrics and Machine Learning. IEEE Access, 8(2020),

219174–219198. https://doi.org/10.1109/ACCESS.2020.3041181

Mishra, N., Chaturvedi, S., Sharma, A. K., & Choudhary, S. (2014). XML-based

authentication to handle SQL injection. Advances in Intelligent Systems and

Computing, 236, 739–749. https://doi.org/10.1007/978-81-322-1602-5_79

Mitropoulos, D., Louridas, P., Polychronakis, M., & Keromytis, A. D. (2017). Defending
Against Web Application Attacks: Approaches, Challenges and Implications.

IEEE Transactions on Dependable and Secure Computing, 5971(c), 1–1.

https://doi.org/10.1109/TDSC.2017.2665620

Mohosinaand, A., & Zulkernine, M. (2012). DESERVE: A framework for DEtecting

program SEcuRity Vulnerability Exploitations. Proceedings of the 2012 IEEE

6th International Conference on Software Security and Reliability, SERE 2012,

98–107. https://doi.org/10.1109/SERE.2012.22

Mui, R., & Frankl, P. (2010). Preventing SQL Injection through Automatic Query

Sanitization with ASSIST. Electronic Proceedings in Theoretical Computer

Science, 35, 27–38. https://doi.org/10.4204/eptcs.35.3

Muraleedharan, A. (2015). A Robust Method for Prevention of Second Order and Stored

Procedure based SQL Injections. International Journal of Computer

Applications, 20–23.

Musciano, C., & Kennedy, B. (2000). HTML & XHTML : The Definitive Guide 4th

edition. http://ommolketab.ir/aaf-lib/9j7j12gg2cfghkxh1rdsr6j6md9vop.pdf

© C
OPYRIG

HT U
PM

126

O’Leary, R. (2017). APPLICATION SECURITY STATISTICS REPORT. WhiteHat

Security, 36(8), 1725–1744. https://doi.org/10.1016/S0045-6535(97)10063-7

Olivo, O., Dillig, I., & Lin, C. (2015). Detecting and exploiting Second Order denial-of-

service vulnerabilities in web applications. Proceedings of the ACM

Conference on Computer and Communications Security, 2015-Octob, 616–

628. https://doi.org/10.1145/2810103.2813680

OWASP. (2016). SQL Injection Prevention Cheat Sheet.

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

OWASP. (2017). Top 10-2017 Top 10 - OWASP.

https://www.owasp.org/index.php/Top_10-2017_Top_10

OWASP. (2021). OWASP Top 10:2021. OWASP.Org.

https://www.owasptopten.org/the-release-of-the-owasp-top-10-2021

Pan, Z., Chen, Y., Chen, Y., Shen, Y., & Li, Y. (2022). LogInjector: Detecting Web

Application Log Injection Vulnerabilities. Applied Sciences (Switzerland),

12(15). https://doi.org/10.3390/app12157681

Panda, M. (2017). Performance analysis of encryption algorithms for security.

International Conference on Signal Processing, Communication, Power and
Embedded System, SCOPES 2016 - Proceedings, 278–284.

https://doi.org/10.1109/SCOPES.2016.7955835

Parrend, P., Navarro, J., Guigou, F., Deruyver, A., & Collet, P. (2018). Foundations and

applications of artificial Intelligence for zero-day and multi-step attack

detection. EURASIP Journal on Information Security, 2018(1), 1–21.

https://doi.org/10.1186/s13635-018-0074-y

Parvez, M., Zavarsky, P., & Khoury, N. (2016). Analysis of effectiveness of black-box

web application scanners in detection of stored SQL injection and stored XSS

vulnerabilities. 2015 10th International Conference for Internet Technology

and Secured Transactions, ICITST 2015, 186–191.

https://doi.org/10.1109/ICITST.2015.7412085

Patil, S., Marathe, N., & Padiya, P. (2016). Design of efficient web vulnerability scanner.

2016 International Conference on Inventive Computation Technologies

(ICICT), 1–6. https://doi.org/10.1109/INVENTIVE.2016.7824873

Pereira, J. D. A., Campos, J. R., & Vieira, M. (2019). An exploratory study on machine

learning to combine security vulnerability alerts from static analysis tools. 2019

9th Latin-American Symposium on Dependable Computing, LADC 2019 -

Proceedings, Ml. https://doi.org/10.1109/LADC48089.2019.8995685

Ping, C. (2017). A second-order SQL injection detection method. 2017 IEEE 2nd

Information Technology, Networking, Electronic and Automation Control

Conference (ITNEC), 1792–1796.

https://doi.org/10.1109/ITNEC.2017.8285104

© C
OPYRIG

HT U
PM

127

Ping, C. (2018). x-A second-order SQL injection detection method. Proceedings of the

2017 IEEE 2nd Information Technology, Networking, Electronic and

Automation Control Conference, ITNEC 2017, 2018-Janua, 1792–1796.

https://doi.org/10.1109/ITNEC.2017.8285104

Positive Technologies. (2014). Web Application Vulnerability Statistics.

http://fortune.com/global500/

Qasaimeh, M., Khairallah, T. Z., Shamlawi, A., & Khairallah, T. (2018). BLACK BOX

EVALUATION OF WEB APPLICATION SCANNERS: STANDARDS

MAPPING APPROACH. Article in Journal of Theoretical and Applied
Information Technology, 31(14).

https://www.researchgate.net/publication/329990368

Rafnsson, W., Giustolisi, R., Kragerup, M., & Høyrup, M. (2020). Fixing Vulnerabilities

Automatically with Linters. Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 12570 LNCS, 224–244. https://doi.org/10.1007/978-3-030-

65745-1_13

Sadeghian, A., Zamani, M., & Abdullah, S. M. (2013). A Taxonomy of SQL Injection

Attacks. 2013 International Conference on Informatics and Creative

Multimedia, 269–273. https://doi.org/10.1109/ICICM.2013.53

Saidu Aliero, M., Ghani, I., Zainudden, S., Murad Khan, M., & Bello, M. (2015). Review
on sql injection protection methods and tools. In Jurnal Teknologi (Vol. 77,

Issue 13, pp. 49–66). https://doi.org/10.11113/jt.v77.6359

Salih Ali, N. (2018). Investigation framework of web applications vulnerabilities, attacks

and protection techniques in structured query language injection attacks. Int. J.

Wireless and Mobile Computing, 14(2), 103–122.

https://doi.org/10.1504/IJWMC.2018.091137

Sampaio, L., & Garcia, A. (2015). Exploring Context-Sensitive Data Flow Analysis for

Early Vulnerability Detection. Journal of Systems and Software, 113, 337–361.

https://doi.org/10.1016/j.jss.2015.12.021

SANS/CWE. (2019). CWE - 2019 CWE Top 25 Most Dangerous Software Errors. In

SANS Institute.

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

Satyanarayana, L. V., & Sekhar, M. V. B. C. (2011). Static Analysis Tool for Detecting

Web Application Vulnerabilities. International Journal of Modern Engineering

Research (IJMER), 1(1), 127–133.

Scholte, T., Robertson, W., Balzarotti, D., & Kirda, E. (2012). Preventing input
validation vulnerabilities inweb applications through automated type analysis.

Proceedings - International Computer Software and Applications Conference,

233–243. https://doi.org/10.1109/COMPSAC.2012.34

© C
OPYRIG

HT U
PM

128

Scott, D., & Sharp, R. (2002). Abstracting application-level web security. Proceedings

of the 11th International Conference on World Wide Web, WWW ’02, 396–407.

https://doi.org/10.1145/511446.511498

Selecte, R., Khalid, M. N., Farooq, H., & Iqbal, M. (2020). Predicting Web

Vulnerabilities in Web Applications Based on Machine Learning (Vol. 910,

Issue April). Springer Singapore. https://doi.org/10.1007/978-981-13-6095-4

Shar, L. K., Briand, L. C., Tan, H. K., & Member, S. (2015). Web Application

Vulnerability Prediction Using Hybrid Program Analysis and Machine

Learning. IEEE Transactions on Dependable and Secure Computing, 12(6),

688–707. https://doi.org/10.1109/TDSC.2014.2373377

Shar, L. K., & Tan, H. B. K. (2013). Defeating SQL injection. Computer, 46(3), 69–77.

https://doi.org/10.1109/MC.2012.283

Sharma, C., & Jain, S. C. (2014). Analysis and classification of SQL injection
vulnerabilities and attacks on web applications. 2014 International Conference

on Advances in Engineering and Technology Research, ICAETR 2014.

https://doi.org/10.1109/ICAETR.2014.7012815

Siddiq, M. L., Jahin, M. R. R., Ul Islam, M. R., Shahriyar, R., & Iqbal, A. (2021).

SQLIFIX: Learning Based Approach to Fix SQL Injection Vulnerabilities in

Source Code. Proceedings - 2021 IEEE International Conference on Software

Analysis, Evolution and Reengineering, SANER 2021, 354–364.

https://doi.org/10.1109/SANER50967.2021.00040

Singh, J. P. (2017). Analysis of SQL Injection Detection Techniques. Theoretical and

Applied Informatics, 28(1&2), 37–55. https://doi.org/10.20904/281-2037

Singh, N., Dayal, M., Raw, R. S., & Kumar, S. (2016). SQL Injection: Types,
Methodology, Attack Queries and Prevention. 2016 International Conference

on Computing for Sustainable Global Development (INDIACom), 2872–2876.

Som, S., Sinha, S., & Kataria, R. (2016). Study on SQL Injection Attacks: Mode,

Detection and Prevention. International Journal of Engineering Applied

Sciences and Technology, 1(8), 23–29. http://www.ijeast.com

Stanford, C., Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (2010). State of The Art:

Automated Black Box Web Application Vulnerability Testing. Security and

Privacy (SP), 2010 IEEE Symposium On, 332–345.

http://www.owasp.org/images/2/28/Black_Box_Scanner_Presentation.pdf

Steiner, S., de Leon, D. C., & Alves-Foss, J. (2017). A structured analysis of SQL

injection runtime mitigation techniques. Proceedings of the Annual Hawaii

International Conference on System Sciences, 2017-Janua, 2887–2895.

https://doi.org/10.24251/hicss.2017.349

Su, Z., & Wassermann, G. (2006). The Essence of Command Injection Attacks in Web

Applications. ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, 41(1), 372–382.

https://doi.org/10.1145/1111320.1111070

© C
OPYRIG

HT U
PM

129

Tasevski, I., & Jakimoski, K. (2020). Overview of SQL injection defense mechanisms.

2020 28th Telecommunications Forum, TELFOR 2020 - Proceedings, 3–6.

https://doi.org/10.1109/TELFOR51502.2020.9306676

Thomas, S., & Williams, L. (2007). Using automated fix generation to secure SQL

statements. Proceedings - ICSE 2007 Workshops: Third International

Workshop on Software Engineering for Secure Systems, SESS’07, 9.

https://doi.org/10.1109/SESS.2007.12

Thomé, J., Gorla, A., & Zeller, A. (2014). Search-based security testing of web

applications. 7th International Workshop on Search-Based Software Testing,

SBST 2014 - Proceedings, 5–14. https://doi.org/10.1145/2593833.2593835

Thomé, J., Shar, L. K., & Briand, L. (2016). Security slicing for auditing XML, XPath,

and SQL injection vulnerabilities. 2015 IEEE 26th International Symposium on

Software Reliability Engineering, ISSRE 2015, 553–564.

https://doi.org/10.1109/ISSRE.2015.7381847

Tomasdottir, K. F., Aniche, M., & Van Deursen, A. (2020). The Adoption of JavaScript

Linters in Practice: A Case Study on ESLint. IEEE Transactions on Software

Engineering, 46(8), 863–891. https://doi.org/10.1109/TSE.2018.2871058

Tommy, R., Sundeep, G., & Jose, H. (2017). Automatic Detection and Correction of

Vulnerabilities using Machine Learning. 2017 International Conference on

Current Trends in Computer, Electrical, Electronics and Communication

(CTCEEC), 1062–1065. https://doi.org/10.1109/CTCEEC.2017.8454995

Traphagen, K., & Traill, S. (2014). How Cross-Sector Collaborations are Advancing

STEM Learning. Toxicological Sciences : An Official Journal of the Society of

Toxicology, 137(April), 41 p. https://doi.org/10.1093/toxsci/kft286

Trinh, M.-T., Chu, D.-H., & Jaffar, J. (2014). S3: A Symbolic String Solver for

Vulnerability Detection in Web Applications. Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security - CCS ’14,

1232–1243. https://doi.org/10.1145/2660267.2660372

TRUSTWAVE. (2018). Trustwave Global Security Report Introduction the State of

Security. https://www2.trustwave.com/rs/815-RFM-

693/images/Trustwave_2018-GSR_20180329_Interactive.pdf

Umar, K., Sultan, A. B., Zulzalil, H., Admodisastro, N., & Abdullah, M. T. (2014a). On

the Automation of Vulnerabilities Fixing for Web Application. c, 221–226.

Umar, K., Sultan, A. B., Zulzalil, H., Admodisastro, N., & Abdullah, M. T. (2014b).

Prevention of attack on Islamic websites by fixing SQL injection vulnerabilities

using co-evolutionary search approach. 2014 the 5th International Conference
on Information and Communication Technology for the Muslim World, ICT4M

2014, 1–6. https://doi.org/10.1109/ICT4M.2014.7020604

© C
OPYRIG

HT U
PM

130

Vaseghipanah, M., Bayat, N. K., Asami, A., & Shahmirzadi D, M. A. (2016). SQL

Injection Attacks: A Systematic Review. International Journal of Computer

Science and Information Security (IJCSIS), 14(12), 678–696.

https://s3.amazonaws.com/academia.edu.documents/51650658/77_Paper_301

116170_IJCSIS_Camera_Ready_678-
696.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1520

163083&Signature=l5TbtUtYOowCTeWZAQjeSZhUEV8%3D&response-

content-disposition=inline%3B filename%3DS

Verma, N., & Kaur, A. (2015). A Detailed Study on Prevention of SQLI attacks for Web

Security. International Journal of Computer Applications Technology and

Research, 4(4), 308–311. https://doi.org/10.7753/ijcatr0404.1018

W3techs. (2021). Usage Statistics and Market Share of PHP for Websites, August 2021.

https://w3techs.com/technologies/details/pl-php

W3Techs. (2023). Usage Statistics and Market Share of PHP for Websites, January

2023. W3Techs. https://w3techs.com/technologies/details/pl-php

Wang, Y., Wang, D., Zhao, W., & Liu, Y. (2015). Detecting SQL vulnerability attack

based on the dynamic and static analysis technology. Proceedings -

International Computer Software and Applications Conference, 3, 604–607.

https://doi.org/10.1109/COMPSAC.2015.277

Wichman, L. (2010). Mass SQL Injection for Malware Distribution Mass SQL Injection
for Malware Distribution GIAC (GWAPT) Gold Certification.

https://www.sans.org/reading-room/whitepapers/malicious/mass-sql-injection-

malware-distribution-33654

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).

Experimentation in software engineering. In Experimentation in Software

Engineering (Vol. 9783642290). https://doi.org/10.1007/978-3-642-29044-2

WVS, A. (2022). Acunetix WVS. https://www.acunetix.com/

Xiao, L., Matsumoto, S., Ishikawa, T., & Sakurai, K. (2017). SQL injection attack

detection method using expectation criterion. Proceedings - 2016 4th

International Symposium on Computing and Networking, (CANDAR), 649–

654. https://doi.org/10.1109/CANDAR.2016.74

Xie, Y., & Aiken, A. (2006). Static detection of security vulnerabilities in scripting

languages. 15th USENIX Security Symposium, 15, 179–192.

http://www.usenix.org/event/sec06/tech/full_papers/xie/xie_html/

Yan, L., Li, X., Feng, R., Feng, Z., & Hu, J. (2014a). Detection method of the second-

order sql injection in web applications. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 8332 LNCS, 154–165. https://doi.org/10.1007/978-3-319-

04915-1_11

© C
OPYRIG

HT U
PM

131

Yan, L., Li, X., Feng, R., Feng, Z., & Hu, J. (2014b). Structured Object-Oriented Formal

Language and Method. 7787, 154–165. https://doi.org/10.1007/978-3-642-

39277-1

Yan, X. X., Wang, Q. X., & Ma, H. T. (2018). Path sensitive static analysis of taint-style

vulnerabilities in PHP code. International Conference on Communication

Technology Proceedings, ICCT, 2017-Octob, 1382–1386.

https://doi.org/10.1109/ICCT.2017.8359859

Zhang, K. (2019). A machine learning based approach to identify SQL injection

vulnerabilities. Proceedings - 2019 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2019, 1286–1288.

https://doi.org/10.1109/ASE.2019.00164

