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Structured query language injection vulnerability (SQLIV) is one of the most prevalent 

and severe web application vulnerabilities. It is usually exploited by SQL injection 

attacks (SQLIA) for the purpose of gaining unauthorised access to the back-end 

databases by altering the original SQL statements through input data manipulation. A 

successful attack can hinder integrity, privacy, and information availability in the 

database. As a particular type of SQL injection (SQLI), the second-order SQLIA tends 

to be more severe and difficult to detect. It has a more significant impact on the back-
end database than the first-order SQLIA, simply because its respective SQL injection is 

seeded first into the application's persistent storage, which is usually deemed a trusted 

source, before its actual exploitation. In order to protect a web application from a 

malicious user, test procedures for identifying and removing SQLIVs must be 

implemented earlier in the software development life cycle (SDLC) of web applications, 

specifically before bringing it onto production and possibly becoming available to a 

malicious attack. Critically, several efforts have been devoted to detecting SQLIVs and 

preventing their exploitation, and the majority focused on approaches that address the 

detection of first-order SQL injection vulnerabilities. However, the mechanisms needed 

to detect first-order SQLIV, which may lead to SQLIA on the application level, may not 

afford to catch second-order SQLIV. This is specifically because the malicious inputs 

supplied by the attacker can be concatenated with the SQL statement at the database 
level. Moreover, the existing techniques only reported the detected vulnerabilities, and 

they left their removal as a burden on the programmer. As far as the literature shows, 

none of the current automated methods exhibited the ability to deal with this 

phenomenon. Hence, the actual fixing process of any vulnerabilities is left for the human 

developer to handle. However, manual removal of such vulnerabilities is tedious, error-

prone, and costly. Second-order injections are also difficult to prevent as the point of 

injection differs from the point of attack, and therefore more care should be taken to 

detect and prevent them. Both attack points should be validated carefully (i.e., point of 

injection and point of attack). In order to address the weaknesses above and the identified 

research gaps, this study invents a white-box testing technique for automated detection 
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and removal of the second-order SQLIVs in web applications using source code static 

analysis. Static analysis is devoted to identifying candidate pairs of vulnerable paths to 

second-order SQLI. It statically detects when the data comes from tainted sources, when 

they are stored in the back-end database, and when they are retrieved later in another 

point to build a new SQL statement without proper sanitisation. This technique also 
applies the removing algorithm, which uses escaping method to remove the detected 

vulnerabilities. The prototype tool, called Second-order SQL injection Protector 

(SoSQLiP), was developed and implemented to test the proposed technique. The test 

was conducted using eleven PHP Web applications: ten applications available on the 

internet and that other researchers have used and one application that the researcher 

developed. The results were empirically evaluated with an existing tool to determine the 

effectiveness of the automatic detection of second-order SQLIVs. Promising results have 

been obtained from both of these evaluations. The experiments show that the proposed 

technique has a detection rate of 100% and a vulnerability removal rate of 100%. The 

proposed technique has shown a better vulnerability detection rate than the state-of-the-

art tool (i.e., SQLMAP). However, future studies should expand the scope of the research 

to include more types of vulnerabilities, such as second-order XSS vulnerabilities.  
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Kerentanan suntikan bahasa pertanyaan berstruktur (SQLIV) adalah salah satu 

kerentanan aplikasi web yang sangat lazim dan teruk. Ia biasanya dieksploitasi oleh 

serangan suntikan SQL (SQLIA) untuk tujuan mendapatkan capaian yang tidak 

dibenarkan ke pangkalan data bahagian belakang dengan mengubah arahan-arahan SQL 

asal melalui cara manipulasi data input. Serangan yang berjaya boleh menghalang 

integriti, privasi dan ketersediaan maklumat dalam pangkalan data. Merujuk kepada 

jenis suntikan SQL tertentu (SQLI), SQLIA peringkat kedua cenderung lebih teruk dan 
sukar dikesan. Ia mempunyai kesan yang lebih ketara pada pangkalan data bahagian 

belakang berbanding SQLIA peringkat pertama kerana suntikan SQL tersebut 

dimasukkan terlebih dahulu ke dalam storan kekal aplikasi, yang biasanya dianggap 

sebagai sumber yang dipercayai, sebelum eksploitasi sebenar. Untuk melindungi 

aplikasi web daripada pengguna yang berniat jahat, prosedur ujian untuk mengenal pasti 

dan mengalih keluar SQLIV wajib dilaksanakan terlebih dahulu dalam kitaran hayat 

pembangunan perisian (SDLC) aplikasi web, terutamanya sebelum membawanya ke 

fasa produksi dan kemungkinan terdedah kepada serangan berniat jahat. Secara 

kritikalnya, beberapa usaha telah diusahakan untuk mengesan SQLIV dan mencegah 

eksploitasinya dan kebanyakannya memberi tumpuan kepada pendekatan   pengesanan 

kerentanan suntikan SQL peringkat pertama. Bagaimanapun, mekanisme yang 

diperlukan untuk mengesan SQLIV peringkat pertama yang mungkin membawa kepada 
SQLIA pada tahap aplikasi mungkin tidak mampu untuk menangkap SQLIV peringkat 

kedua. Terutamanya adalah kerana input berniat jahat yang dibekalkan oleh penyerang 

boleh digabungkan dengan pernyataan SQL di aras pangkalan data. Tambahan lagi, 

teknik yang sedia ada cuma melaporkan pengesanan kerentanan, dan mengabaikan  

penyingkirannya sebagai beban pada pengaturcara. Setakat yang ditunjukkan oleh kajian 

terdahulu, tiada kaedah automatik semasa yang berupaya untuk menangani fenomena 

ini. Oleh itu, proses pembaikan sebarang kerentanan ditinggalkan untuk dikendalikan 

oleh pembangun perisian. Bagaimanapun, penyingkiran kerentanan secara manual 

tersebut amat rumit, terdedah kepada kesilapan, dan mahal. Suntikan SQLIV peringkat 

kedua juga sukar untuk dicegah kerana titik suntikan adalah berbeza dari titik serangan, 
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dan oleh itu lebih banyak usaha diperlukan   untuk mengesan dan mencegahnya. Kedua-

dua titik serangan perlu disahkan dengan teliti (iaitu, titik suntikan dan titik serangan). 

Bagi menangani kelemahan di atas dan jurang penyelidikan yang dikenalpasti, kajian ini 

mencipta teknik ujian kotak putih untuk pengesanan automatik dan penyingkiran SQLIV 

peringkat kedua dalam aplikasi web menggunakan analisis statik kod sumber. Analisis 
statik dikhaskan untuk mengenal pasti pasangan calon laluan rentan ke SQLI peringkat 

kedua. Ianya mengesan secara statik apabila data berasal dari sumber yang tercemar, bila 

ianya disimpan dalam pangkalan data bahagian belakang, dan apabila ia dicapai semula 

dalam bentuk yang lain untuk membina pernyataan SQL baharu tanpa pembersihan yang 

betul. Teknik ini juga menggunakan algoritma penyingkiran yang menggunakan kaedah 

pengelakan untuk menghapus kerentanan yang dikesan. Alat prototaip, yang dipanggil 

Pelindung suntikan SQL Peringkat Kedua (SoSQLiP), telah dibangunkan dan 

dilaksanakan untuk menguji teknik yang dicadangkan. Ujian ini dijalankan 

menggunakan sebelas aplikasi Web PHP: sepuluh aplikasi yang terdapat di internet dan 

yang telah digunakan oleh penyelidik lain, dan satu aplikasi yang dibangunkan oleh 

penyelidik. Hasilnya telah dinilai secara empirikal dengan tool sedia ada untuk menilai 

sejauh mana efektifnya pengesanan otomatik SQLIV peringkat kedua. Keputusan-
keputusan yang memberansangkan telah diperolehi daripada kedua-dua penilaian.  

Experimentasi menunjukkan teknik yang dicadangkan mencapai tahap pengesanan 

100% and kadar penyingkiran kerentanan juga 100%. Teknik yang dicadangkan juga 

menunjukkan pengesanan keretanan lebih baik berbanding tool canggih (contoh., 

SQLMAP). Walau bagaimanapun, kajian masa hadapan harus memperluaskan skop 

penyelidikan dengan mengambil kira lebih banyak jenis kerentanan, seperti kerentanan 

XSS peringkat kedua. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research background  

Web applications are nowadays the backbone of the modern internet. Their popularity 

and acceptance are growing rapidly due to the high level of convenience, accessibility 
and ubiquitous they offer. These online applications are reliable and efficient solutions 

to business challenges. Aside from delivering information and services and serving as a 

great communication medium, web applications store and process vast amounts of 

potentially sensitive data for a large number of users. The processed data is usually stored 

or retrieved into and from the back-end database. Timely, web application users should 

move with the back-end database via user interfaces for many tasks: extracting 

information, making queries, and updating data, among others. Hence, the attacker’s 

unauthorised access to sensitive data can threaten data confidentiality, integrity, and 

application availability.  

Typically, web applications are designed with hard time restrictions; and therefore, they 

are often deployed with varying degrees of unexpected security vulnerabilities that 

hackers exploit through different types of attacks (Kaur & Kaur, 2016; Kieyzun et al., 

2009; Medeiros et al., 2016).  

Due to their high global exposure and the presence of vulnerabilities besides the critical 

assets that web applications usually store, web applications are considered attractive and 

ideal targets for security attackers who continue to hunt for vulnerabilities that allow 

them to pervade an organisation. For example, a vulnerable web application could pave 

the way for unauthorised access to underlying systems, access to the back-end database, 

and/or simply cause a denial of service (Olivo et al., 2015).  

In the same vein, Structured Query Language Injection Vulnerabilities (SQLIVs) have 

been consistently top-ranked among web application vulnerabilities for the past few 

years (Acunetix, 2020; OWASP, 2021; SANS/CWE, 2019; TRUSTWAVE, 2018).  

SQLIVs refer to potential software security flaws associated with database-driven web 

applications that can be exploited by means of SQL Injection Attacks (SQLIAs). 

Typically, SQLIV takes place in code when user-supplied data (i.e., URL parameters or 

HTML form input) is allowed to propagate from an input source to a security-critical 

operation (e.g., database queries) without proper sanitisation. The vulnerability is caused 
by code fragments where unsensitised input is interpreted as SQL code instead of being 

treated as data (Johari & Sharma, 2012; Shar & Tan, 2013; Verma & Kaur, 2015). 

SQLIA is a notorious hacking technique in which the attacker exploits SQLIV of a web 

application connected to a database to inject SQL code fragments into vulnerable input 

parameters (e.g., HTTP requests). The malicious code masquerades as user input and is 

embedded in the SQL query. 
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The consequences of an SQLIA can be devastating. A successful attack can hinder the 

privacy, integrity and availability of information in the database. The attacker can use 

this attack to bypass the authentication process (loss of authentication), extract data from 

the back-end database (loss of confidentiality), and/or modify existing data (loss of 

integrity) (Alwan & Younis, 2017; Faker et al., 2017; Hu et al., 2020; Johari & Sharma, 
2012; Mishra et al., 2014). According to OWASP Top Ten 2017, the overall security 

risk to an organisation can be determined based on a number of factors, including the 

likelihood associated with the threat agent, attack vectors, security vulnerabilities and 

the business impact on the organisation. Table 1.1 shows attack vectors, security 

weaknesses, and the impact of SQL injection, as reported by OWASP (2017). 

Table 1.1 : OWASP Report on SQL Injection 

 

Threat 

agent 
Exploitability Security Weakness Impacts 

  Prevalence Detectability Technical 

Impact 

Business 

Impact 

Application-

Specific 

Easy Common Average Severe Depending on 
web 

application 
needs and data 

 

 
Hackers have developed many types of SQLIAs to exploit SQLIVs. Several studies 

classified these attacks, based on the injection technique, into seven basic types: 

tautologies, illegal/logically incorrect queries, union query, piggy-backed, stored 

procedure, alternate encoding, and inference-based attacks (Faker et al., 2017; Johari & 

Sharma, 2012; Kaur & Kaur, 2016; Singh, 2017). 

Practically, SQL injection can be introduced into vulnerable web applications using two 

main mechanisms based on the injection order: first-order SQL injection and second-

order SQL injection (Faker et al., 2017; Halfond et al., 2008; Kim & Lee, 2014; Liu & 

Wang, 2018).  

First-order SQL injection is the primary type of SQL injection attack. In such an attack, 

the attacker inserts SQL commands into a vulnerable input field that flows directly from 

an entry point (e.g., $_GET) to a sensitive sink (e.g., mysqli_query). The successful 

injection results are delivered immediately upon user-input submission. However, if the 

malicious code has been an argument of an escape method, it can be blocked, but it is 

stored in the database and can cause second-order SQLIA later. In practice, first-order 

SQL injection attacks can be launched using any one of the aforementioned attack types 

by injecting malicious input through user input, cookies, or server vulnerabilities (Faker 

et al., 2017). 

Second-order SQL injection, also called stored or persistent SQLIA is a particular type 

of SQLIA that is more serious, more difficult to be detected, and has strong concealment 

(Choudhury et al., 2016; Liu & Wang, 2018; Muraleedharan, 2015; Ping, 2017). This 

technique can be applied successfully to all kinds of injections mentioned above 
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(Muraleedharan, 2015). In such attacks, the attacker first seeds SQL commands into the 

database and then uses that input at a later stage in a sensitive sink for launching the 

attack. Unlike first-order SQLIA, the malicious code in second-order SQLIA is not 

initiated immediately. However, it is first stored in the application’s back-end database 

and then retrieved and activated by the victim/attacker (Dahse & Holz, 2014). The 
security violations of such attacks can be disastrous; they may include identity theft, loss 

of confidential or sensitive data, taking control of data, and destroying the back-end 

database (Sharma & Jain, 2014).  

A Second-order SQL injection attack is developed on a first-order SQL injection attack. 

To illustrate, Figure 1.1 presents a typical architecture of the second-order SQLIA. 

 

Figure 1.1 : Second-order SQLI mechanism in web application 

 

 

A technique for detecting SQLIA at the application level cannot defend against the 

second-order SQLIA attack because the malicious input supplied by the attacker is 

concatenated with the SQL statement at the database level (Dahse & Holz, 2014). Indeed, 

second-order vulnerability does not appear when the user submits regular content but 

requires unique SQL injection attack strings to trigger it. Therefore, ordinary tools can 

hardly detect second-order vulnerabilities (Liu & Wang, 2018). Furthermore, preventing 

first-order SQLIVs using available techniques such as prepared statements and escape 
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techniques is not sufficient to prevent second-order SQLIVs. The developer might 

successfully escape user input and deem it safe. However, later when the data is reused 

to create different queries, the previously sanitised input may result in a second-order 

SQL injection attack.  

Although different web programming languages provide different data validation 

mechanisms for protection against SQLIVs, however, they do not guarantee secure web 

applications. Inexperienced developers and those rushing to get a product to market may 

not employ language-provided mechanisms properly. Moreover, experienced 

programmers often create applications with software errors and vulnerabilities.   

Therefore, testing online applications for SQLIV detection and removal before 

deployment is indispensable to safeguarding them from exploitation. As in conventional 

software applications, software applications’ testing always makes it easier to detect and 

fix errors.  

Due to the importance of producing secure web applications, the research community 

has investigated the area of automated detection and removal of SQLIVs over the years 

and proposed many approaches to the problem.  

Static analysis techniques are among the most widely used approaches for the detection 

and removal of SQLIVs during the test phase of web application development. Although 

there has been a considerable number of static analysis techniques for SQLIVs detection, 

the area of second-order SQLIVs detection has not been adequately explored (Cao et al., 
2018; Kronjee et al., 2018; Liu & Wang, 2018; Medeiros et al., 2016; Trinh et al., 2014; 

Yan et al., 2014a; Yan et al., 2018). In fact, very few static analysis techniques addressed 

the detection of second-order SQLIVs.  

Nevertheless, a thorough investigation of the literature reveals that most of the testing 
and analysing techniques proposed to automate the SQLIVs assessment were incapable 

of handling the second-order SQLIVs. They only focused on the detection of first-order 

SQLIVs since they only analysed SQL queries generated at the application level, but 

they ignored those generated at the database level. This may be due to two common 

explanations: First, when the first-order vulnerability is detected and prevented, the 

second-order vulnerability is not exploitable anymore. Second, when successfully 

escaped, malicious input is deemed safe. However, the downside of these propositions 

is that the attack can be launched later in different times and contexts by exploiting the 

second-order vulnerabilities that make use of that data to create different SQL queries. 

Indeed, the mechanism to detect SQLIV, which may lead to SQLIA on the application 

level, may not afford to detect second-order SQLIV as the malicious inputs supplied by 

the attacker are concatenated with the SQL statement at the database level, not the 

application level. 

In addition, most existing SQLIV removal techniques are predominantly manual Steiner 

et al. (2017) and Umar et al. (2014a). They only automate fix generation and leave the 

actual source code modification for applying the auto-generated fix in the hands of the 
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developer, despite the fact that manual bug fixing is prone to errors and human 

limitations. 

Obviously, it would be highly desirable to have a technique that can analyse the source 

code of vulnerable web applications for identifying the vulnerable paths to second-order 

SQLIAs and produce a reliable and secure version ready for deployment in to live 

environment. 

This type of technique would reduce the human efforts and expenses associated with the 

testing phase of web application development, resulting in higher quality software. 

The aforementioned weaknesses of existing techniques motivate further research in the 

area, with the objective of defining an accurate and precise method of achieving 

automated detection and removal of second-order SQLIVs for web applications.  

Consequently,this study introduces a new static analysis technique for the automated 

detection of second-order SQLIVs. In addition, the technique inserts fixes to remove the 

detected vulnerabilities automatically. 

Static analysis is devoted to identifying possible or candidate pairs of vulnerable paths 

(target paths) to second-order SQLI. It statically detects when data comes from tainted 

sources and is stored in the back-end database for the purpose of using and retrieving 

them again without proper sanitisation. Then, the technique applies escaping techniques 

to the detected vulnerabilities to remove them. 

1.2 Problem Statement 

The process of automated web application testing for SQLIVs detection and remediation 

is particularly delicate, challenging, and costly due to the complex infrastructure of web 

applications and the extreme heterogeneity of SQL injection attack vectors (Akrout et 

al., 2014; Di Lucca & Fasolino, 2006; Doǧan et al., 2014; Li et al., 2014). Detection and 

prevention of second-order injections can be particularly difficult because the injection 

point is located separately from where the attack occurs. 

Several black-box vulnerability scanning techniques have been developed to support 

web application testing for SQLIV detection because they are easy to use, automated, 

and independent of the underlying web application technology (Akrout et al., 2014; 

Aliero et al., 2019; Chen & Wu, 2010; Djuric, 2013; Huang et al., 2003; Kals et al., 2006; 

Patil et al., 2016; Thomé et al., 2014). However, black-box testing techniques cannot 

guarantee precision and completeness as they do not explore all possible program paths 

of applications. Moreover, existing black-box vulnerability scanners are limited to 

detecting first-order SQLIVs, and they are not capable of detecting second-order 

SQLIVs. This tendency is due to two main reasons: First, black box techniques cannot 

confirm whether the injected code is already in storage or not. Second, they may have 
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trouble linking the initial injection event with triggering the stored injected code. 

Furthermore, black-box scanners are based on the idea of knowing little about the 

internal workings of the application. In the case of a first-order injection, this is less 

relevant because the scanner can directly verify that the attack worked. However, with a 

second-order SQL injection, the scanner must not only implement the attack but also has 
to find a way to force the application to trigger the attack without knowing the 

application's source code, i.e., it must select the right attack vectors that are able to detect 

and exploit the second-order SQLIVs.  

Empirical evidence has shown that existing black box scanners have difficulty 
confirming that the attack code has been successfully injected into the database and 

maintaining the state of the database, which is critical to perform a second pass and 

search for new pages that would execute the injected attack code and launch the second-

order SQLIA (Anagandula & Zavarsky, 2020; Bau et al., 2012; Deepa & Thilagam, 

2016; Doupé et al., 2010; Hofman & Ibrahimi, 2022; Khoury et al., 2011; Parvez et al., 

2016; Stanford et al., 2010). 

White-box testing approach, specifically static source code analysis, is found very 

attractive in addressing the aforementioned weaknesses of black-box vulnerability 

scanners and their inability to support code modification for automated vulnerability 

removal. However, the research on second-order SQL injection technology and the 

detection accuracy of the existing static analysis techniques for second-order 

vulnerabilities is either unsatisfactory or such vulnerabilities are completely overlooked 

(Dolatnezhad & Amini, 2019; Fernando & Abawajy, 2013; Ping, 2017; Saidu Aliero et 

al., 2015; Xiao et al., 2017; Yan et al., 2014b).  

Existing static analysis approaches utilise taint analysis and similar code analysis 

techniques to detect SQLIVs by tracking the flow of intruders or tainted input values 

throughout the application itself  (Backes et al., 2017; Jovanovic et al., 2006; Medeiros 

et al., 2016; Su & Wassermann, 2006; Xie & Aiken, 2006; Yan et al., 2018). However, 

these techniques are not able to track the flow of input values across databases until the 
final query, which makes it difficult to detect second-order SQLIVs. The attacker can 

store malicious code in the database and trigger its execution at a later time by exploiting 

improper sanitisation of the data retrieved from the database, resulting in a second-order 

SQL injection attack. In the context of this thesis, improper sanitisation refers to the 

failure to adequately filter, validate, or otherwise handle user-supplied input before it is 

stored in the database or after it is retrieved from the database in a manner that ensures 

that the data can be safely used to construct an SQL command. 

Despite several existing studies on the applicability of taint analysis techniques, to the 

best of our knowledge, very few works, such as Dahse & Holz (2014) and Yan et al. 

(2014a), have addressed the automated detection of second-order SQL injection 

vulnerabilities, while none have targeted the automated removal of second-order SQL 

injection vulnerabilities.  
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Unfortunately, existing approaches to remediating SQLIVs can be divided into two 

extremes: On the one hand, some approaches only identify the vulnerability and then 

implement or generate a fix that can address the vulnerability without modifying the 

underlying code, leaving its remediation to the programmer (Abadi et al., 2011; Dysart 

& Sherriff, 2008; Mui & Frankl, 2010; Panda, 2017; Rafnsson et al., 2020; Scholte et 
al., 2012; Siddiq et al., 2021; Tasevski & Jakimoski, 2020; Thomas & Williams, 2007; 

Umar et al., 2014b). On the other hand, there are techniques that automatically remove 

vulnerabilities by modifying the source code. These techniques identify the root cause 

of the vulnerability and then modify the source code to eliminate it. This is accomplished 

by either applying scaping methods to the user input (Medeiros et al., 2016), inserting 

parameterised queries (Rafnsson et al., 2020), or validating user input (Tommy et al., 

2017). However, these techniques are limited to addressing the first-order vulnerabilities 

by handling the user input securely and preventing an attack from being launched at the 

injection point since they only remove the vulnerability at the injection point and not at 

the triggering point, which is not sufficient to protect the application from second-order 

attacks, since the attack can be launched later by exploiting the second-order 

vulnerabilities that use the malicious input stored in the database. Moreover, manual 

removal of such vulnerabilities is tedious, error-prone and costly. 

Obviously, vulnerability detection alone does not make web applications secure. Actual 

remediation of detected vulnerabilities is required to secure the web application. 
Therefore, an approach to automate the detection and removal of second-order SQL 

injection vulnerabilities is highly desirable, even though this is still an open research area 

in the current literature on web application vulnerabilities. 

The aforementioned weaknesses and gaps clearly reveal the shortcomings and 
inadequacies of existing techniques at achieving automated detection and removal of 

second-order SQLIVs, thus, signifying the utmost importance of further research in this 

area. 

In order to address the issues raised above, this thesis suggests using a static analysis 
technique to improve the automated detection and removal of second-order SQLIVs in 

web applications' source code. Static analysis was chosen as the method for the proposed 

solution because: (i) static analysis can be used to identify vulnerabilities early in the 

development process before the code is deployed. This can help prevent vulnerabilities 

from being introduced into production systems and reduce the risk of exploitation, (ii) 

static analysis tools can be automated to efficiently and consistently analyse large code 

bases, which can be particularly useful for identifying second-order vulnerabilities that 

are more difficult to identify manually, (iii) static analysis can provide detailed 

information about the source of the vulnerability, (iii) static analysis can provide detailed 

information about the source of the vulnerability, the exact location of the injection and 

triggering points, and the nature of the vulnerability, which improves developer 

awareness of the risks associated with second-order vulnerabilities, (iv) static analysis 
has the potential to explore all possible execution paths, which means a greater chance 

of finding such vulnerabilities, and (v) static analysis methods design many types of rules 

to detect vulnerabilities and therefore have the potential to identify second-order 

vulnerabilities. 
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1.3 Objectives of The Research 

The main objective of this research work is to propose a new static analysing technique 

for detecting second-order SQL injection vulnerabilities in web applications' source code 

and automatically removing them. In order to achieve the main objective, the following 

are the specific objectives of this thesis: 

 

i. To propose a technique to detect and remove second-order SQLIV of a web 

application by analysing its source codes 

ii. To implement the proposed technique that enables automatic detection and 

removal of second-order SQLIV in a web application. 

iii. To evaluate the effectiveness of the proposed technique. 

 

 

1.4 Scope of the Study 

Software security testing is the process of identifying whether the security features of 

software implementation are consistent with the design. Software security testing can be 

divided into security functional testing and security vulnerability testing. The software 

development process involves several development phases, including requirements, 

design, coding, testing, and deployment. It is essential to take care of the security aspects 

of the web application at each stage (Deepa & Thilagam, 2016). As stated in the 

literature, several testing techniques specifically target each development phase 

mentioned above (Jovanovic, 2009; Luo, 2001). The approach designed in this study 

specifically focuses on software security testing for the detection and removal of second-

order SQLIVs during the testing phase of web application development.  

The scope of software vulnerabilities is very broad, diverse, and complex. However, 

previous reports on software security consider injection vulnerabilities the most severe 

and prevalent vulnerabilities among other web application vulnerabilities (Acunetix, 

2020; OWASP, 2021; SANS/CWE, 2019; TRUSTWAVE, 2018). SQLIVs are top-
ranked as the most severe and common injection vulnerabilities with hazardous 

consequences. The lack of effective mechanisms for addressing the detection of second-

order SQLIVs which are associated with an increasing trend of reprocessing submitted 

data and optimising its use increases the risks of an attack. Therefore, the focus of this 

study is to address the problem of detecting and removing second-order SQLIVs in web 

applications. Figure 1.2 illustrates the research direction. The bold lines that are 

connected to the green boxes present the direction focused on this study, while the 

dashed lines represent other paths that are not considered in this study. 

Several techniques for removing SQL injection vulnerabilities include input validation, 

parameterized queries, and sanitization. This research uses the sanitisation technique to 

remove second-order SQL injection vulnerabilities in the source code. Sanitization is a 

technique that removes potentially dangerous characters or metadata from user input to 

prevent SQL injection attacks. This technique requires fewer changes to the code than 

the other techniques, making it an effective solution for preventing SQL injection 
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attacks, especially when applied automatically. In addition, sanitization can be faster and 

more lightweight compared to parameterized queries and input validation. This can be 

useful for applications that require high performance or processing large volumes of 

data. 

Several programming languages exist for developing web applications, such as JSP, 

Python, PHP, and so forth. This research is concerned with web applications developed 

by PHP as a subject of security testing. PHP is the most common programming language 

used on the server (Hauzar & Kofroň, 2012; Positive Technologies, 2014; W3techs, 

2021). Moreover, PHP is particularly prone to programming mistakes that may lead to 

web application vulnerabilities, such as SQL injections (Backes et al., 2017).  

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1.2 : Scope of the research 
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1.5 Contributions of the Study 

This study made several contributions to the body of knowledge that include but are not 

limited to the following: 

 

a) It provides an automated technique based on static program analysis for an 

effective analysis of web application source code to detect and remove 

second-order SQLIVs. 

b) It provides a support tool named SoSQLiP to automate the process of 

detecting and removing second-order SQLIVs proposed by our technique. 

c) It provides empirical evidence that the proposed technique is effective in 

testing web applications compared to the existing technique.   

 

Furthermore, this new technique will benefit developers of web applications by enabling 

them to test their source codes and get rid of second-order SQLIVs before deploying 

their applications.  

1.6 Thesis Organization 

The thesis comprises six chapters. A brief description of each chapter is given below. 

This chapter provides an overview of the research area. It pinpoints the research problem, 

objectives, scope of the study, main contributions, and the structure with which the 

chapters are organised. The remaining chapters are organised as follows. 

Chapter 2 provides a thorough review of key areas that serve as the foundation for this 

study. This chapter discusses the existing approaches and techniques used to detect and 

remove the SQLIVs of web applications and highlights the limitations, gaps, and issues 

of existing SQLVs detection and removal approaches and techniques. The reviewed 

literature provides a base for the technique proposed in this study. 

Chapter 3 presents the methodology of the study. It shows the materials and methods 

used for achieving the objectives of the study, namely, to propose a static analysis 

technique to detect and remove the vulnerable points to second-order SQL injection 
attacks, to implement a prototype software tool, and to discuss a test strategy to evaluate 

the performance of the proposed technique. 

Chapter 4 presents the newly proposed technique to detect and remove second-order 

SQL injection vulnerabilities in the web application source file. The chapter discusses 
the performance of the proposed technique and its architecture. It also explains the 

development and implementation of SoSQLiP software prototype.  
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Chapter 5 presents a comprehensive set of experiments that were carried out to 

empirically evaluate the new technique, SoSQLiP, in terms of its ability to detect second-

order SQLIVs, second-order SQLIVs detection precision, second-order SQLIVs 

detection recall, second-order SQLIVs detection F-Measure, and percentage of the 

SQLIVs removed. In addition, the chapter contains the experimental results, analysis, 

and discussion. 

Chapter 6 provides a summary and highlights the contributions and limitations of this 

study. It also gives directions for future research.  
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