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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

MULTITASKING DEEP NEURAL NETWORK MODELS FOR ARABIC 
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By 

 

MUATH MOHAMMAD OQLAH ALALI 

 

August 2022 

 

Chairman : Associate Professor Ts. Nurfadhlina binti Mohd Sharef, PhD 

Faculty  : Computer Science and Information Technology 

 

Polarity classification or sentiment analysis is considered one of the opinion mining tasks 

which distinguishes between the polarities categories (two, three, and five) of opinions 

which focus on the degree of the sentiment (such as positive and negative for two 

polarities; and positive, neutral and negative for three polarities) that the text may 

contain. Limited deep neural network approaches are applied to this task for Arabic 

dialects (AD).  On the other hand, traditional machine learning algorithms (ML) that are 

based on manually extracted features are considered tedious and time dunting, as Arabic 

language contains multiple dialects and no word-based order. Therefore, the process of 

extracting features such as syntactic and lexical information is more challenging for AD. 

 

According to the literature review, the best registered performance and most used deep 

learning model for Arabic sentiment analysis was Convolutional Neural Network 

(CNN). The existing convolutional network models are based on wide convolutional 

with shallow structure that represents less uniform importance to the features, which is 

not capable of representing the entire sentiment information in text sequence and leads 

to poor sentiment information detection. Therefore, a Narrow Convolutional Neural 

Network (NCNN) is proposed to extract comprehensive sentiment information of text 

sequence by maximizing the feature detection range, which gives large uniform 

importance to the words and improves the final performance for Arabic dialect 

classification tasks (two and three polarities). NCNN achieves its optimum performance 

when structured by three convolutional layers. Sensitivity analysis is conducted to 

evaluate the impact of various combinations of NCNN structural hyperparameters, such 

as the size of pooling, filters, and the number of convolutional filters on the classification 

performances. The proposed NCNN achieved a higher macro average recall (R) and 

outperforms Naive Bayes (NB) on task A (three polarities) and Voting model on task B 

(two polarities) on the SemEval-2017 Arabic dialect Twitter dataset. In addition, the 

NCNN model outperforms CNN-ASWAR on Arabic Sentiment Tweets Dataset (ASTD) 

with higher F1-score. 
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The negation words in the Arabic language plays a significant role in SA. Negation words 

may cause a sentence's context to be reversed. So far, there has been no effort to handle 

the negation context in Arabic using a deep neural network. The existing approaches are 

based on traditional machine learning algorithms, such as support vector machine 

(SVM). However, these approaches did not consider Arabic dialect negation words. In 

addition, these approaches are based on domain specific features and lexicons, which 

might not work with other domains.  

 

Ordinal (five polarities) classification problem has received attention in Arabic sentiment 

analysis. Most of the applied approaches are based on single task learning (STL) using 

machine learning algorithms, such as Logistic Regression (LR) and Hierarchical 

Classifier (HC) based on the divide-and-conquer approach. However, these approaches 

are based on simple sentence representation. Moreover, these models are based on single 

task learning (STL) and lack the ability to learn the relativity between different tasks 

(cross-task transfer) and modelling several polarities jointly, such as three and five 

polarities.  

 

Therefore, a model called Multi-Tasking Learning based on Convolutional Hierarchical 

Attention Neural Network (MTL-CHAN) is proposed, comprising of (i) shared word 

encoder and word attention networks across classification tasks, (ii) task-specific layers 

with convolutional neural network-based attention (CNNA) on sentence-level; to handle 

the Arabic explicit negation words and improve the classification performance by 

training Arabic classification tasks (binary, ternary, and five) jointly. The experimental 

results showed outstanding performance of the proposed MTL-CHAN model, with high 

accuracy of 89.85%, 84.69%, 85.90 on HARD, LABR, and BRAD datasets, respectively, 

and higher macro average recall (R) of 0.680% and 0.810% on Twitter Arabic dialects 

datasets task A and B respectively. Also, the proposed model achieved higher accuracy 

of 95.25%, 87.75%, 86.01%, 90.95% on Hotel, Product, Movie, and Restaurant datasets, 

respectively. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

MODEL RANGKAIAN NEURAL MENDALAM PELBAGAI TUGASAN 

UNTUK ANALISIS SENTIMEN DIALEK ARAB 

 

Oleh 

 

MUATH MOHAMMAD OQLAH ALALI 

 

Ogos 2022 

 

Pengerusi : Profesor Madya Ts. Nurfadhlina binti Mohd Sharef, PhD 

Fakulti  : Sains Komputer dan Teknologi Maklumat 

 

Klasifikasi polariti atau analisis sentimen dianggap sebagai salah satu tugas 

perlombongan pendapat yang membezakan antara polariti yang mungkin dikandungi 

oleh teks. Jumlah pendekatan rangkaian neural mendalam yang digunakan untuk tugas 

ini untuk dialek Arab (AD) adalah terhad. Bahasa Arab mengandungi pelbagai dialek 

dan tiada susunan berasaskan perkataan, oleh itu, proses mengekstrak ciri-ciri dan 

melaksanakan analisis sentimen adalah lebih mencabar dan memakan masa. 

 

Menurut kajian literatur, prestasi berdaftar terbaik model pembelajaran mendalam untuk 

analisis sentimen bahasa Arab ialah Rangkaian Neural Konvolusi (CNN). Model 

rangkaian konvolusi sedia ada adalah berdasarkan konvolusi luas dengan struktur cetek 

yang mempunyai kepentingan yang kurang seragam kepada ciri-ciri, yang juga tidak 

mampu mewakilkan keseluruhan maklumat sentimen dalam urutan teks, dan membawa 

kepada pengesanan maklumat sentimen yang lemah. Oleh itu, Rangkaian Neural 

Konvolusi Sempit (NCNN) dicadangkan untuk mengekstrak maklumat sentimen yang 

komprehensif bagi urutan teks dengan memaksimumkan julat pengesanan ciri-ciri, yang 

seterusnya memberikan kepentingan seragam yang besar kepada perkataan dan 

meningkatkan prestasi akhir untuk tugas klasifikasi dialek Arab (tiga dan dua 

kekutuban). NCNN mencapai prestasi optimumnya apabila distrukturkan oleh tiga 

lapisan konvolusi. Model ini dibangunkan tanpa menggunakan ciri leksikal dan leksikon 

atau menambah set data. Analisis sensitiviti dijalankan untuk menilai kesan pelbagai 

kombinasi hiperparameter struktur NCNN, seperti saiz pengumpulan, penapis, dan 

bilangan penapis konvolusi pada prestasi pengelasan. NCNN yang dicadangkan 

mencapai purata ingatan semula (R) makro yang lebih tinggi, dan mengatasi prestasi 

Naive Bayas (NB) pada tugas A (tiga kekutuban) dan model pengundian pada tugas B 

(dua kekutuban) pada dataset Twitter dialek Arab Semeval-2017. Selain itu, model 

NCNN mengatasi CNN-ASWAR pada Set Data Twitter Sentimen Arab (ASTD) dengan 

skor F1 yang lebih tinggi. 
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Perkataan-perkataan penafian dalam bahasa Arab memainkan peranan penting dalam 

SA. Perkataan-perkataan-perkataan penafian boleh menyebabkan konteks ayat menjadi 

terbalik. Setakat ini, belum ada usaha untuk mengendalikan konteks penafian dalam 

bahasa Arab menggunakan rangkaian neural yang mendalam. Pendekatan sedia ada 

adalah berdasarkan algoritma pembelajaran mesin tradisional, seperti mesin vektor 

sokongan (SVM). Walau bagaimanapun, pendekatan ini tidak mengambil kira 

perkataan-perkataan penafian dialek Arab. Selain itu, pendekatan ini adalah berdasarkan 

ciri-ciri dan leksikon khusus domain, yang mungkin tidak berfungsi dengan domain lain. 

 

Masalah klasifikasi ordinal kurang mendapat perhatian dalam analisis sentimen bahasa 

Arab. Kebanyakan pendekatan yang digunakan adalah berdasarkan pembelajaran 

tugasan tunggal (STL) menggunakan algoritma pembelajaran mesin, seperti Regresi 

Logistik (LR) dan Pengelas Hierarki (HC) berdasarkan pendekatan dasar pecah dan 

perintah. Walau bagaimanapun, pendekatan ini adalah berdasarkan perwakilan ayat 

mudah. Selain itu, model ini adalah berdasarkan pembelajaran tugasan tunggal (STL) 

dan tidak mempunyai keupayaan untuk mempelajari relativiti antara tugasan yang 

berbeza, seperti tugasan klasifikasi ternari dan lima kekutuban (pemindahan silang 

tugas).  

 

Oleh itu, model yang dipanggil Pembelajaran Pelbagai Tugas berdasarkan Rangkaian 

Neural Perhatian Hierarki Konvolusi (MTL-CHAN) dicadangkan, yang terdiri daripada 

(i) pengekod perkataan dikongsi dan rangkaian perhatian perkataan merentas tugasan 

pengelasan, (ii) lapisan khusus tugas dengan perhatian berasaskan rangkaian neural 

konvolusi (CNNA) pada peringkat ayat; untuk mengendalikan kata-kata penafian 

eksplisit Arab dan meningkatkan prestasi klasifikasi dengan melatih tugas-tugas 

klasifikasi bahasa Arab (Binari, Ternari, dan Lima) secara bersama. keputusan 

eksperimen menunjukkan prestasi cemerlang model MTL-CHAN yang dicadangkan, 

dengan ketepatan tinggi 89.85%, 84.69%, 85.90 pada set data HARD, LABR, dan 

BRAD, dan purata ingatan semula makro (R) yang lebih tinggi sebanyak 0.680% dan 

0.810% di Twitter dialek Arab set data Tugas A dan B. Selain itu, model yang 

dicadangkan mencapai ketepatan yang lebih tinggi iaitu 95.25%, 87.75%, 86.01%, 

90.95% pada set data Hotel, Produk, Filem dan Restoran. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background  

 

Sentiment Analysis (SA) is a natural language processing (NLP) task that has become 

increasingly important in data analysis and information extraction fields over recent 

years (Pang & Lee, 2008). The primary purpose of SA is to detect the sentiments and to 

classify the text according to polarity categories such as binary (positive and negative), 

ternary (positive, neutral, negative) or five classes (strong positive, positive, neutral, 

negative, strong negative). Sentiment Analysis in the Arabic language had an interesting 

evolution recently. First, Arabic social media content has grown exponentially, and it is 

currently one of the most popular languages on social media. Second, there are a vast 

number of online users, estimated at 2.2 billion, and predicted to increase to 2.72 billion 

in 2020; therefore, it is difficult to manually collect and classify the comments written 

by such users, which should be automated instead. In addition, the enormous number of 

Arab users reveals that there are a lot of potential entities (both governmental and 

commercial) benefiting from a system that can extract and classify online comments 

according to their sentiments.  

 

This work covers the sentiment analysis using textual data written in the Arabic dialect 

(AD). Arabic Dialects Sentiment analysis (ADSA) is considered a challenging task 

because of the language's morphology, orthography, and complex nature. Most of the 

approaches that have been applied to ADSA are based on conventional machine learning 

algorithms. In contrast, deep neural network approaches are still in the early stages of 

AD and have very limited applications. Most of these approaches are based on CNN (Al-

Azani, Sadam, 2017; Dahou et al., 2016; Gridach et al., 2018; Alayba et al., 2017). These 

approaches typically comprise of shallow structures that are not capable of capturing the 

entire sentiment features articulated in text sequence for Arabic dialects. Moreover, these 

models are based on CNN structures applied to the English language (Kim, 2014). 

Besides, no attempt has been made to resolve the Arabic context negation using a deep 

neural network in ADSA. In addition, the five-polarity classification problem has less 

attention in ASA than binary and ternary classification problems. Most of the applied 

approaches are based on conventional machine learning (ML) algorithms that are based 

heavily on handcrafted features, which is considered time-consuming. Moreover, these 

approaches are based on single task learning and do not consider the related tasks. The 

reported performance of existing works on ADSA still has various areas to improve, 

which can be achieved using DNN approaches.” 

 

1.2 Problem Statements  

 

The research on ADSA faces several challenges, which are listed below: 
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1.2.1 Effective classifier structure using CNN for ADSA 

 

Modern Standard Arabic (MSA) language is different from AD, which people use daily 

on social media. Most educated Arabic-speaking people are supposed to understand 

MSA, but this is not always true for dialects. AD differs from MSA morphologically and 

syntactically, making the SA task quite challenging. Recently, in the Semeval-2017 

challenge (Rosenthal et al., 2017), the Arabic dialect tweets Dataset that addresses three 

tasks has been released. The first Task (A) is to classify the tweets into three polarities: 

negative, neutral, and positive. The Second Task (B) is to classify the tweets into two 

polarities, i.e., negative and positive. The third Task (C) is to classify the tweets into five 

polarities: highly negative, negative, neutral, positive, and highly positive. Task C has 

not been considered in this study for the Arabic dialect tweets dataset because the Task 

C dataset is highly imbalanced. The number of samples for the high positive and high 

negative in the test dataset is one for both classes. Scale, polarity, and point are used 

interchangeably. 

 

Most approaches that have addressed these tasks are based on hand-crafted features. In 

the best-conducted work identified, (El-Beltagy et al., 2017) have proposed a voting 

model for binary classification and a Naïve Bayes (NB) model for ternary classification. 

Their models are based on hand-crafted features to enrich the sentiment such as counts 

of exclamation marks, question marks, elongated words, negated contexts, positive 

emotions, negative emotions, part-of-speech tags, and positive and negative words. 

Besides lexicons, other hand-crafted features are also used to represent the syntactic and 

lexical based features such as word and character n-gram, translated lexicon, flags to 

indicate if the tweet starts with a link, positive and negative words, hashtag, and question 

marks. However, feature extraction is considered tedious and time daunting. These 

approaches can become obsolete over time, primarily if the content of the data diverges, 

such as when a different is involved. 

 

On the other hand, the application of deep neural network approaches on Arabic 

colloquial are very limited. The most deep neural network models applied on ADSA are 

based on CNN; this is due to the convolutional filter operation it corresponds to a 

linguistic feature detector that learns to recognize a specific class of N-grams such as 

unigram, bigram and trigram. However, these CNN models are based on shallow CNN 

structures, consisting of one or two convolutional layers with various filter sizes applied 

on sentence matrix (Gridach et al., 2018). Thus, these models’ structures have less 

uniform importance to the feature, which leads to poor sentiment information detection.  

 

A CNN with single convolutional layer can extract simple features. On the other hand, a 

network with multiple convolutional layers helps in learning more complicated features 

by aggregating the simple features learned in previous convolutional layers. Therefore, 

every convolutional layer output has more uniform and important features than the 

previous convolutional layer. For example, the filters in the first convolutional layer 

identify only the edges or corners (connected dots or pixels) of the input image. 

Information like individual dots or small length connected dots are ignored. But these 

extracted features (edges or corners) are not sufficient to identify an object uniformly. 

Therefore, such features are known as "less uniform or less important features". When 
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these corners and edges are input to the second convolutional layer, the output is the 

combination of these edges and corners extracted from the previous layer, which is a 

more powerful representation of the object, such as parts of the face, the paw of a dog, 

the hood of a car, etc. The output of the second convolutional layer is a feature map with 

"more uniform and important features" to identify the target object. Similarly, for text 

classification the single convolutional layer can extract simple features such as words. 

When these words used as input to the next convolutional layer, the CNN learns more 

complicated and important features such as words with its prefixes and suffixes. 

Therefore, shallow CNN structures have less uniform importance to the feature, while 

increasing the depth of CNN gives large uniform importance to the features.  

 

1.2.2 Limitation in contextual sentence understanding of negation words 

 

One of the biggest contextual challenges in AD that may mislead the opinion orientation 

is negation words. Negation words reverse the polarity of sentiment words that follow 

them. For example, the word “مهم” / (important) / mhm/ represents positive polarity but 

expresses a negative polarity in the following sentence “ مهم غير  الكتاب هذا  ” / (This book is 

not important) since it is preceded by the negation word “غير” / (isn’t) / gyr/. In AD, there 

are several forms of negation, for example {لا /lA/ (no)–  ولا /wlA/ (nor)– فلا /flA/ (no)– 

 /flm/ فلم –wlm/ (and did not)/ ولم –lm/ (did not)/ لم –(AllA/ I'm not/ اللا–blA/ (without)/ بلا

(and did not)}.” 

 

The approaches that handled the explicit negation words in Arabic sentiment analysis are 

based on conventional machine learning algorithms such as SVM and utilized a list of 

negation words (Touahri & Mazroui, 2019). In addition, they flipped the term polarity if 

it happened to be negated for negation context detection. Moreover, these approaches do 

not consider the Arabic dialect's negation words. Furthermore, there has been no effort 

to address the Arabic negation context using a deep neural network in ADSA. However, 

handling the explicit negation context required a robust deep learning model to learn 

effective latent feature representations. Sentence representations, sentence feature 

representations, feature latent representation, and hidden representations are used 

interchangeably.    

 

One of the robust deep learning models that the recent Arabic literature review (Nassif 

et al., 2020)  emphasized on the need for a modernized deep learning model on Arabic 

sentiment analysis, such as the hierarchical attention network (HAN) model (Yang et al., 

2016). The HAN model uses the recurrent neural networks (RNN) with Attention 

network on word and sentence levels. However, RNN only considers the global features 

by encoding the general structure, positional information, and long-term relationships 

among the text sequences, which encode the semantics of the view of text sequences and 

ignores the local features to some extent. Therefore, such features are called global 

features because these are obtained from the whole text (like sentence, paragraph, or a 

document). At the same time, CNN captures local relationships among the neighbour 

words in terms of context windows (filters). CNN applies multiple filters of varying sizes 

on the input text. By varying the size of the filters and concatenating their outputs, it 

allows to detect patterns of multiples sizes (2, 3, or 5 adjacent words). These patterns 

express (word N-gram). These features are called the local features because these are 
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extracted from the fixed window size and not a whole comment. Also, these local 

features identify short range relationship among the words of a window (Jin et al., 2020). 

The N-gram features are considered the most informative features in ADSA literature 

(El-Masri et al., 2017). Therefore, incorporating the CNN in the HAN model is needed 

because the filtering mechanism in CNN acts as N-gram features extractor. Also, the 

attention network with CNN has been rarely explored in ADSA. 

 

The success of the deep neural network model is primarily based on the availability of 

ample resources, such as a large collection of the training dataset (Ahmad et al., 2019). 

In addition, a deep neural network model such as RNN is often expensive and requires 

extensive training data (Ahmad et al., 2019). Moreover, the amount of training data used 

in training affects the quality of the deep learning model in learning a robust sentence 

representation (Hessel et al., 2019). Arabic is considered a low resource language, and 

most of the available datasets are small (Al-Ayyoub et al., 2019).  Therefore, building 

and learning a robust deep learning model to learn effective latent feature representation 

over a small dataset is quite challenging. Multitask learning (MTL) (Thrun, 1997) is an 

effective method to learn robust sentence representation and improve the performance of 

sentiment analysis classification tasks, while there is not enough training data for any 

single task, and related tasks’ datasets are available (Hessel et al., 2019). However, there 

has been no effort to use MTL in ASA so far. 

 

1.2.3 Relativity learning limitation in ordinal classification 

 

The five-polarity classification problem in ADSA has gained less popularity than other 

classification tasks (ternary and binary polarity) (Al-Ayyoub et al., 2019). The existing 

models that have tackled ordinal classification are based on single task learning using 

traditional ML algorithms (Al Shboul et al., 2015). The terms five-polarity, five-point, 

ordinal-scale, fine-grained are used interchangeably in this study. 

 

The best work identified on the five-point classification problem on the LABR dataset is 

the hierarchical classifier (HC) (Nuseir et al., 2017). Their model is based on the divide-

and-conquer approach in which the five classes are decomposed into nodes representing 

subproblems, where each node exemplifies a different classification subproblem. 

However, The HC model only selects core classifiers without considering sentence 

representation. The best works on the HARD and BRAD datasets are (Elnagar et al., 

2017) and (Elnagar & Einea, 2016); both works are based on a logistic regression model 

with N-gram features. However, their approaches are based on ML algorithms which do 

not produce a robust sentence representation. Moreover, these approaches are based on 

single task learning and lack the ability to learn the relativity between different tasks, 

such as five-point and ternary tasks, which could be addressed through an MTL-based 

approach. However, no research has been found to use MTL for learning for learning a 

five-point ASA classification. “ 
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1.3 Research Objectives  

 

The main objective of this study is to propose a multitasking model based on 

Convolutional Hierarchical Attention (MTL-CHAN) to learn more effective feature 

latent representation and improve the performance of sentiment classification tasks by 

learning these tasks (binary and three polarities) and (five and three polarities) jointly. 

This is achieved by the following sub-objectives: 

 

1. To propose a narrow convolutional neural network (NCNN) to capture the 

sentiment information contained in text sequence by maximizing the features 

detection range, which gives large uniform importance to the words. 

2. To empirically determine the best hyperparameter (the size of the filters, 

pooling, and the number of filters) for the proposed NCNN model. 

3. To propose a convolutional hierarchical attention network (CHAN) based on 

hierarchical sentence representation (word and sentence levels) to produce 

effectives latent representation to handle Arabic negation context and improve 

the performance for five polarity classification tasks.  

 

1.4 Research Scope 

 

This research focuses on binary, ternary and five polarities ADSA problem that is solved 

by proposing a multitasking-based approach that exploits DNN structure and feature 

representation techniques. Nine datasets have been used to evaluate the proposed 

approaches. This study had to use different datasets. These datasets were used by the 

benchmark approaches and other researchers who focused on similar problems. 

 

Two datasets were used for the first and second sub-objective which are Twitter Arabic 

dialect datasets called Semeval-2017 (Rosenthal et al., 2017), and the Arabic Sentiment 

Tweet Dataset (ASTD) (Nabil et al., 2015). 

 

The third sub-objective is achieved by utilizing the Semeval-2017, ASTD, another four 

multi-domain datasets (product, hotel, restaurant, and movies reviews) (Elsahar & El-

beltagy, 2015) datasets used for handling the Arabic explicit negation words, as well as 

the Large Scale Arabic Book Reviews (LABR) (Nabil et al., 2014), Book Reviews in 

Arabic Dataset (BRAD) (Elnagar & Einea, 2016), and the Hotel Arabic-Reviews Dataset 

(HARD) (Elnagar et al., 2017). 

 

1.5 Thesis Contributions 

 

The primary contributions of this research work are improving the prediction 

performance of CNN for ADSA classification tasks by proposing NCNN, which can 
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maximize the features of the detector’s range. However, the limitation of NCNN is in 

handling the negation context. The model could not detect the negation words in the text 

sequence, which misclassified the sentences containing a negation word. To overcome 

this limitation, MTL-CHAN has been proposed to handle the negation context and 

improve the final performance for ADSA classification tasks.  

 

The main contributions of this research work are as follows: 

 

1. A narrow convolutional neural network model (NCNN) for ADSA is 

introduced, and it is the first time such a model has been developed for ADSA. 

The proposed model structure improves the performance of classification tasks 

by maximizing the feature detector range, which gives large uniform 

importance to the features. 

 

For example, the following tweet holds a positive polarity: 

 

المأسا قبل الأخيرة  أمنيته كانت ...هدية وتلقى  نويل بابا الطفل التقى "  " 

 

“The Kid received the gift after he met Santa Claus, 

which was the last wish before the tragedy.” 

 

Figure 1.1 visualizes the features detected based on wide CNN, while NCNN output is 

illustrated in Figure 1.2. The CNN-ASWAR model (Gridach et al., 2018) consists of a 

single convolutional layer with max pooling. The range of feature detection of the model 

is very low, as it could only detect “the tragedy” (المأساة), “kid” ( الطفل) as the informative 

features in the sentence and ignoring the sentiment feature in the sentence which then 

lead to misclassifying the sentence. 

 

 

 

Figure 1.1: CNN-ASWAR features detection. Color gradient from light to dark, 

which the darker shades represent the selected features by CNN model (Gridach et 

al., 2018), which are: the tragedy (المأساة), Kid(الطفل) 

 

 

Figure 1.2: NCNN Features Detection. Colour gradient from light to dark, which 

the darker shades represent the selected features by NCNN, which are: Kid(الطفل), 

Gift(هديه), Last Wish ( الأخيرة أمنيته ), Before the Tragedy ( المأساة قبل ), Santa Claus ( بابا 

 (نويل
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2. The study redevelops and modifies the HAN model for ADSA. by proposing a 

convolutional neural network combined with an attention network, and the 

proposed model has been called a convolutional hierarchical attention network 

(CHAN). The proposed model was able to detect the explicit Arabic negation 

words. 

3. MTL-CHAN is proposed to learn effective sentence representation from 

multiple sentiment classification tasks and improve the performance of Arabic 

sentiment classification tasks binary, ternary, and five polarities.   

 

1.6 Thesis Outline” 

 

The rest of this thesis is organized as follows: Chapter 2 provides the background of the 

Arabic dialect and its challenges. Also, this chapter will give an overview of the 

classification approaches applied to ADSA, namely machine learning algorithms and 

deep neural networks, and explore the limitations of the current approaches on ADSA. 

Chapter 3 presents the review of the issues of current deep learning classification 

approaches and the proposed solution. The datasets and data preparation and metric 

evaluations will be described in this chapter. Chapter 4 presents both the proposed 

narrow convolutional neural networks in detail and the experimental results of the 

proposed model. Chapter 5 presents the proposed multitask learning model based on 

Convolutional Hierarchical Attention and the experimental results of the proposed model 

in detail. Chapter 6 presents the conclusion of all the experimental works and the 

recommendations for future work.” 
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