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Cloud computing is a high-performance distributed computing platform that integrates 

large-scale services. It facilitates many scientific and engineering, as well as business 

workflow applications. However, current workflow applications come with various 

Quality of Service (QoS) objectives and constraints, such as makespan, cost, reliability, 

resource utilization and security, which pose serious QoS management challenges with 

respect to satisfying the objectives under specific constraints. In addition, the cloud 

environment is complex, highly uncertain with chances of failures at all levels (human, 
software, hardware, security). Therefore, one of the major concerns of users is getting 

assurance of the needed QoS for their applications, especially in tight cases. 

 

 

These have also led another issue in scheduling workflow for cloud computing which 

are minimizing workflow makespan and cost simultaneously while satisfying the 

reliability constraint, improving overall QoS satisfaction, as well as increasing the 

reliability and minimizing completion time of the scheduled process with fault-intrusion 

tolerance.  

 

 

There are three (3) main objectives laid out in this thesis, to tackle these issues. First, to 
propose a multi-objective and reliability constraint handling algorithm (FR-MOS) that 

controls the reliability constraint by determining the reliability constraint coefficient 

according to the value of the resource utilization. Second, to propose a minimum-weight-

based multi-objective algorithm (MOS-MWO), which is based on Particle Swarm 

Optimization (PSO) technique and a novel minimum weight optimization approach, that 

improves user’s QoS satisfaction. Third, to propose a fault-intrusion-tolerant algorithm 

(FITSW), which is based on both fault and intrusion-tolerant techniques, to decrease the 

adverse impact caused by different faults (accidental and malicious) in cloud computing 
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systems. All the proposed algorithms are simulated using the popular cloud simulator, 

Workflowsim 1.0. 

 

 

Results of the experiments prove that the multi-objective and reliability constraint 

handling (FR-MOS) algorithm significantly minimizes the makespan by 9% and cost by 
10% compared to the benchmark algorithm under the reliability constraint. This was 

accomplished by determining the value of the reliability constraint coefficient based on 

the resource utilization of each alternative and selecting the best results from various 

alternatives with several reliability constraints. Moreover, the improvements of different 

QoS metrics values achieved by using a minimum-weight-based multi-objective 

algorithm (MOS-MWO) for scheduling scientific workflows are better than those of the 

previous work which used the Pareto optimization method. MOS-MWO can thus be 

applied in cloud-based applications to effectively schedule workflow while achieving 

significant improvement in the QoS satisfaction rate (QSR) to 4.8% compared with the 

multi-objective scheduling algorithm (MOS). The average of different workflows 

objectives shows that MOS-MWO algorithm yields better makespan compared with the 

MOS algorithm. With the MOS-MWO algorithm, makespan is reduced by 40%, cost 
also reduced by 3 % and risk probability reduced by 86%. MOS-MWO increases the 

resource utilization by 15% than MOS, and the reliability increase by 2%. Finally, the 

workflow completion time of the fault-intrusion-tolerant and deadline-aware algorithm 

(FITSW) decreased by 15% for all datasets when compared with the previous work, and 

the intrusion tolerance increased due to the high success rate of workflow execution.  
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Pengkomputeran awan ialah platform pengkomputeran teragih berprestasi tinggi yang 

menyepadukan perkhidmatan-perkhidmatan berskala besar. Ia memudahkan pelbagai 

aplikasi saintifik, kejuruteraan, serta aliran kerja perniagaan. Walau bagaimanapun, 

aplikasi aliran kerja semasa datang dengan pelbagai objektif dan kekangan Kualiti 

Perkhidmatan (QoS), seperti makespan, kos, kebolehpercayaan, penggunaan sumber dan 

keselamatan, yang menimbulkan cabaran pengurusan kualiti perkhidmatan (QoS) yang 

serius untuk memenuhi objektif di bawah kekangan tertentu. Di samping itu, 
persekitaran awan adalah kompleks dan tidak stabil, dengan kemungkinan kegagalan di 

semua peringkat (manusia, perisian, perkakasan, dan keselamatan). Oleh itu, salah satu 

kebimbangan utama pengguna ialah mendapatkan jaminan kualiti perkhidmatan (QoS) 

yang diperlukan untuk aplikasi mereka, terutamanya dalam kes yang kompleks. 

 

 

Ini juga telah membawa kepada isu-isu lain dalam menjadualkan aliran kerja untuk 

pengkomputeran awan, iaitu meminimumkan penetapan aliran kerja dan kos secara 

serentak sambil memenuhi kekangan kebolehpercayaan, meningkatkan kepuasan kualiti 

perkhidmatan QoS secara menyeluruh, serta meningkatkan kebolehpercayaan dan 

meminimumkan masa penyiapan proses yang dijadualkan dengan toleran kesalahan-

pencerobohan. 
 

 

Bagi menangani isu-isu tersebut, terdapat tiga (3) objektif utama yang digariskan dalam 

tesis ini. Pertama, untuk mencadangkan algoritma pengendalian kekangan berbilang 

objektif dan kebolehpercayaan (FR-MOS) yang mengawal kekangan kebolehpercayaan 

dengan menentukan pekali kekangan kebolehpercayaan mengikut nilai penggunaan 

sumber. Kedua, untuk mencadangkan algoritma multi-objektif berasaskan berat 

minimum (MOS-MWO), yang berdasarkan teknik Pengoptimuman Kerumunan Zarah 

(PSO) dan pendekatan pengoptimuman berat minimum baharu, yang meningkatkan 
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kepuasan kualiti perkhidmatan QoS pengguna. Ketiga, untuk mencadangkan algoritma 

toleran kesalahan-pencerobohan (FITSW), yang berdasarkan kedua-dua kesalahan dan 

teknik toleran-pencerobohan, untuk mengurangkan kesan buruk yang disebabkan oleh 

kesalahan yang berbeza (tidak sengaja dan berniat jahat) dalam sistem pengkomputeran 

awan. Semua algoritma yang dicadangkan disimulasikan menggunakan simulator awan 

yang popular, Workflowsim 1.0. 
 

 

Keputusan eksperimen membuktikan bahawa algoritma pengendalian kekangan 

berbilang objektif dan kebolehpercayaan (FR-MOS) meminimumkan makespan 

sebanyak 9% dan kos sebanyak 10% dengan ketara berbanding algoritma penanda aras 

di bawah kekangan kebolehpercayaan. Keputusan ini dicapai dengan menentukan nilai 

pekali kekangan kebolehpercayaan berdasarkan penggunaan sumber setiap alternatif dan 

memilih keputusan terbaik daripada pelbagai alternatif dengan beberapa kekangan 

kebolehpercayaan. Selain itu, peningkatan nilai metrik QoS berbeza yang dicapai dengan 

menggunakan algoritma berbilang objektif berasaskan berat minimum (MOS-MWO) 

untuk menjadualkan aliran kerja saintifik adalah lebih baik daripada kajian terdahulu 

yang menggunakan kaedah pengoptimuman Pareto. Oleh itu, MOS-MWO boleh 
digunakan dalam aplikasi berasaskan awan untuk menjadualkan aliran kerja dengan 

berkesan sambil mencapai peningkatan ketara dalam kadar kepuasan QoS (QSR) kepada 

4.8% berbanding dengan algoritma penjadualan berbilang objektif (MOS). Purata 

objektif aliran kerja yang berbeza menunjukkan bahawa algoritma MOS-MWO 

menghasilkan makespan yang lebih baik berbanding dengan algoritma MOS. Dengan 

algoritma MOS-MWO, makespan dikurangkan sebanyak 40%, kos juga dikurangkan 

sebanyak 3% dan kebarangkalian risiko dikurangkan sebanyak 86%. MOS-MWO 

meningkatkan penggunaan sumber sebanyak 15% daripada MOS, dan kebolehpercayaan 

meningkat sebanyak 2%. Akhir sekali, masa penyiapan aliran kerja algoritma toleran 

kesalahan-pencerobohan dan sedar-tarikh akhir (FITSW) menurun sebanyak 15% untuk 

semua set data jika dibandingkan dengan kajian terdahulu, dan toleransi pencerobohan 
meningkat disebabkan oleh kadar kejayaan pelaksanaan aliran kerja yang tinggi. 
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CHAPTER 1 

1 INTRODUCTION 

This chapter presents the research background, problem statements and motivations of 

the current work. It also discusses the research objectives, the scope of the research and 

research significance. In addition, it highlights the research contributions which justify 

the benefits and clarify the implications of this research. Finally, this chapter summarizes 
the organization of this thesis.  

1.1 Background  

In the last two decades, there has been a revolution in science and the way technology is 

used. Scientific and technological advances have solved several multidisciplinary and 
complex issues. However, they are also associated with multiple challenges. Workflows 

were previously used to describe business processes only. The scientific community 

accepted the concept and began to model complex experiments and applications as 

workflows. The term "scientific workflow" describes the process of determining the 

sequence of tasks that is necessary to handle any computational process. The primary 

distinction between business and scientific workflows is that business workflows are 

typically task-oriented and control-driven while scientific workflows can be both data-

driven and control-driven (Deelman et al., 2009). In modern science, large-scale 

experimentation and extensive simulations generate enormous amounts of data on a 

regular basis. The science of workflow design, management, and execution is made up 

of sequences of steps that make up certain complex processes. Workflows help in the 
management of such time-consuming and data-intensive procedures by laying out the 

steps in the correct order. Tasks take data from previous tasks or data sources and 

perform predefined calculations. The output is then passed on to the tasks that follow. 

Workflow Management System (WMS) is used to manage workflows. At first, an 

abstraction of a high-level workflow (abstract workflow) is designed. Abstract workflow 

refers to the logical order in which the workflow steps will be carried out. At this time, 

the resources are not linked to the tasks. The WMS locates and maps appropriate 

resources to complete workflow task execution; the resulting workflow is referred to as 

concrete workflow. Later stages provide a provenance mechanism that saves the history 

of workflow data that is useful in determining the optimization approaches and 

parameters during the resource mapping process. For future relevant experimentation 

and study, the provenance data is important (Liew, 2012). DISPEL (Bonanza, 2013), 
BPEL (Slominski, 2007) and YAWL (Ter Hofstede & van der Aalst, 2005) are some of 

the languages that can be used to express workflows. Taverna1 is one of the WMSs that 

has its own workbench for writing and developing workflows. 
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A variety of issues must be addressed in order to enable efficient workflow management. 

Workflow scheduling, workflow application modelling, information service, resource 

discovery, data management, and fault management are all topics to consider. From the 

user-centric point of view, scheduling workflow application in a multi-cloud 

environment to meet the QoS demands of users is the most challenging. The scheduling 

problem, on the other hand, falls into the category of non-deterministic polynomial 
complete (NP-complete) problems since it involves composing a collection of 

distributed services for workflow tasks. For such problems, no known algorithm is able 

to generate the optimal solution within polynomial time. Also, users now have multiple 

objectives and constraints for executing their applications. Another challenging aspect 

of the service composition problem is how to ensure the selected services can guarantee 

the expected QoS delivery such as deadline constraints. This is because many of these 

services exhibit dynamic QoS behavior at runtime. Moreover, a service-oriented multi-

cloud environment is complicated and complex with numerous uncertainties and chances 

of failure at various levels. These and many other scheduling challenges are 

demonstrated in Figure 1.1 (Chandrashekar, 2015). 

 

Figure 1.1 : Challenges in Scheduling Workflow Applications on Cloud Computing 

Environment (Chandrashekar, 2015) 
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Consequently, the QoS-aware service composition problem is a complex optimization 

and trade-off problem. Despite the fact that the problem can be solved by performing an 

exhaustive search, the time taken to produce a solution is enormous. In a service-oriented 

environment, scheduling decisions must be made in the shortest time possible, 

dependable and efficient because competition for services is very high among users as 

well as service providers. 

1.2 Problem Statement 

Cloud workflow scheduling is well-recognized to be an NP-complete problem (Madni 

et al., 2016), and workflow scheduling in a multi-cloud environment is even more 

difficult (I. Gupta et al., 2016; B. Lin et al., 2015). Particularly, in a multi-cloud 
environment, services are provided by multiple individual cloud IaaS platforms and 

computing resources are pooled into one or more composite services. Then, to meet the 

QoS requirements, choosing an appropriate combination of services from multiple IaaS 

platforms is quite challenging (Cui et al., 2017; Rodriguez & Buyya, 2014; Z. Zhu et al., 

2016). Some of the recent works in this area have been able to achieve workflow 

scheduling in multi cloud environment with focusing on either single or two objectives, 

however, the deployed approaches do not considered multi-objective scheduling 

problem, especially with respect to maintaining user satisfaction and service provider 

requirements, for all five QoS metrics including, makespan, cost, reliability, resource 

utilization and risk probability.  

Although, many studies have been conducted to address the scientific workflow 
scheduling problems in cloud environment with significant contributions, several issues 

have been left unaddressed. Three of such problems are described in what follows: 

 

1. Scientific workflow scheduling algorithms are mostly based on stochastic 

auxiliary methods which iteratively search and produce trade-off solutions. For 

the design of large-scale workflow systems with tight reliability constraints, 

these algorithms cannot search effectively due to the stochastic feature and 

therefore most of them cannot produce satisfactory makespan-cost trade-offs 

(P. Han et al., 2021). Most of the existing studies used deep learning equations 

to determine the scheduling constraints by using a fixed learning rate which 

allow them to compare the different alternatives with tight constraints (Y. Li et 

al., 2021). This limits its feasible solutions due to that learning rate. Comparing 
different alternatives with some adaptive methods can produce better 

makespan-cost trade-offs than those using fix learning rate, as a result of 

comparing disparate alternatives with different learning rate (Kayacan & 

Khanesar, 2016), however this method has not been considered in this context 

to achieve a better performance.  

2. Another concern is that previous studies on cloud workflow scheduling 

concentrate fewer (not more than three) objectives and thus, there is a lack of 

effective studies and approaches for problems with over three objectives 

(Saeedi et al., 2020). In this respect, from the extensive review of literature done 

in this research work, it became evident that most of the QoS scheduling models 
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use the Pareto optimizing method to solve such problems multi-objective 

problems. A pareto optimizing method produces a solution with conflicted 

objectives, so to optimize one objective of that solution means make the other 

worse. However, this method also has it’s particular drawbacks that degrades 

the efficiency of multi-objective evolutionary algorithms (MOEAs) 

dramatically in multi-objective optimization problems, where the number of 
objectives exceeds three according to (Cappelletti et al., 2016; Gómez-

Skarmeta et al., 1999). For instance, Pareto optimization method does not give 

an optimum solution but proffers an equally effective set of configurations, also 

it requires a higher number of iterations thus taking a long time to make a better 

final decision with high QoS satisfaction rate. 

3. Resource sharing for cloud-based scientific workflows is vulnerable and as 

such adversaries can destroy them directly or indirectly by side channels, virtual 

machine (VM) escape and other means leading to disruption or incorrect 

outputs. To protect the scheduling system from these types of attacks the 

intrusion tolerance is required. Only a few works separately study intrusion 

tolerance in workflow scheduling in the cloud, and  all of them ignored the 

delay due to intruder access and monitoring of the intermediate data without 
altering or modifying them thereby negatively affecting the scheduling 

reliability and execution time (Bhattarai et al., 2015; W. Yu et al., 2017). This 

is a significant issue because, cloud-based scientific workflows are commonly 

used in important scientific research fields and their failure would lead to huge 

losses (Yawen Wang et al., 2021). 

 

 

1.3 Motivation  

The problem of scheduling workflow in a multi-cloud computing environment is quite 

complicated (I. Gupta et al., 2016; B. Lin et al., 2015) and it is regarded as NP-complete 

(Madni et al., 2016). This is because independent cloud IaaS offers this service by putting 

their computing resources together. Particularly, meeting the QoS requirements is a 

daunting challenge since selecting the optimal combination of services from these 

independent IaaS platforms is somewhat difficult (Z. Li et al., 2015; Rodriguez & Buyya, 

2014; Z. Zhu et al., 2016). Like other distributed systems, cloud computing is vulnerable 
to software faults, hardware failures and power malfunction (Jeannot et al., 2012). These 

unavoidable issues lead to task and workflow failures during the course of executing 

sophisticated workflow applications (Hwang & Kesselman, 2003; D. Poola et al., 2016). 

Hence, it is important to ensure reliability while scheduling workflow in clouds (A. 

Singh & Chatterjee, 2017). Although cloud providers consider different reliability 

parameters, it is important that users pay attention to the workflow’s reliability 

constraints.  

Most of the previous studies on scheduling scientific workflow incorporated different 

constraints by using deep learning equations with fixed user-defined learning rates as a 

constraint coefficient (Hu et al., 2018; Z. Li et al., 2016, 2021; P. Wang et al., 2020). A 

comparison between alternatives is done according to that tight constraint with fixed 
learning rate. The initial user defined learning rate degrade the efficiency of multi-
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objective scheduling algorithm, because it is not related to the actual performance of the 

scheduling algorithm. To improve makespan-cost tradeoffs, there is a need for a better 

mechanism to capture and control the reliability constraint effectively.  These motivate 

this research to aim at improving successful scheduling of scientific workflow in cloud 

computing as the subjects of focus.  

Fuzzy logic is integrated with a multi-objective algorithm to generate the reliability 
constraint coefficient depending on the value of the resource utilization. This compares 

different alternatives with different reliability constraints to improve the performance of 

MOS in terms of makespan-cost trade-off.  

Scheduling scientific workflow with more than three objectives is another challenge in 

cloud computing. Hence, an efficient workflow scheduling algorithm must strike a 

balance between several QoS objectives. One way of striking such a balance is adopting 

Pareto optimal method that allows users to select the best result within an acceptable set 

of solutions. With the aforementioned in mind, the mean drawbacks of  Pareto 

optimization method is that not giving an optimum solution but proffers an equally 

effective set of configurations, also it requires a higher number of iterations thus taking 

a long time to make a better final decision (Cappelletti et al., 2016).  

Hence, taking advantage of aggregation and normalization methods is a good option. 
The minimum weight optimization method (MWO) in this case used to get the optimum 

solution among all alternatives. Using (MWO) provides a better quality of service 

satisfaction rate (QSR). 

There are many threats in clouds due to multi-tenant coexistence, co-residential attacks 

(Atya et al., 2017), side-channel attacks (Z. Wang et al., 2016; Yinqian Zhang et al., 

2014), and VM escape attacks (J. Wu et al., 2017). A large number of tasks and 

intermediate data contained in scientific workflows can easily be targeted by attackers.  

Monitoring data by attacker without altering or modifying that data delays the finish time 

of executing tasks, this type of intrusion is ignored by the most intrusion tolerance 

techniques which affected the reliability and finish time of the workflow execution.  

To address these issues, new models are required to improve the reliability of the 
workflow’s output. These induce this research to aim at improving the reliability of the 

workflow’s output by using virtual clusters comprised of many VMs. They are used to 

execute workflow tasks which check the correctness of intermediate data of each sub-

task, with sub-deadline constraint. These form the motivation behind this research. 
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1.4 Research Objectives 

The main objective of this thesis is to propose an efficient workflow scheduling 

algorithm for satisfying multiple QoS requirements and improving the reliability of 

workflow execution. The sub-objectives are discussed in detail as follows: 

 

1. To propose an enhanced reliability constraint handling algorithm for scheduling 

scientific workflow based on particle swarm optimization (PSO) method. The 

algorithm produces satisfactory makespan-cost trade-offs while considering 

reliability constraints with adaptive fuzzy resource utilization method, which 

determine the constraint coefficient. 

2. To propose a multi-objective scheduling algorithm with a novel decision-

making approach named the minimum weight optimization (MWO), that 

concentrate on five QoS objectives (Makespan, cost, reliability, resource 

utilization and risk probability) to provides an appropriate alternative for all 

optimal solutions with better QoS satisfaction. 

3. To propose a fault-intrusion-tolerant and deadline-aware algorithm for 

scheduling scientific workflow based on heterogeneous earliest finish time 

(HEFT) method. With considering the delay that caused by intruder access and 

monitoring data without modify them, the suggested algorithm minimizes the 

makespan while enhancing the security and improving the reliability of 

workflow execution. 
 

 

1.5 Research scope  

This research focuses on developing reliable scheduling algorithms for scientific 
workflows in the multi-cloud environment for satisfying QoS requirements. Firstly, the 

research aims to provide reliable solutions to users, therefore, it concentrates on 

reliability constraints based on Fuzzy resource utilization. The primary focus is on 

handling the reliability constraint to minimize the violation of the constraint. Since the 

scheduling optimization problem involves a trade-off of multiple objectives, the 

researcher also focuses on applying efficient metaheuristic and auxiliary scheduling 

techniques to develop an optimization strategy for better QoS satisfaction. Finally, it 

studies how to ensure reliable execution using an error detecting mechanism. 

Specifically, the focus will be to develop fault-intrusion tolerant algorithm to enhance 

scheduling reliability.  

1.6 Research Significance 

The outcomes of this research will be beneficial to academic researchers and 

practitioners working in scientific workflow scheduling in cloud computing 

environments. The research's main aim is, as noted earlier: 
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“Multi objective based scientific workflow scheduling algorithms in multi cloud 

environment for satisfying QoS requirements “ 

The following are the main outcomes of this research that are expected based on this 

aim: 

 

- Scheduling scientific workflow with Fuzzy resource utilization for reducing the 
cost and the makespan of the of scheduling process in multi-cloud environment. 

The proposed approach helps to get better makespan-cost trade-offs for 

considered scenario. At the same time, these lower makespan-cost trade-offs 

will increase service providers' profitability, using all computing resources to 

gain a competitive advantage over other cloud providers. 

- The proposed multi-objective scheduling algorithm with a novel decision-
making approach (MWO), has a direct impact on satisfying the QoS 

requirements by reducing makespan and cost for service consumers. 

Furthermore, it is expected that the proposed approach helps in reduce risk 

probability and increase reliability for service providers, by wisely utilization 

the resources (VMs). 

- The proposed fault-intrusion tolerance approach provides an efficient platform 

to optimally schedule scientific workflow by considering accidental and 

malicious attacks. This can improve the reliability and enhance the security, 

with reducing the finish time of workflow execution. 

- Several benefits can be achieved from conducting the extensive literature 

review. 

 

 

The outcome of this research would be helpful for the academic researchers in providing 

clearer and complete understanding of satisfying QoS requirements of scheduling 

scientific workflow in cloud environment, by providing the following expected 

outcomes: 

 

 A variety of taxonomies of QoS constraints for scientific workflow scheduling 

challenges, objectives, tools, and many other algorithms. 

 Correlation between different QoS constraints and their profitability to service 

consumer and service providers. 

 Future opportunities in this field of research. This would offer up new avenues 

for high impact research that encourages innovative values with cloud 

computing and scientific workflow scheduling. 

 

 

1.7 Research Contributions 

This thesis studies the QoS-aware scheduling of workflow applications in a multi-cloud 

environment. The main contribution of this thesis is the enhancement of the existing 
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scheduling strategies for satisfying users’ QoS requirements. The contribution is 

achieved in three parts and summarized as follows: 

 

1. A proposed multi-objective and reliability constraint handling algorithm (FR-

MOS) that minimizes cost and makespan. The PSO-based algorithm applies 

Fuzzy resource utilization to determine the value of the reliability constraint 
coefficient. Providing different reliability coefficients to each alternative 

according to the capacity of the resource utilization makes the algorithm to 

produce better makespan-cost trade-offs, which can be shown clearly using the 

Pareto-front set. 

2. A proposed minimum-weight-based multi-objective scheduling algorithm 

(MOS-MWO) that improves the QoS satisfaction for users and service 

providers and minimizes the optimization time. The algorithm optimizes 

scheduling solutions by iteratively searching for and producing good solutions 

based on PSO as the baseline algorithm. MOS-MWO evaluates and selects the 

best solutions according to the weights of the specified alternatives. Such 

weights are also used to establish the inertia weight by using an adaptive 

strategy that enhances the efficiency and performance of PSO. Applying the 
minimum weight optimization (MWO) approach helps to provide an 

appropriate alternative for all feasible solutions.   

3. A proposed fault-intrusion-tolerant and deadline-aware algorithm for 

scheduling scientific workflow (FITSW) that improves the reliability and 

enhances the security of workflow execution using a new decision mechanism 

that tracks and evaluates the confidence of the intermediate data between tasks 

during execution. FITSW considers the effects of accidental and malicious 

faults on cloud-based scientific workflows. The sub-deadline method applied 

checks that each task can be performed without any VM’s failure. During the 

scheduling process, each task is replicated and executed by the task-executer 

containing heterogeneous VMs. A task scheduling approach based on recycling 
resources is introduced to guarantee that the task executors remain in a clean 

state. 

 

 

1.8 Thesis Organization 

This thesis is organized as follows:  

 

Chapter 1 presents the research background, problem statements and motivations of this 

work. It discusses the research objectives, scope and research significance. It also 

highlights the research contributions that justify the benefits of this research.  

Chapter 2 presents the previous workflow scheduling and other research that addressed 

issues relating to workflow QoS and fault tolerance techniques in cloud computing. 
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Chapter 3 explores the research framework and explains the research stages. The 

experiment setup and multi-cloud architecture, as well as the performance metrics and 

validation of the model, are also presented in this chapter. 

Chapter 4 presents the proposed scientific workflow scheduling algorithm with Fuzzy 

resource utilization. It describes the algorithm and shows the enhancement in the results 

obtained with respect to makespan-cost trade-offs. Moreover, it presents the 
performance evaluation in terms of convergence, diversity and uniformity. 

Chapter 5 demonstrates the proposed multi-objective algorithm with MWO decision-

making approach for scheduling scientific workflow. It explains the operations of the 

algorithm and provides the performance evaluation in terms of QoS satisfaction rate, 

convergence, diversity and uniformity. 

Chapter 6 presents the proposed fault-intrusion-tolerant and deadline-aware algorithm 

for scheduling scientific workflow. The chapter also highlights the performance 

evaluation of the algorithm and compares it with other previous works. 

Chapter 7 concludes this thesis and recommends promising directions for further 

research.  
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