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Most of the recommender system merely focus on accuracy of rating prediction 
or recommendation of trendy items. Nonetheless, other non-accuracy metrics 
such as novelty and diversity should not be neglected to provide quality 
recommendation. The current major existing multi-objective recommendation 
approaches utilize collaborative filtering method as rating predictor to replenish 
the missing ratings and combined with evolutionary algorithm for only bi-
objective optimization. However, collaborative filtering suffers from cold-start 
problem and incapable to predict rating on highly sparse user-item matrix 
besides difficulty to incorporate side features information such as user latent, 
which led to weak performance when encountering new items or users. On the 
other hand, the evolutionary algorithm is notorious with premature convergence 
issue and suffering from curse of dimensionality. This study proposes deep 
reinforcement learning approaches based on Deep Q-Network to improve multi-
objective optimization in recommendation environment and investigated its 
capability to optimizing precision, novelty, and diversity concurrently. The 
MovieLens 100k dataset is applied to evaluate the performance of the proposed 
approaches, which do not require separate rating predictor such as done in 
benchmarked works. This is because the reinforcement learning agent is able to 
predict items directly by capture user latent information and explore large 
sparsity state space effectively. The experiment results demonstrated that 
embedding user latent features contributed to quality improvement in terms of 
precision by 19.80%, and novelty as well as diversity, by 20.46% and 1.60% 
respectively. Besides that, the experiment shows that agent which learning 
sequential data has earned lower precision by 17.57% and novelty by 4.68% 
compared to the agent that without learning sequential data, however, it 
achieved better diversity by 2.66%. In the performance comparison between 
proposed deep reinforcement learning with evolutionary algorithm, despite one 
of the variants of evolutionary algorithm has good performance in precision, it 
has rather weak performance in term of novelty and diversity. In contrast, the 
proposed approaches obtained better novelty and diversity results compared to 
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evolutionary algorithm with sacrificing a certain degree of precision. Overall, the 
deep reinforcement learning approaches are able to recommend accurate item 
concurrently with achieving good diversity and novelty as well.  
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Sebilangan besar sistem cadangan hanya menekankan ketepatan ramalan 
penilaian di dalam meramalkan barang untuk pengguna ataupun pemberian 
cadangan barang yang popular. Namun, metrik selain ketepatan seperti 
kebaharuan dan kepelbagaian tidak patut diabaikan untuk memberikan 
cadangan yang berkualiti. Majoriti sistem cadangan yang sedia ada 
memfokuskan kepada dua objektif sahaja dengan menggabungkan penyaringan 
kolaboratif sebagai peramal untuk mengisi penilaian yang tertinggal dan 
algoritma evolusi untuk pengoptimuman. Walau bagaimanapun, kaedah 
penyaringan kolaboratif mengalami masalah “permulaan-sejuk” dan tidak dapat 
meramalkan penilaian pada matriks barang yang sangat jarang dinilai, selain itu, 
kaedah ini juga menpunyai kesukaran untuk memasukkan maklumat ciri 
sampingan seperti laten pengguna, menyebabkan prestasi lemah ketika 
memproses item atau pengguna baru. Di samping itu, algoritma evolusi 
umumnya diketahui mempunyai masalah penumpuan pramatang dan lemah 
dalam pemprosesan dimensi yang tinggi. Kajian ini mengusulkan pembelajaran 
pengukuhan mendalam berdasarkan algoritma Rangkaian-Q Mendalam dan 
menyelidiki kemampuannya bagi pelbagai objektif cadangan untuk 
mengoptimumkan ketepatan, kebaharuan, dan kepelbagaian secara serentak. 
Set data MovieLens 100k digunakan untuk menilai prestasi kaedah yang 
diusulkan, iaitu kaedah yang tidak memerlukan peramal penilaian yang 
berasingan seperti yang dilakukan dalam kaedah penanda aras kerana ejen 
pembelajaran pengukuhan dapat meramalkan item secara langsung dengan 
menangkap maklumat pendam pengguna dan meneroka ruang keadaan dengan 
berkesan. Hasil eksperimen menunjukkan bahawa mengambil kira ciri laten 
pengguna menyumbang kepada peningkatan kualiti dari segi ketepatan dengan 
19.80%, kebaharuan, dan kepelbagaian, dengan 20.46% dan 1.60% masing-
masing. Selain itu, penghasilan eksperimen juga menunjukkan ejen yang 
mengambil data berurutan memperoleh ketepatan yang lebih rendah dengan 
17.57% dan kebaruan dengan 4.68% berbanding dengan ejen yang tidak belajar 
data berurutan, tetapi, ia mendapat kepelbagain yang lebih baik dengan 2.66%. 
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Dalam perbandingan prestasi antara pembelajaran peneguhan mendalam yang 
diusulkan dengan algoritma evolusi, walaupun salah satu varian daripada 
algoritma evolusi menpunyai ketepatan yang baik, tetapi ia menpunyai prestasi 
yang agak lemah dari segi kebaruan dan kepelbagaian. Sebaliknya, kaedah 
yang diusulkan mencapai kebaruan dan kepelbagaian yang lebih tinggi dengan 
mengorbankan tahap ketepatan yang tertentu. Secara keseluruhan, hasilnya 
menunjukkan bahawa pendekatan pembelajaran peneguhan mendalam dapat 
mencadangkan item yang tepat sekaligus mencapai kepelbagaian dan kebaruan 
yang baik juga.   
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CHAPTER 1  
 

INTRODUCTION 
 

1.1  Background 
 

Recommender system (RS) is one of the information filtering systems that aim 
to direct users across the vast information space, towards the area that meet 
user’s needs and interests (Figure 1.1). The interaction patterns between user 
and item are crucial elements that enable RS to learn the hidden meaningful 
information, identify candidate items to be recommended, then filter the 
recommendation based on objectives and finally recommend relevant items to 
satisfy users. RS has benefited numerous domains in especially commercial 
applications such as online movie streaming, e-commerce shops, and social 
media platforms.  
 

 
Figure 1.1: Movie recommendation system and the interaction between 
user and the platform 
 
 
The traditional RS approaches [1]–[7] mainly can be categorized into 
collaborative filtering, content-based, and hybrid methods. In the past decades, 
more advanced methods for RS based on deep reinforcement learning (DRL) 
[8]–[11] emerged because of its monumental strength in solving many complex 
tasks and alleviated the shortcoming of conventional models.  
 

Recently, multi-objective recommendation system (MORS) is gaining attention 
to complement single objective RS because MORS balances other non-
accuracy objectives (Table 1.1) such as novelty and diversity to improve the 
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recommendation quality, it is better than the typical single-objective RS that only 
focus on accuracy. 
 
 
Table 1.1: Objectives in Recommender Systems 
 

Objective Explanation References 

Accuracy The accuracy is the prevalent objective emphasized 
in many recommender systems to ensure 
recommendation conforms to the correct target. 
The correctness of recommendation usually based 
on how many recommended items matched to 
target items or how close of the predicted rating 
value to the actual rating given. Accuracy can be 
measured by several metrics such as precision, 
recall, or mean absolute error. 

[9], [12]–
[21] 

Novelty Some recommender systems aim to recommend 
novel items or something new to the user in order 
to maintain fresh experiences for user, and this 
objective known as novelty. The evaluation metrics 
also commonly named as novelty. The novelty of 
recommendation is not only based on recommend 
new entry item to user, but also ability to 
recommend long tail items or unpopular items that 
user never experienced previously. 

[12], [14]–
[17], [22] 

Diversity The diversity objective in recommendation system 
is purpose to diversify the recommendation items 
and avoid to recommend similar items to user. 
Diversification of recommendation is referred as 
aggregation of the pairwise dissimilarities between 
recommended items. There are evaluation metrics 
for diversity measurement such as namely diversity 
or coverage. 

[12], [14]–
[17], [22], 
[23] 

 

Most of the existing approaches for MORS are combination of collaborative 
filtering (CF) and evolutionary computing (EC) technique. The common 
technique of EC applied is evolutionary algorithm (EA) which uses genetic 
operator (including crossover and mutation) to generate new off springs as 
candidate items and search the Pareto optimal solutions. However, some 
unpreventable limitations from CF method such as cold-start issue (which 
happens when the user is new to the system and hence his past preferences are 
not known to the system) and premature convergence from EC technique (which 
has resulted to generation of solutions which have good performance initially but 
eventually dropped their performance) has urged academia to search for 
alternative potential solution.  
 

DRL techniques have been proved of having better achievement on MORS 
problem in the aspect of solution convergence and sparsity data handling 
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compared to the EC technique. Besides, DRL is able to predict the rating of items 
or items to be recommended directly, compared to EC technique that focuses 
only on the solution space exploration for preferred candidate items identification. 
Many advantages of DRL have motivated this research to propose a novel 
approach for solving multi-objective (MO) problem in RS application. After a 
thorough search of the relevant literature, there is no available research about 
applying Deep Q-Network (DQN) techniques in MO problem on RS domain. 
Therefore, this study demonstrates the capability of the DRL approaches based 
on DQN algorithm as non-iterative solver which is more effective in MO problem 
in RS. The proposed DQN for MORS approaches do not require additional rating 
prediction algorithm before generating recommendation, since it is able to work 
independently despite handling large sparse environment. Furthermore, the 
DQN approaches could effectively improve the recommendation quality because 
it is able to capture complex nonlinear abstraction and nontrivial information of 
user-item relationship as data representation.  
 

This research works focuses on the development of MORS based on DQN 
approach and extend the experiments with different input states including user 
latent features and sequential rating information. To incorporate sequential rating 
input data, the DQN is enhanced with additional recurrent layer to capture 
sequence input and named as recDQNMORS, while the DQN without recurrent 
layer is named as DQNMORS. Furthermore, the hyperparameter tuning 
experiments for each algorithm are necessary at the beginning to identify the 
optimum values for essential hyperparameters including learning rate, discount 
factor, and epoch numbers. Subsequently, the comparison among proposed 
DRL approaches is accomplished to study the effect of different input features. 
Lastly, the comparison on performance between DRL with CF that combined 
with EC approaches were carried out. The results show that the proposed 
approaches are able to recommend accurate item concurrently with maintaining 
good item diversity and novelty as well. This study also contributes to proposing 
a novel DRL approaches for MO problem in RS. 
 

1.2  Problem Statement 
 

Most works in RS focuses on single objective approach specifically for achieving 
high accuracy by using CF [1]–[3] and Content-Based Filtering (CB) [4]–[6] and 
its hybrid techniques [7], [24]. In fact, a quality RS requires multiple metrics to be 
accounted including precision, novelty, and diversity as encouraged by [22], [23], 
[25]–[27], instead of just focusing only the accuracy. 
 

There are some MORSs that used CF combined with EC [12], [15], [16] but only 
for dual-objective RS and evaluated in movie item datasets, such as precision 
and novelty [15], or precision and diversity [12], [14], [16] instead of all three 
quality indicators namely precision, novelty and diversity concurrently. This is 
because, CF based approaches suffered from cold-start issue and restricted by 
sparse matrix [28]–[30]. Besides, similar to other traditional RS approaches such 
as demographic and content approaches, the incorporating various features that 



© C
OPYRIG

HT U
PM

 

4 

 

potentially could advantage the MORS using the CF method is difficult [31] such 
as to learn user latent features and sequential rating data.  
 

Although CF method could predict the rating for items to be recommended, this 
method itself is incompetent to tackle MO problem, so it relied on EC for 
optimization task despite EC suffering from its frequent premature convergence 
issue [32], [33]. The DRL approach has better performance for MO problems 
[34]–[36] but has not been explored for any recommendation system’s problems. 
This indicates possibility to address MORS based on precision, novelty and 
diversity concurrently using DRL and relevant techniques such as pareto and 
scalarize weighting methods. The problem statement with subproblems and 
research questions have been determined as summarized in Table 1.2. 
 

Table 1.2: Research problem statement with the detailed subproblems and 
research questions 

Research Problem Statement 

The major existing approaches for MORS deployed CF method associated 

with EC to handle multi-objective problem [12], [14]–[16]. However, CF 

approaches not only seriously affected by cold-start issue and vulnerable to 

highly sparse environment [1]–[3], it also hard to incorporate side features and 

sequential rating data [12], [14]–[16]. Other than that, the EC techniques are 

mostly suffering from premature convergence issues. In addition, most of the 

existing MORS works only focus on bi-objective optimization instead of all the 

precision, novelty and diversity concurrently which equally important for 

quality recommendation [22], [23], [25]–[27]. 

Subproblems Research Questions 

Since CF approach itself is incapable 

to optimize multi-objective problem, it 

required to collaborate with EC 

technique which are mainly suffered 

from premature convergence. 

How to model the multi-objective 

recommendation system based on 

Deep Q-Network algorithm that able 

to avoid premature convergence? 

Combination of CF approach with 

evolutionary computing technique 

difficult to incorporate the side latent 

features and sequential rating 

information that potentially benefits 

recommender prediction.  

How to incorporate user features and 

sequential rating information into 

multi-objective recommendation 

system based on Deep Q-Network 

algorithm? 
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1.3  Objectives 
 

The objectives of the research are: 
i. To propose a multi-objective recommendation system using deep 

reinforcement learning framework that optimize precision, novelty, and 
diversity concurrently. 

ii. To propose the deep reinforcement learning algorithms based on DQN 
approach and recurrent enhanced DQN in order to incorporate user latent 
and sequential rating features as additional side feature input. 

 

1.4  Scope 
 

This research focuses on the movie recommendation. The multi-objectives 
covered for the movie recommendation are based on precision, novelty, and 
diversity. The proposed deep reinforcement learning approaches based on Deep 
Q-Network for multi-objective recommendation system (namely DQNMORS and 
recDQNMORS) are purposed to be alternative to evolutionary computing and 
standard recommendation system approaches. 
 

1.5  Significance of Contribution 
 

The thesis has proposed the first MORS framework based on DQN with user 
latent and sequential rating features that handle three metrics (precision, novelty, 
diversity) concurrently. This research has addressed the limitation of existing 
approaches that using EC method that suffered from premature convergence 
and dependency on CF method to predict the sparse rating data of unrated items 
in MORS problem. The research findings prove that the proposed DQN based 
approaches with both Pareto and scalarized method are capable to optimize 
MORS problem with comparable result against the benchmark without relied on 
any rating predictor. In addition, the proposed approaches able to incorporate 
additional side features such as user latent to improve quality of recommendation. 
On the other hand, the experiment results also indicated that intake sequential 
rating data input did not improved precision and novelty, but increased diversity 
of recommendation. In overall, there is no single approach that can achieve 
highest value in all metrics and the trade-off between each objective is inevitable. 
 
 
1.6  Thesis Organisation 
 

The thesis comprised of 6 chapters and each chapter consists of few sections 
and subsections. The Chapter 1 briefly introduced about the research 
background, main problem of existing approach in recommendation system 
including multi-objective recommendation techniques, and the objectives of this 
research. The specific scope of the research was discussed on the section in 
Chapter 1 followed by the significance of contributions in this work.  
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Chapter 2 discussed the literature review on evaluation metrics that commonly 
used in MORS and followed by RS approaches in details from traditional 
classical techniques to state-of-the-art advanced techniques including DRL 
approaches. The working principle of the traditional recommendation 
approaches are reviewed and the limitations of the current existing approaches 
are analysed in order to determine the research gap for this work. Afterwards, 
the MORS and the optimization methods are discussed.  
 

Chapter 3 presented the overview of research frameworks that initiated with 
research planning to the proposed algorithm. The approaches that introduced in 
the research are named as Multi-Objective Recommendation System based on 
Deep Q-Network (DQNMORS) and based on Recurrent enhanced Deep Q-
Network (recDQNMORS). Subsequently, the experiment settings and evaluation 
metrics used are briefly introduced in last section of Chapter 3. 
 
 
Afterwards, Chapter 4 demonstrated the experiments on the proposed 
DQNMORS approaches including the framework of the algorithms, the designed 
environment, and the settings of each approach. A total of three experiments 
have been carried out and reported in the Chapter 4 where each result is 
discussed comprehensively in the corresponding subsections. The summary of 
the findings is summarized at the end of chapter.  
 

The proposed recDQNMORS approach that dealing with sequential input data 
is introduced in Chapter 5. Total three experiments are conducted and the results 
obtained from each experiment are analysed in the subsection of the chapter 
respectively. The comparison between the proposed approaches and the 
benchmark work result were investigated in the Chapter 5 as well.  
 

Lastly, all the research findings and summary of contributions are presented in 
Chapter 6. Besides that, the limitation of the research work and future direction 
are discussed in the chapter. 
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