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 Inverse kinematics is a basic problem in robotics, which aims to solve the 

robot’s joint angles according to the end effector’s position and orientation. 

This paper proposed an improved spiral search multi-strategy dung beetle 

optimizer (DBO) algorithm for solving the inverse kinematics problem. The 

improved DBO algorithm considers not only the error between the target 

value and the current value but also the previous position of the robot to 

ensure minimum displacement during the movement. To solve the end 

position error and orientation error of the robot end effector more accurately, 

the quaternion is introduced as a penalty factor in the optimization objective 

function, which is of great significance for reducing the orientation error. 

Through the improved DBO algorithm, the position error is still accurate, 

and the orientation error is reduced from 9.5901 to 1.8718. Experimental 

results show that the proposed algorithm outperforms other swarm-

intelligent algorithms in terms of accuracy and convergence speed. Overall, 

the proposed spiral search multi-strategy DBO algorithm provides an 

effective and efficient solution to the inverse kinematics problem in robotics. 
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1. INTRODUCTION 

Robots are playing an increasingly important role in many areas of industry, from manufacturing 

and assembly to healthcare and education. They are able to perform a wide range of tasks, from simple pick-

and-place operations to complex manipulations and interactions with humans [1]. Traditional industrial 

robots are typically large, heavy, and designed to perform repetitive tasks in isolated work cells. They are 

programmed to perform a specific task and do not typically have the ability to adapt to changes in their 

environment or interact safely with humans [2], [3]. Collaborative robots are a rapidly growing field in the 

robotics industry [4]. They are designed to work safely alongside humans, enhancing productivity and 

efficiency in manufacturing, healthcare, and other industries [5]. In order to perform their tasks, Cobots 

require precise control over their movements, which is achieved through inverse kinematics calculations.  

https://creativecommons.org/licenses/by-sa/4.0/
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One major problem that provides various challenges in robotics is inverse kinematics. Although it 

has been widely studied over the past few decades, a number of methods have been proposed for solving 

inverse kinematics problems, including numerical methods, analytical methods, and optimization-based 

methods. Numerical methods, such as the iterative Jacobian-based method and the Newton-Raphson method, 

are commonly used in real-time applications due to their efficiency. Analytical methods, such as the closed-

form solution and the product-of-exponentials formula, have the advantage of providing an exact solution but 

are limited to certain types of robot geometries. Optimization-based methods, such as the gradient-based 

method and the particle swarm optimization (PSO), are flexible and can be applied to a wide range of robot 

structures, but may require longer computation time [6]. 

Xu [7] proposes an improved modal approach to solve task-oriented inverse kinematics, solves a 

four degrees of freedom (4-DOF) manipulator problem in groups, and determines the Cartesian coordinates 

of each node. Sancaktar [8] used the PSO algorithm to solve the inverse kinematics solution of a 6-DOF 

robot for external fixator fracture treatment and reduction, and tested the algorithm to obtain preliminary 

results, but the algorithm has a large error. Hu [9] established a pose coupling equation for a 5-DOF series 

robot to solve the inverse kinematics problem, and explained the improved inverse kinematics modeling 

process, proving that this solution can solve the inverse kinematics of the robot. There are several existing 

methods for solving inverse kinematics of redundant manipulators, such as numerical optimization 

algorithms, analytical methods, and artificial intelligence-based techniques. However, these methods have 

their own strengths and weaknesses [10]–[13]. 

Numerical optimization algorithms are effective in solving complex problems, but they may have 

convergence issues and require a careful selection of parameters. On the other hand, analytical methods are 

efficient and have closed-form solutions, but they are limited to certain types of manipulators and cannot 

handle complex geometries. Artificial intelligence-based techniques, such as neural networks and genetic 

algorithms, have shown promising results, but they may require large amounts of training data and lack 

interpretability [14]–[16]. 

This study proposes an improved Dung beetle optimizer (DBO) algorithm to solve the robot 

manipulator inverse kinematics problem. The DBO algorithm is a nature-inspired metaheuristic optimization 

algorithm that mimics the behavior of dung beetles in finding food sources [17], [18]. It has shown promising 

results in solving various optimization problems, including inverse kinematics of manipulators. The use of 

the DBO algorithm for inverse kinematics of redundant manipulators may overcome the limitations of 

existing methods and provide a more efficient and effective solution [19]. This study will discuss the inverse 

kinematics calculation and control of a robot manipulator using the improved DBO algorithm. 

 

 

2. METHOD 

This section describes a method for solving the inverse kinematics of a 6-DOF robot arm using the 

improved DBO algorithm. The Denavit-Hartenberg (DH) parameters of a robot manipulator are described, 

which are the basis for defining its geometry and kinematic characteristics. The improved DBO algorithm is 

discussed, focusing on enhancements made to optimize its performance in solving inverse kinematics 

problems. Finally, the fitness function of the robot’s inverse kinematics is defined to evaluate the accuracy of 

the robot’s end-effector in reaching the desired position and orientation. 

 

2.1.  Robot system and DH parameters 

The collaborative robot used in this study is a 6-DOF manipulator whose model is Ufactory xArm 6. 

The robot is composed of a base, six links, and a tool end effector. The manipulator is controlled by a 

computer that sends motion commands to the robot’s servo motors. 

The DH method is commonly used to describe the kinematics of robotic manipulators. In this 

method, four parameters are defined for each joint, which are the link length, the link twist, the link offset, 

and the joint angle. By combining the DH parameters of all joints, the forward kinematics of the robot can be 

determined. The standard DH method, also known as S-DH, is a widely used method for describing the 

kinematics of manipulator robots. However, it has some limitations when dealing with complex structures, 

such as redundant manipulators, or when considering non-standard joint geometries. This led to the 

development of the modified DH method, also known as M-DH, which is a more flexible approach that can 

handle a wider range of robot configurations [20]. The main difference between S-DH and M-DH 

conventions lies in how they handle the assignment of reference frames and the choice of coordinate systems 

for defining the DH parameters. In S-DH, the reference frames are located at the joint centers, which can lead 

to singularities and inaccuracies in certain cases. In contrast, M-DH provides greater flexibility and accuracy. 

The M-DH parameters of the manipulator used in this study are listed in Figure 1 (From the robot company 

UFACTORY website) and Table 1. 
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Figure 1. UFACTORY xArm 6 modified D-H parameters 

 

 

Table 1. DH parameters of the robot Arm 
Joint i Length ai-1 (mm) Twist angle  αi-1 (deg) Joint offset di(mm) Offset (deg) θi  limitations (deg) 

1 0 0 267 0 [-360º, +360º] 

2 0 -90º 0 -79.34995º [-118º, 120º] 
3 289.48866 0 0 79.34995º [-225º, 11º] 

4 77.5 -90º 342.5 0 [-360º, +360º] 

5 0 90º 0 0 [-97º, 180º] 
6 76 -90º 97 0 [-360º, +360º] 

 

 

2.2.  Robot forward kinematics and workspace 

The forward kinematics can be solved using different methods, including the DH method, 

homogeneous transformation matrices, and geometric algorithms [21]. The DH method is commonly used 

and provides a systematic way to relate the position and orientation of each link to the previous one. 

According to the connecting rod parameters in Table 1, the expression of the end effector in the base 

coordinate system can be obtained as (1). The homogeneous matrix i-1
iT transforms the frame attached to link 

i−1 into the frame attached to link i. “s” and “c” represent sine and cosine functions respectively. The final 

transformation is represented in (2) from the end effector frame to the base frame, where R3×3 is the rotation 

matrix and P3×1 is the position vector. 

 

𝑇 =𝑖−1
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The workspace of a robot can be described using various methods, such as geometric modeling or 

numerical methods. In this study, the Monte Carlo simulation method can be used to estimate the workspace 

of a robot. This method involves randomly sampling joint angles within the joint limits and computing the 

corresponding end-effector positions. By repeating this process many times, the probability density function 

of the end-effector positions can be estimated, and the workspace can be determined by identifying the region 

where the probability density function is non-zero. The workspace is used to determine the feasible region of 

the robot’s end effector as shown in Figure 2. The working range of the robot is flexible and can reach many 

positions. The working range of the X/Y axis is [-762, +762], and the working range of the Z axis is 
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[-416, 1029], unit: mm. The workspace is a critical factor in determining the feasibility and effectiveness of 

inverse kinematics solutions. The size and shape of the workspace depend on various factors, including the 

robot’s mechanical design, kinematic structure, and joint ranges. 
 

 

 
3-dimensional space 

 
XOY plane space 

 

 
YOZ plane space 

 
XOZ plane space 

 

Figure 2. The workspace of robot xArm6  
 

 

2.3.  Improved DBO algorithm 

The DBO algorithm is a recent nature-inspired optimization algorithm based on the behavior of 

dung beetles in finding and rolling dung balls. The algorithm is inspired by the observation that dung beetles 

use a heuristic method to find the optimal direction to roll their dung balls while avoiding obstacles. In the 

DBO algorithm, the population of dung beetles is represented by a set of candidate solutions, and each dung 

beetle has a position in the search space. The algorithm iteratively updates the positions of the dung beetles 

based on their fitness values, which are evaluated by an objective function. The default parameters for the 

DBO algorithm include the number of search agents, which is set to 30, and the initial position of the agents, 

which is randomly distributed within the search space. The radius of the dung ball, which affects the search 

step size, is also set to a default value of 1. The maximum number of iterations is set to 500, with an option to 

terminate the optimization process earlier if the convergence criterion is met. 

In the original DBO algorithm, the reproduction of the population is expanded according to the 

current population spawning area. This strategy can easily cause the regional population to converge too 

quickly, reducing population diversity and easily falling into a locally optimal solution. The improved 

algorithm was inspired by the Whale Optimization Algorithm to round up prey. During the breeding stage, a 

spiral search strategy was used to update the prey position, which can not only ensure the diversity of the 

population, but also improve the convergence speed. The formula for the prey hunting stage is shown in (3). 
 

{
X(t+1)=D’∙ekl∙ cos(2πl) +X*(t)

D’=|X*(t)-X(t)|
 (3) 

 

D′ denotes the distance between the whale and the prey, k is the constant used to generate the spiral search, 

and l is a random number value [-1,1]. 
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The optimization problem in this study involves a 6-dimensional problem. The population 

distribution is represented in 3-dimensional space as shown in Figure 3(a), which uses color, shape, and 

position to express high-dimensional space. To compare the algorithm improvements more intuitively, the t-

SNE algorithm is used to reduce the dimensionality of the 6-dimensional problem to a 2-dimensional space 

expression, as shown in Figure 3(b). 

The calculation of the convergence factor r introduces dynamic sine search, as shown in (4), and the 

corresponding convergence factor curve is shown in Figure 4. It can be seen that this strategy is easily 

affected by the constant k. The larger the value of k, the faster the convergence speed, causing the algorithm 

to fall into a local optimum, while the smaller the value of k, the slower the convergence speed of the 

algorithm. In this study, k=0.8 has a better result. 

 

𝑟 =
1

2
+

sin(
𝜋

2
+𝜋(

𝑡

𝑇
)
𝑘
)

2
  (4) 

 

The original DBO algorithm involves sequential optimization by four types of dung beetles to find the global 

optimal solution while also avoiding getting stuck in local optima. This paper proposes a parallel computing 

approach that balances the search for both local and global optimal solutions with computational efficiency. 

 

 

  
(a)  (b)  

 

Figure 3. Population initialization comparison of (a) 6-dimensional space (color, size, shape) and (b) t-SNE 

dimensionality reduction distribution 

 

 

 
 

Figure 4. Convergence factor over iterations 
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2.4.  Inverse kinematics optimization objective function 

The target position error represents the difference between the desired end-effector position and the 

actual position obtained from the forward kinematics. To express this error in the objective function, it is 

defined as the Euclidean distance between the target position and the current position of the end effector. 

This can be represented as (5), 

 

𝑓𝑝𝑜𝑠 = √∑ 𝑤𝑖
𝑚
𝑖=1 ∙ (𝑃𝑜𝑠𝑡𝑎𝑟𝑔𝑒𝑡

𝑖 − 𝑃𝑜𝑠𝑒𝑛𝑑
𝑖 )

2
 (5) 

 
where m is the number of joints, Postarget and Posend denote the desired and current positions of the end-

effector respectively. The goal is to minimize this error by adjusting the joint angles of the robot. wi is the 

weight for the i-th joint position error. 

To construct the objective function for the end-effector orientation error, the difference between the 

desired and actual orientation of the end-effector can be calculated using the angle-axis representation. The 

objective function can be defined as the Euclidean distance between the two angles, as shown (6), 

 

𝑓𝑎𝑛𝑔𝑙𝑒 = √(𝜃𝑑𝑥 − 𝜃𝑥)
2 + (𝜃𝑑𝑦 − 𝜃𝑦)

2
+ (𝜃𝑑𝑧 − 𝜃𝑧)

2 (6) 

 

where θx, θy, θz and θdx, θdy, θdz are the actual and desired orientation angles of the end-effector, respectively. 

Forward kinematics is used to obtain the current end-effector quaternion, and inverse kinematics is used to 

calculate the target end-effector quaternion. The dot product of these two quaternions represents their 

similarity and serves as the penalty factor in the orientation error objective function. To convert a rotation 

matrix as shown in (2) to a quaternion, use (7). 

 

𝑞:

{
  
 

  
 𝑤 =

1

2
√1 + 𝑟11 + 𝑟22 + 𝑟33

𝑥 =
1

2√1+𝑟11+𝑟22+𝑟33
∙ (𝑟32 − 𝑟23)

𝑦 =
1

2√1+𝑟11+𝑟22+𝑟33
∙ (𝑟13 − 𝑟31)

𝑧 =
1

2√1+𝑟11+𝑟22+𝑟33
∙ (𝑟21 − 𝑟12)

 (7) 

 
Among (7), rij represents the element of row i and column j of the rotation matrix in (2). 

Specifically, the objective function is defined as the difference between the magnitude of the desired 

orientation quaternion and the actual orientation quaternion. The dot product of two quaternions can be 

calculated using (8). The closer the value is to 1, the more similar their rotation poses are. 

 
𝑓𝑜𝑟𝑖 = 𝑑𝑜𝑡(𝑞1, 𝑞2) = 𝑤1𝑤2 + 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 (8) 

 
When constructing the objective function for position optimization, not only the error between the 

target value and the current calculated value, but also the previous position should be considered to ensure 

the smallest possible displacement. By considering the displacement of previous positions, the optimization 

process can be more stable and efficient, ultimately leading to better results. In the optimization calculation, 

the objective functions (9) to (11) are mainly tested. 

 

𝑓𝑜𝑏𝑗 = 𝑤1 ∙ 𝑓𝑝𝑜𝑠 +𝑤2 ∙ 𝑓𝑎𝑛𝑔𝑙𝑒  (9) 

 
𝑓𝑜𝑏𝑗 = 𝑤1 ∙ 𝑓𝑝𝑜𝑠 +𝑤2 ∙ 𝑓𝑎𝑛𝑔𝑙𝑒 +𝑤3 ∙ (1 − 𝑓𝑜𝑟𝑖) (10) 

 
𝑓𝑜𝑏𝑗 = 𝑤1 ∙ 𝑓𝑝𝑜𝑠 +𝑤2 ∙ 𝑓𝑜𝑟𝑖 ∙ 𝑓𝑎𝑛𝑔𝑙𝑒 (11) 

 

 

3. RESULTS AND DISCUSSION 

This section compares the results obtained using different algorithms for solving robot inverse 

kinematics. Analyzes the performance of the improved DBO algorithm with various inverse kinematics 

fitness functions. The position and orientation error values implemented by the improved DBO algorithm 
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were evaluated, demonstrating its effectiveness in accurately determining the desired end-effector position 

and orientation. 

 

3.1.  Comparison of multiple algorithms 

Current popular optimization algorithms will be applied to solve robot inverse kinematics, including 

the gray wolf optimization algorithm (GWO) [22], whale optimization algorithm (WOA) [23], antlion 

optimization algorithm (ALO) [24], and sparrow search algorithm (SSA) [25]. The relevant parameters of 

these several algorithms are given in Table 2. However, the focus will be on the application of the DBO 

algorithm and its improvements to solving inverse kinematics problems. 

 

 

Table 2. Parameter values of algorithms 
Algorithm Parameter Value 

GWO amin 

amax 

0 

2 

WOA a Decreased from 2 to 0 

ALO w 2, 3, 4, 5, 6 

SSA Leader position update probability 0.5 
DBO K and λ 

b 

s 

0.1 

0.3 

1 

 

 

To better test the superiority of different algorithms, the number of search groups is set to 30 and the 

number of iterations is set to 500. The target position of the robot is [300, 100, 200], and the posture is [-

180, 0, 0], which are the rotation angles around the X-axis, Y-axis, and Z-axis respectively. The target 

optimization function is (18), w1 is 0.55, and w2 is 0.45. 

Table 3 shows the results of solving inverse kinematics using different swarm intelligence 

optimization algorithms such as DBO, GWO, WOA, ALO, and SSA. It includes the solved theta, the value of 

the objective optimization function at 100 iterations, the time required for 100 iterations, the final positional 

bias, and angular bias. It should be noted that these data are the average of the results calculated by running 

each algorithm at least 10 times, corresponding to the same objective optimization function for solving the 

inverse kinematics of the collaborative robot in the paper, and it is the same if they are all run on the 

computer. DBO, ALO, and SSA algorithms can accurately obtain the target position, and the DBO algorithm 

is the best. 

 

 

Table 3. Results of DBO, GWO, WOA, ALO and SSA for inverse kinematics 
Algorithm Theta(deg) Function100 Time100(s) Positionerror(mm) angleerror(deg) 

DBO 

[19.40846, -9.899925, 

-19.76793, 17.06617, 
29.53511, 0] 

4.3155 67.5977 2.1E-04 9.5901 

GWO 

[-336.4719,  -7.188253, 

-13.93191, -338.4281, 
-0.6719646, 359.3463] 

22.3812 71.2862 0.7048 21.8371 

WOA 

[25.39506,  -5.568372, 

-13.58481,  -333.8359, 

-6.741634, -10.44632] 

38.2246 69.9685 3.4285 26.6872 

ALO 

[26.36544, -7.022345, 

-15.48362, 36.62569, 
1.674225, 350.8061] 

12.4436 92.3064 3.8E-04 21.4435 

SSA 

[-331.0763, -5.265419, 

-15.71843, 43.69305, 
-4.473759, -17.25292] 

11.0840 143.756 3.5E-04 24.4887 

 

 

3.2.  Statistical analysis of improved DBO algorithm 

Through the analysis of several popular algorithms in the previous section, the DBO algorithm has 

great advantages in calculating the inverse time of robot kinematics. Its calculations are more accurate and 

calculation times are faster. Therefore, this section improves the DBO algorithm, especially considering the 

problem of large angle error of the end effector. Next, calculations will be performed using (9) to (11) with 

different improved DBO algorithms. The parameter values of the improved DBO algorithm are shown in 

Table 4. The initial value of b is 0.2, and the initial value of S is 1. When the target value function is reduced 

to 20, reduce the small values of b and S. 
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Table 4. Parameter values of Improved DBO algorithm 
Algorithm Parameter Value Function Behavior 

a-DBO 
N 

K 

30 

0.2 

(9) 
(10) 

(11) 

I-DBO-1 
I-DBO-2 

I-DBO-3 

b-DBO 
N 

K 

30 

0.1 

(9) 
(10) 

(11) 

I-DBO-4 
I-DBO-5 

I-DBO-6 

c-DBO 
N 

K 

50 

0.2 

(9) 
(10) 

(11) 

I-DBO-7 
I-DBO-8 

I-DBO-9 

 

 

Based on the improved DBO algorithm, 3 different parameters corresponding to a-DBO, b-DBO, 

and c-DBO are set, and different objective optimization functions (9) to (11) are set for each parameter, so 

there are 9 calculation results. Figure 5 shows the iterative curve of the improved DBO algorithm. It can be 

seen that the improved DBO algorithm has faster convergence in the calculation of robot inverse kinematics. 

According to the iterative calculation of the parameters in Table 4, the final fitness quickly converges to less 

than 10, and the error comparison with Table 3 has a better advantage. 
 

 

 
 

Figure 5. Iterative curves of improved DBO algorithm 

 

 

For the c-DBO, increasing the number of populations can calculate good results just like the data of 

I-DBO-9, but the calculation time and the convergence speed are not dominant. In contrast, I-DBO-6 

achieves a good result (1.1023) with perfect convergence speed and computation time. The relevant 

parameters are N=30, K=0.1, and the selected objective optimization function is (11). 

 

 

4. CONCLUSION 

This study introduces the DBO algorithm for solving robot inverse kinematics problems. The 

performance of DBO is compared with other swarm intelligent algorithms (GWO, WOA, ALO, and SSA), 

demonstrating that the DBO algorithm achieves excellent results in terms of convergence speed and solution 

accuracy. Furthermore, a spiral search multi-strategy improved DBO algorithm is proposed that takes into 

account the robot’s previous position, thereby improving pose estimation. 

The position error obtained by the original DBO algorithm is 2.1E-04, and the angle error is 9.5901, 

while the improved DBO algorithm can obtain more accurate results. For the improved DBO algorithm, 

various factors such as calculation time and pose accuracy are considered. and do not blindly pursue 

calculation accuracy. Using this improved DBO algorithm to solve the inverse kinematics of the robot, the 

solution position error is 0.1325, and the orientation error is 1.8718. Compared with the original DBO 

algorithm, it has obvious advantages and is worth adopting. 
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Results show that the DBO algorithm is a promising approach for solving robot inverse kinematics 

problems. The improved spiral search multi-strategy DBO algorithm provides a more accurate and efficient 

method for robot pose estimation. Overall, this study contributes to the development of efficient and practical 

solutions for robotic applications and opens the way for future research in this field. 
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