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Mercury is one of the priority metals classified as a human carcinogen by the US 

Environmental Protection Agency and the International Agency for Research on Cancer. 

This metallic element has a high degree of toxicity and is known to induce multiple organ 

damage and have severe adverse effects on human health and the environment, even at 

low levels of exposure. It has many forms in the soil, including inorganic and organic 

mercury. In this work, two novel tripeptides were designed and synthesized based on the 

amino-terminal Cu2+ and Ni2+ binding (ATCUN) motif. Two systems, namely 

monoligand and heteroligand systems, were compared in this work. Tripeptides were 

individually immobilized onto gold nanoparticles (AuNPs) surfaces via covalent 

coupling. In a monoligand system, only a particular tripeptide-AuNPs will be used as 

capturing agents for Hg2+, while in a heteroligand system, two different tripeptide-

AuNPs will be used simultaneously in a mixture. The heteroligand system was found to 

be more effective compared to the monoligand system. The interaction of heteroligand 

enhances the selectivity and sensitivity of the plasmonic sensor for Hg2+. Upon the 

addition of metal ions, the red-to-blue color change and the degree of AuNPs aggregation 

formed by the heteroligand system were doubled when compared to the monoligand 

system. These two novel tripeptides: 0.10 mM of pH 9 DCH (aspartic acid- cysteine- 

histidine) and 0.20 mM of pH 11 HCD (histidine-cysteine-aspartic acid) were selected 

among eleven novel tripeptides and one commercial tripeptide as the best capturing 

agents for Hg2+ with an absorbance ratio (A683/A524) of 1.098. The finding was supported 

by UV-Vis spectra, Dynamic Light Scattering (DLS) spectroscopy, and Transmission 

Electron Microscopy (TEM) analysis. The limit of detection (LOD) for Hg2+ detection 

was 0.025 parts per millions (ppm) with absorbance reading of 0.094. This new approach 

can constitute a more effective detection system targeting small molecules such as amino 

acids, metal ions and fatty acids. 
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Merkuri adalah salah satu logam utama yang diklasifikasikan sebagai karsinogen 

manusia menurut Agensi Perlindungan Alam Sekitar A.S. dan Agensi Antarabangsa 

untuk Penyelidikan Kanser. Unsur logam ini mempunyai tahap ketoksikan yang tinggi, 

diketahui boleh menyebabkan pelbagai kerosakan organ dan mempunyai kesan buruk 

terhadap kesihatan manusia dan alam sekitar walaupun pada tahap pendedahan yang 

rendah. Ia wujud dalam pelbagai bentuk dalam tanah, seperti merkuri tak organik dan 

merkuri organik. Dalam kajian ini, dua tripeptida novel telah direka dan disintesis 

berdasarkan motif pengikat terminal amino Cu2+ and Ni2+ ATCUN. Dua sistem, iaitu 

sistem monoligan dan heteroligan telah dibandingkan dalam kajian ini. Tripeptida secara 

individu dialihkan ke permukaan nanopartikel emas (AuNPs) melalui gandingan 

kovalen. Dalam sistem monoligan hanya satu tripeptida-AuNP tertentu akan digunakan, 

manakala dalam sistem heteroligan, dua jenis tripeptida-AuNPs akan digunakan dalam 

campuran. Sistem heteroligan didapati lebih berkesan berbanding sistem monoligan. 

Interaksi heteroligand meningkatkan selektiviti dan sensitiviti sensor plasmonik untuk 

Hg2+. Selepas penambahan ion logam, perubahan warna merah-ke-biru, dan tahap 

pengagregatan AuNPs yang dibentuk oleh sistem heteroligand adalah dua kali ganda jika 

dibandingkan dengan sistem monoligan. Kedua-dua tripeptida novel: 0.10 mM of pH 9 

DCH (aspartat-sisteina-histidina) dan 0.20 mM of pH 11 HCD (histidina-sisteina-

aspartat) ini dipilih antara sebelas tripeptida novel dan satu tripeptida komersial sebagai 

agen penangkap terbaik untuk Hg2+ dengan nisbah penyerapan (A683/A524) sebanyak 

1.098. Penemuan ini disokong oleh spektrum UV-Vis, spektroskopi Penyebaran Cahaya 

Dinamik (DLS), dan analisis Transmission Electron Microscopy (TEM). Had 

pengesanan (LOD) untuk pengesanan merkuri ialah 0.025 bahagian per million (ppm) 

dengan bacaan penyerapan 0.094. Pendekatan baharu ini berpotensi untuk membentuk 

sistem pengesanan yang lebih berkesan, terutamanya dalam menyasarkan molekul kecil 

seperti acid amino, ion metil dan acid lemak. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Heavy metal pollution harms the environment because of its non-biodegradability and 

ability to accumulate in living organisms (E. Pehlivan et al., 2009). This is an inevitable 

cost of industrialization pressures that have increased irresponsible human activities, 

discharging byproducts directly into the rivers or other water reservoirs (Banares & 

Alvarez, 2015). Mercury is arguably the most hazardous metal pollutant in the 

environment. It causes severe diseases due to its physiological toxicity and neurotoxicity 

effects. The Occupational Health and Safety Authorities (OSHA) across the globe only 

permit 0.1 ppb level of its exposure, while contacting it at ten ppb will have an immediate 

danger (Buratti et al., 2019: Priyadarshini & Pradhan., 2017). Hg0 and Hg2+ pollution are 

common contaminants released from both natural sources such as volcano eruptions and 

anthropogenic emissions from industrial processes such as mining and fossil fuel 

combustion (Tangahu et al., 2011). Mercury can be emitted into the air and subsequently 

settle into the water. More noteworthy, the water-soluble mercury tends to be converted 

to methylmercury, the most toxic form of mercury, through biomethylation by 

microorganisms. This will eventually result in contamination of the food chain, which 

leads to poisoning or even malignancy (Priyadarshini & Pradhan., 2017: Fu et al., 2019). 

The World Health Organization (WHO) reports that among some subsistence fishing 

populations, between 1.5/1000 and 17/1000 kids displayed cognitive impairment (severe 

mental retardation) caused on by fish consumption containing mercury. These included 

the populations of Brazil, Canada, China, Columbia, and Greenland. In 2010, 

consumption of methylmercury was linked to 7,360 fatal heart attacks and a 0.14-point 

decline in the IQ of each foetus, according to a map of Hg-related health concerns in 

China. Chinese anthropogenic factors are responsible for about 61.8% (4532 fatal heart 

attacks) and 60.8% (0.08 points) of IQ declines. The remaining statistics relate to 

emissions from both domestic and foreign anthropogenic sources as well as natural 

processes such as volcanic eruptions, crustal weathering, and oceanic evasions (Chen, 

Liang & Liu, 2019). Therefore, close monitoring of mercury-befouled water in real-time 

becomes a crucial task. 

1.2 Problem statement 

Moreover, determining the pollutant in the environment is vital to discover a targeted 

region for the remediation process, which is at the frontline of research (Wang et al., 

2020). Several advanced and sophisticated instruments were used to identify heavy metal 

ions in river or seawater samples, such as microwave plasma atomic emission 

spectroscopy (MP-AES (Ríos, Peňuela & Botero, 2017), atomic absorption spectrometry 

(AAS) (Bannon & Chilson, 2001), and inductively coupled plasma mass spectrometry 

(ICP-MS) (Yamakawa, Moriya & Yoshinaga, 2017). These instruments are operative 

and reliable. However, they come at a very high cost. Because these facilities are 
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laboratory bound and often operated by highly trained personnel, conducting a robust in-

situ analysis is less practical. Therefore, developing a new system that is easy to use and 

selective toward specific metals of concern is significant. 

 

To detect such small targets, a colorimetric and plasmonic approach using gold 

nanoparticles (AuNPs) is an optimal method thanks to its unique properties of localized 

plasmon resonance and plasmon coupling effect (Priyadarshini & Pradhan, 2017). A 

standalone localized plasma of well dispersed AuNPs gives its solution a red-to-orange 

range of colors depending on the size and shape of the AuNPs. Meanwhile, when two or 

more particles come into proximity with a distance of less than 4 nm, plasmon coupling 

will occur, thus causing the red-shift of the absorbance peak spectra, which is associated 

with a red-to-purple or red-to-blue color change of the AuNPs solution. Governing such 

aggregation are molecular interaction forces between the AuNPs-surface bound 

capturing agent and the target (ions, molecules, etc.). Peptides, aptamers, and DNA are 

the usual capturing agent candidates to capture a specific target selectively. These 

capturing agents often serve as monoligands, using only one specific surface-bound 

bioreceptor. However, the aggregation has an entropic obstacle for the aggregates to be 

fixed in an optimal condition. 

 

In this study, we propose using a heteroligand system to control the AuNP aggregation 

more efficiently in detecting target molecules. This study constructs a heteroligand 

tripeptide library, consisting of seventy-eight pairs of capturing agents combined from 

eleven novel and one commercial tripeptide. The tripeptides were designed based on the 

ATCUN (amino-terminal Cu2+ and Ni2+ binding) motif structure, with a thiol group at 

the center back of the tripeptide to anchor onto the AuNP surface via thiol-gold 

interaction. Tripeptides were individually conjugated onto the AuNPs surface and the 

interaction between seventy-eight pairs of capturing agents upon the addition of ten metal 

ions was studied. With a combination of two different tripeptides, the heteroligand-

functionalized AuNPs detection system formed a more stable complex with the targeted 

Hg2+ than the monoligand systems. 

 

1.3 Objectives 

 

The objectives of this study are: 

 

• To construct a tripeptide heteroligand library as capturing agents for mercury 

plasmonic detection 

 

1. To design eleven novel tripeptides that mimics ATCUN motif features 

for metal ions detection 

2. To optimize the tripeptide-AuNPs in order to enhance the sensing 

signal  

3. To study the effectiveness of tripeptide-AuNPs in targeting Hg2+ and 

compare between the monoligand and heteroligand system 
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