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Lipases are versatile enzymes that have been altered through various 
modification methods to improve their enzymatic properties to meet 
biotechnology industry requirement. Since decades ago, lipases from many 
sources have been study widely as potential biocatalyst to assist synthesis of 
biodiesel. Some of them have been altered via protein engineering approach to 
enhance their enzymatic performance and stability. The thermostable T1 lipase 
from Geobacillus zalihae can also be a great biocatalyst candidate in biodiesel 
production. However, inactivation of T1 lipase when the enzyme is surrounded 
by high concentration of methanol solvent is limiting its uses in industrial 
applications. Since introduction of non-bonded interactions hardly improved their 
stability of T1 lipase in methanol, the introduction of disulphide bond could be 
the best proposition to retain protein conformation and the enzyme stability in 
the presence of methanol. Hence, current study aims to engineer a methanol-
tolerant lipase by site-directed mutagenesis and divulge the interaction that 
stabilizes the mutant by X-ray crystallography. The preliminary study on enzyme 
stability was conducted by using online software ERIS, FoldX and MAESTRO. 
The stability of the mutant 2DC lipase was tested virtually and molecular dynamic 
simulation was performed in water and methanol solvent. Experimentally, the 
purified protein of mutant 2DC lipase was used to screen protein crystal for 
diffraction to elucidate and validate the mutant’s structure. It showed that the 
substitution of amino acid S2 and A384 with cysteine could enhance the stability 
of the enzyme by promoting the formation of disulphide bond to tighten the both 
terminal ends of the protein structure. The substitution of amino acid cysteine 
showed the changes on the active site distance (S113, D317, and H358), 
however, it was not affected the lipase activity and folding of protein structure. 
The 2DC mutant was successfully constructed and cloned into pET32-b and 
transformed into Origami B (DE3) expression host. The expression and 
purification using Ni2+-Sepharose affinity chromatography and gel filtration 
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chromatography S-200 of the protein yielding 4.0 mg/ml mutant 2DC lipase 
suitable for protein crystallization. The mutant 2DC lipase was crystallized after 
24-hour incubation at 20°C and diffracted by X-ray crystallography for deeper
evaluation in term of stability and rigidity. The crystal was diffracted at 2.04 Å
using in-house X-ray beam and the crystal belongs to monoclinic space group
C2, with unit cell parameter of a = 118.17, b = 81.5, c = 100.05. Details
information on structural elucidation of the mutant 2DC lipase has disclosed the
changes within the mutant structure which associated with the alteration of
enzyme activity and stability posed by the mutant. The increased in rigidity of the
structure as well as changes of interaction within the catalytic region of the
mutant 2DC lipase were suggested to be the factor influenced its enzymatic
activity, stability and tolerance towards methanol. Hence, this newly improved
mutant 2DC lipase could be the next potential biocatalyst in biodiesel production
industry.
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Lipase merupakan sejenis enzim yang serba boleh dan telah diubahsuai melalui 
pelbagai kaedah untuk meningkatkan kekuatan pada sifat enzimnya. 
Termostabil enzim, T1 lipase daripada Geobacillus zalihae mampu menjadi bio-
pemangkin dalam industry penghasilan biodiesel. Sejak dulu, lipase dari 
pelbagai sumber telah dikaji untuk dijadikan sebagai biopemangkin dalam 
penghasilan biodiesel. Ada diantaranya telah ditambah baik prestasi dan 
kestabilannya melalui kaedah kejuruteraasan protein. Namun demikian, 
pentakaktifan yang berlaku pada T1 lipase semasa berada dalam persekitaran 
pelarut organik metanol yang pekat, telah mengehadkan fungsi enzim ini untuk 
kegunaan industri. Kehadiran interaksi tanpa ikatan dikatakan tidak mampu 
menambah baik kestabilan enzim. Oleh itu, dengan mewujudkan ikatan disulfida 
dalam struktur enzim, ia berkemungkin akan membantu mengekalkan kestabilan 
enzyme dalam pelarut organik metanol. Justeru, penyelidikan ini adalah 
bertujuan untuk menghasilkan lipase yang mempunyai toleransi terhadap 
metanol melalui mutagenesis terarah tapak serta merungkai interaksi yang 
menstabilkan mutan tersebut melalui proses kristalografi sinar-X. Penyelidikan 
preliminari ke atas kestabilan enzim telah diramal melalui perisian atas talian 
seperti ERIS, FoldX and MAESTRO. Kestabilan mutan 2DC lipase telah diuji 
secara maya dan simulasi dinamik dengan kehadiran air dan pelarut metanol. 
Seterusnya, protein tulen mutan ini telah disaring bagi menghasilkan protein 
kristal untuk merungkai dan mengenalpasti strukturnya. Berdasarkan ramalan, 
penggantian asid amino S2 dan A384 kepada sisteina mampu menambah baik 
kestabilan enzim serta menyumbang kepada penghasilan ikatan disulfida untuk 
menguatkan ikatan diantara penghujung kedua-dua terminal struktur protein. 
Penggantian asid amino sisteina telah mengubah jarak di antara tapak aktif 
(S113, D317, dan H358), namun ia tidak menggangu aktiviti lipase dan struktur 
lipatan protein. Mutan lipase 2DC telah berjaya dikonstruk dan diklon ke dalam 
vektor pET32-b dan ditransform ke dalam perumah pengekspresan Origami B 
(DE3). Pengekspresan dan penulenan protein melalui kromatografi keafinan dan 
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kromatografi gel telah menghasilkan 4.0mg/ml protein mutan tulen untuk proses 
kristalografi. Kristal mutant 2DC berjaya dihasilkan selepas pengeraman selama 
24 jam pada suhu 20°C. Kristal tersebut telah dibelau untuk kajian stabiliti dan 
ketegaran. Kristal mutan lipase 2DC telah dibelau pada resolusi 2.04 Å dan ia 
telah dikenalpasti tergolong dalam kumpulan monoklinik C2 dengan unit sel 
parameter a = 118.17, b = 81.5, c = 100.05. Maklumat yang diperoleh telah 
merungkaikan struktur mutan lipase 2DC yang berkait dengan tindak balas 
aktiviti, kestabilanserta toleransi terhadap larutan metanol. Berdasarkan kajian, 
penghasilan mutan baru 2DC lipase ini mampu menjadi biopemangkin yang baik 
dalam industri penghasilan biodiesel. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1  Background 
 

Lipases (E.C. 3.1.1.3) catalyze the hydrolysis of triacyl-glycerides into fee fatty 

acids at the water-oil interface, and transesterification reactions in a low-water 

environment (Ghosh et al., 1996). The hydrolysis of carboxylic acid ester 

linkages to free fatty acids (FFAs) and organic alcohols is catalyzed by lipases 

at the organic-aqueous interface when there is an excess of water present 

(Melani et al., 2020). Lipases display great tolerance towards various pH levels, 

temperatures, polar and non-polar solvents, and metal ions (Verma et al., 2012). 

Structurally, all lipase families possess an α/β hydrolase conserved fold, Gly-

Xaa-Ser-Xaa-Gly motif and a conserved catalytic triad composed of serine, 

histidine and aspartate/glutamate residues (Messaoudi et al., 2011; Jo et al., 

2021). The α/β hydrolase fold has a central β-sheet consisting of eight strands, 

with some variation in length among different species. The solvent accessible 

catalytic triad for substrate binding is protected by lid domains, which often 

expose the active sites during artificial activation in the presence of hydrophobic 

substances for enzymatic activity (Jaeger et al., 1999; Chen et al., 2022). 

 

 

Structure modification via protein engineering is a useful approach to alter part 

of an enzyme, which could enhance its structure, function and stability (Kumar 

et al., 2016). Certain approaches are highly recommended for protein 

modification, such as rational design, directed evolution, semi-rational design, 

and De novo design (Liu et al., 2019). These approaches are implemented to 

enhance the properties and interactions of the enzymes such as the catalytic 

region, enzyme folding, and metal binding site, and non-covalent and covalent 

interactions.  

 

 

The stability of most proteins is often perturbed by reaction conditions such as 

temperature and non-aqueous solvents. The substitution of hydrophilic residues 

on the protein surface plays an important role in thermostability by permitting 

interaction with the solvent molecules and reducing the entropic strain of the 

protein structure (Khurana et al., 2011). The replacement of some neutral amino 

acids with basic amino acids has been shown to increase organic solvent stability 

of LST-03 lipase from Pseudomonas aeruginosa. The replacement of amino acid 

at the enzyme surface protects the buried region towards the organic solvents 

molecules (Kawata & Ogino, 2009).  



© C
OPYRIG

HT U
PM

2 
 

 

Recently, the effect of mutation points in creating disulphide bridge on 

Geobacillus thermoglucosidans STB02 has highlighted the role of disulphide 

bridge in thermostability without protein conformation disturbance (Li et al., 

2020). In addition, the presence of disulphide bond could decrease entropic 

change, unfolding and increase in the structure rigidity. Even so, the location of 

disulphide bond, geometric structure (dihedral angles, and steric hindrance), and 

local flexibility (destabilizing energy, B-factor, and RMSD) should all be taken 

into consideration before modification (Xu et al., 2020). However, enhanced 

thermostability does not necessarily contribute to organic solvent stability. 

Korman & co-workers reported that the addition of disulphide bond does not 

influence the methanol tolerance for native PML (Korman et al., 2013).  

 

 

Though, in this study, elucidating the structure of disulphide mutant lipase was 

proposed to provide a combined solvent and thermal stability and focusing on 

improving the performance of T1 lipase when using in harsh condition such as 

high concentration of methanol in biodiesel production as a biocatalyst. The 

polarity of increasing methanol concentration to predict stability in MetOH lead 

to the observation of intramolecular and protein-solvent interaction patterns 

validated experimentally and characterized by numerical indices. Therefore, by 

introducing newly bonded covalent interaction such as disulphide bond which 

connected between the N-termini and C-termini of the enzyme structure, it could 

help in enhancing the activity as well as the stability of the T1 lipase towards 

methanol solvent and water. 

 

1.2  Objectives 
 
 
The main aim of this project was to engineer a methanol-tolerant lipase from 
the wild-type T1 lipase and unveil the interactions that stabilizes and increase 
its performance in the presence of organic solvent, methanol. Therefore, the 
specific objectives are: 
 
1. To characterize the effect of different methanol solvent concentration      on 

the structural stability of the mutant 2DC lipase via in-silico analysis. 
 

2. To further explore the effects of disulphide bonds on the properties of mutant 
2DC lipase biochemically and biophysically. 

 
 

3. To validate the structure of the newly construct, mutant 2DC lipase by X-ray 
crystallography technique. 
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