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The application of microorganisms in Reactive Red 120 (RR120) remediation 
has gained significant attention. Textile effluents containing RR120 is known for 
its carcinogenicity and mutagenicity. The major issue in the biodegradation of 
RR120 by microorganisms is it is very difficult to isolate microorganisms able to 
utilise the dye as a carbon source as this can completely mineralized the dye. 
This study investigates and compares the role of methods and media used in 
obtaining bacterial consortia capable of decolourising RR120 as the sole carbon 
source, which is extremely rare to find. Three RR120-decolourising consortia 
were isolated from contaminated water samples from the Juru River, Malaysia. 
Only consortium JR3 was able to decolourise RR120 as a sole carbon source 
compared to the rest of the consortium. Based on 16S rRNA gene sequence 
analysis and biochemical test, consortium JR3 consists of Pseudomonas 
aeruginosa strain MM01, Enterobacter sp. strain MM05 and Serratia 
marcescens strain MM06. It was found that a mix of the bacterial consortium JR3 
was able to decolourise RR120 much faster compared to single strains of MM01, 
MM05 and MM06. 

Initially, consortium JR3 was able to decolourise 42.5% of 50 ppm RR120 within 
24 h of incubation. Using one-factor-at-time optimisation processes, the 
consortium JR3 was enhanced to decolourise 88.2% of 50 ppm RR120 within 24 
h. The result illustrates that yeast extract at 0.7 g/L, ammonium sulphate at 0.75
g/L, phosphate buffer with pH 8, the temperature at 35°C and RR120
concentration at 200 ppm as the optimum decolourisation conditions required by
consortium JR3. Meanwhile, based on statistical optimisation using Response
surface methodology (RSM), ammonium sulphate 0.645 g/L, pH 8.293, 200.1
ppm of RR120, temp 34.53°C results in a decolourisation rate of 93.34% at 48
h. Discriminatory statistical analysis in modelling studies illustrates that the best
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primary model was the modified Gompertz model, while the secondary model 
was best suited by Aiba. 

The ability of consortium JR3 to decolourise RR120 under the presence of heavy 
metals such as silver, arsenic, cadmium, chromium, copper, mercury, lead, and 
zinc were also investigated in this study. It was found that chromium had the 
least effect on RR120 decolourisation followed by zinc and lead. Meanwhile, 1 
ppm mercury has the highest inhibitory effect on consortium JR3, therefore, 
reducing decolourisation of 200 ppm RR120 by 32.5%. The consortium was able 
to tolerate up to 10 ppm of chromium and 1 ppm of mercury. The decolourised 
RR120 product showed less inhibition effect on Vigna radiata’s seed germination 
compared to the parent compound, suggesting that RR120 toxicity has been 
reduced.  RR120 at the lowest concentration of 25 ppm reduced seed 
germination by 17.7%, shoot length by 1.13 cm and root length by 1.43 cm. The 
decolourised product of 25 ppm RR120 illustrated no significant difference 
(p>0.05) to control.  

In conclusion, the consortium JR3 has the potential to be used in the 
management of RR120 contamination in the environment. Consortium JR3 was 
not only able to decolourise at high concentrations of 500 ppm RR120, but the 
end product is safer compared to the parent compound alone in Vigna radiata 
toxicity studies 
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PENGASINGAN DAN PENYAHWARNAAN PEWARNA REAKTIF MERAH 
120 OLEH KONSORTIUM BAKTERI YANG BERCAMPURAN DARI SUNGAI 

JURU, MALAYSIA 
 
 

Oleh 

MOTHARASAN MANOGARAN 

Julai 2021 

Pengerusi : Mohd Yunus bin Abd. Shukor, PhD  
Fakulti  : Bioteknologi dan Biomolekular Sains 
 
 
Penggunaan pewarna amat penting dalam mana-mana organisasi, terutamanya 
di dalam industri yang melibatkan penghasilan makanan dan pakaian. Disebalik 
pengguna dalam industri pembuatan, pembuangan limbah yang tidak dirawat ke 
sungai dan saluran air menyebabkan kebimbangan terhadap kesihatan kita 
akibat daripada kesan toksik, karsinogenisiti dan mutagenisiti pewarna ini. Oleh 
itu, pemerhatian harus wajar diberikan kepada isu, terutamanya semasa 
merawat sisa-sisa air pewarna. Kebolehan mikroorganisma untuk 
menyahtosikkan pewarna telah lama diketahui dan penggunaan 
mikroorganisma ini di dalam teknologi berasakan bioremediasi amat dialu-
alukan kerana penglibatan kos yang murah. Objektif utama kajian ini adalah 
untuk memencilkan bakteria yang mempunyai kemampuan menggunakan 
pewarna Reaktif Merah 120 (RR120) dan mengoptimumkan keadaan 
biodegradasinya. Tiga konsortia kebolehan menggunakan RR120 berjaya 
dipencilkan daripada tempat tercemar di Sungai Juru, Malaysia.  Konsortia ini 
dinamakan sebagai konsortium JR1, JR2 dan JR3 berdasarkan kaedah. Hanya 
konsortium JR3 mempunyai keupayaan untuk menggunakan RR120 sebagai 
sumber karbon dalam proses percambahan mikroorganisma.  Berdasarkan gen 
16S rDNA dan ujian biokimia, konsortium JR3 terdiri dari Pseudomonas 
aeruginosa strain MM01, Enterobacter sp. strain MM05 dan Serratia 
marcescens strain MM06. Didapati bahawa campuran ketiga-tiga strain ini 
mampu menguraikan RR120 dengan kadar yang baik dan cepat berbanding 
dengan strain tunggal. 
 
 
Faktor-faktor yang mempengaruhi penyahwarnaan RR120 seperti kepekatan 
ekstrak ragi, jenis dan kepekatan ekstrak ragi, penimbal pH yang bertindih, suhu 
dan kepekatan RR120 dioptimumkan menggunakan satu faktor pada satu masa 
(OFAT) dan kaedah tindak balas permukaan (RSM). Asalnya, konsortium JR3 
berupaya menyahwarnakan 50 bahagian per juta (bpj) RR120 sebanyak 42.5% 



© C
OPYRIG

HT U
PM

iv 
 

dalam masa 24 jam selepas inkubasi. Dengan menggunakan proses 
pengoptimumkan ini, kebolehan konsortium JR3 menyahwarna 50 bpj RR120 
dapat ditingkatkan kepada 88.2%. Melalui proses OFAT, kepekatan amonium 
sulfat dalam 0.7 g/L, pH 8, suhu 35°C dan kepekatan RR120 dalam 200 bpj, 
merupakan keadaan penguraian RR120 paling optimum untuk konsortia JR3. 
Manakala, berdasarkan pengoptimuman RSM, kepekatan amonium sulfat dalam 
0.645 g/L, pH 8.293, 200.1 ppm RR120 dan suhu kadar 34.53°C dapat 
meningkatkan kadar penguraian RR120 kepada 93.34% dalam massa 24 jam. 
 
 
Penggunaan model sekunder menunjukkan model Aiba adalah yang terbaik. 
Keupayaan konsortium JR3 untuk menguraikan RR120 dengan kehadiran 
logam berat seperti perak, arsenik, kadmium, kromium, tembaga, merkuri, 
plumbum dan zink juga telah dikaji dalam kajian ini. Didapati bahawa 1 bahagian 
per juta (bpj) kromium mempunyai pengaruh paling sedikit terhadap penguraian 
RR120 dan diikuti zink dan plumbum. Manakala, merkuri mempunyai kesan 
rencatan yang tertinggi pada konsortium JR3 dengan mengurangkan 
penguraian RR120 sebanyak 32.5%. Tambahan pula, konsortium JR3 adalah 
toleran sehingga 10 bpj kromium dan 0.1 bpj merkuri. 
 
 
Ketoksikan pewarna RR120 dan produk metabolit biodegradasi disiasat 
menggunakan biji kacang hijau (Vigna radiata). Produk biodegradasi 
menunjukkan kesan penghambatan yang lebih rendah terhadap percambahan 
biji Vigna radiata berbanding pewarna RR120. Ini menunjukkan bahawa produk 
metabolit yang terhasil semasa penyahwarnaan RR120 oleh konsortium RR120 
adalah selamat. Kepekatan 25 bpj RR120 telah mengurangkan kadar 
pencambahan biji Vigna radiata sebanyak 17.7%, panjang pucuk sebanyak 1.13 
cm and panjang akar sebanyak 1.43 cm. Produk metabolit penguraian 25 ppm 
RR120 menunjukkan tiada perbezaan ketara (p>0.05) dengan kawalan. 
Kesimpulannya, penemuan mikroorganisma yang dapat menggunakan pewarna 
akan menjadi kunci bioremediasi yang penting dalam mengawal tahap 
pencemaran pewarna dalam sumber air. Konsortium ini bukan sahaja dapat 
menguraikan pewarna RR120, tetapi produk metabolit yang terhasil adalah lebih 
selamat berbanding sebatian asal. Toleransi consortium JR3 terhadap logam 
berat merupakan nilai tambahan dalam aplikasi bioremediasi.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

There may be a preamble at the beginning of a chapter. The purpose may be to 
introduce the themes of the main headings. Azo dyes account for 70% of the 9.9 
million tons of industrial dye used annually with a global turnover valued at USD 
30.42 billion (Balapure et al., 2015; Gürses et al., 2016). The continual demand 
for dyes and pigments causes an increase in the supply rate to about 3.5% per 
annum (Pang & Abdullah, 2013). Most of the dyes synthesised contain azo 
compounds and are predominantly used in textile, paper, food, printing, cosmetic 
and leather industries (Benkhaya et al., 2020). These azo dyes are extensity 
used in fabric manufacturing as dyes are low in cost, ease of preparation, 
fastness, versatility and intensity of the colours (Rawat et al., 2016). Certain azo 
dyes contain chemical groups which have a high affinity for metal ions (Hussain 
et al., 2016). Chromium and copper are the most common metals used in these 
dyes, as metal ions provide better binding with fibre, improving the resistance of 
the dye to washing (Benkhaya et al., 2020; Xu et al., 2018; Bhatia et al., 2017). 
These enhanced properties provide a high degree of chemical, biological, and 
photocatalytic stability. Nevertheless, their resistance to breakdown for long a 
period of time, exposure to sunlight, detergents, water and microorganism 
results in poor degradation in the environment (Solís et al., 2012).  
 
               
Pollution and poisoning by azo dyes still happen to this day. With the ever-
increasing cancer numbers, dye plays important role in contributing it as 
breakdown product produces toxic amines and benzenes (Oliveira et al., 2016; 
Bharagava et al., 2018; Joshi & Katti, 2018; Igiri et al., 2018). These toxic 
metabolites easily get into us by consuming water and fish exposed to dye 
wastes. Discharge of untreated textile waste into nearby streams and rivers can 
cause anoxic conditions that are lethal to the aquatic organisms (Balakrishnan 
et al., 2016). Particularly, 10-15% of reactive dyes are measured to be hazardous 
xenobiotic concentrations in water (Selvaraj et. al. 2020). For example, the 
contamination of disperse orange 37 has been reported in the Khniss river with 
a concentration of 6.438 μg/L, while disperse Red 1 and Yellow 3 were detected 
at 3.873 μg/L and 1895 μg/L, respectively, in the Hamdoun river, Tunisia 
(Methneni et. al. 2021). Meanwhile, Ito et. al. (2016) reported a gradual decrease 
of 254 mg-dye day−1 g-volatile total solids to 120 mg-dye day−1 g-volatile total 
solids at the Yabagawa river over a 5-month period even after the dye factory 
was closed illustrating that dye breakdown is a slow process. 
 
 
Therefore, chemical treatment of the effluents is often employed to treat the 
waste. These include various physical and chemical methods that have been 
used for the removal of azo dyes from wastewater (Khouni et al., 2011). 
However, only big industries such as Adidas, Nike, Polo etc. utilises this 
approach as it involves a huge cost. Small scaled manufacturers tend to dispose 
of it away without any treatment (Ayed et al., 2010).  
 



© C
OPYRIG

HT U
PM

2 
 

Chemical processes such as oxidative process, H2O2-Fe(II) salts (Fenton’s 
reagent), ozonation, photochemical, cucurbituril, and electrochemical 
destruction are examples used for decolourisation purposes in aqueous solution 
(Crini & Lichtfouse, 2019) although they are largely ineffective to remediate dye 
in soil. Granting this method is highly effective, faster, and most importantly able 
to be done on large scale, the drawback of this mechanism is quite distressing 
(Crini & Lichtfouse, 2019). Some of these processes are dye-specific making 
mixed dyes eluents takes several processes to completely decolourise them. 
Besides that, the breaking of dye’s chemical structure results in releasing more 
toxic compounds (Oliveira et al., 2016; Bharagava et al., 2018; Joshi & Katti, 
2018; Igiri et al., 2018).  
 
 
Traditional biological procedures combined with physio-chemical treatment 
processes are capable to achieve better decolourisation results. Since chemical 
methods are generally costly with limited applicability, which are difficult to 
dispose of, combination with biological processes has received increasing 
interest owning to their cost-effectiveness, ability to produce less sludge, and 
environmental benignity (de Lorenzo, 2018; Shah, 2019).  Soil bioremediation is 
usually a relatively cost-effective method, especially if the principal contaminant 
is inorganic. Estimated costs range from RM 124 – RM 3121 per cubic yard of 
treated soil contaminated by one type of azo dye, and subsequently, the cost 
increases based on the number of mix dyes present at the site (Goswami et al., 
2000; Arora, 2018; Yadav et al., 2018; Ni et al., 2018). Bioremediation of 
wastewater/effluents is also economical if the main contaminant is free from 
organic matter. Costs can range from RM 137 – RM 832 per 1000 gallons of 
treated water (Goswami et al., 2000; Arora, 2018; Yadav et al., 2018; Ni et al., 
2018). Therefore, developing a practical bioprocess for treating dye-containing 
wastewater is of great significance. The effectiveness of microbial 
decolourisation depends on the adaptability and the effectiveness of selected 
microorganisms (Ghatak & Das, 2018; Yan et al., 2018; Eskandari et al., 2019; 
Mishra & Maiti, 2019a; Franca et al., 2020). 
 
 
For over a century, microbial decolourisation of azo dyes is an unsolved puzzle 
among scientists. Previously, in microbial azo dye decolourisation, the focus was 
centred towards isolating bacteria or consortium having higher azo dye tolerance 
level needed as a tool for bioremediation (Chen et al., 1999; Pointing & Vrijmoed, 
2000; Chagas & Durrant, 2001; Yoo et al., 2001; Işik & Sponza, 2003; Song et 
al., 2003). To achieve this, various additional carbon sources and higher 
concentrations of co-substrate were introduced. During the last ten years, 
attention has shifted towards isolating microorganisms with the ability to 
decolourise azo dyes with complete mineralisation ability (Masarbo et al., 2018; 
Meerbergen et al., 2018; Mishra & Maiti, 2018; Eskandari et al., 2019; Parmar & 
Shukla, 2019). The focus changed is mainly because of degraded metabolites 
of azo dye were found to be carcinogenic and mutagenic (Shen et al., 2015; Yan 
et al., 2018; Kumar et al., 2019). However, to isolate such a decolouriser able to 
consume azo dye as the sole carbon source remained a big challenge to this 
date. Therefore, further understanding of the decolourisation mechanism and 
kinetics of azo dye decolourisation through various optimisation processes will 
help in solving the phenomenon of a better azo dye decolourisation. 
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Consequently, it will then become a significant step towards the effective’s 
translation of laboratory results into field practice.  
 
 
1.1 Statement of the problems and significance of the study 
 
 
Dye pollution is a global issue. Countries such as China (Wu et al., 2019), 
Germany (Oliveira et al., 2018), India (Pandey et al., 2016), and Pakistan (Daud 
et al., 2017) has increasingly reported in dye contamination issues. During textile 
dyeing, about 10 to 60% of Reactive Red 120 is expected to be lost, resulting in 
large amounts of colored wastewater (Reddy & Osborne, 2020). It is estimated 
that an average of 10% to 15% Reactive Red 120 used in the fabrication of textile 
materials is discharged into the environment each year around the world 
(Swarnkumar & Osborne, 2020). Anvi et al. (2019) reported the outflow 
concentration of the Reactive Red dye from the final clarifier of the textile factory 
in India was at 45 ppm. Meanwhile, Chitra et al. (2018) reported Reactive Red 
discharged from the dye houses ranged from 10 to 250 ppm. 
 
 
Dye pollution in local rivers has been reported countless of times in Malaysia 
(Ramakreshnan et al., 2020; Buhari & Ismail, 2016). Out of the 473 rivers 
monitored in Malaysia in the year 2017 alone, 244 (52%) of them are clean, 186 
(39%) are slightly contaminated, and 43 (9%) are polluted (Afroz et al. 2017). In 
these polluted rivers, ammonical nitrogen, biochemical oxygen demand (BOD) 
and suspended solids (SS) continued to be significant, where high BOD has 
been attributed to inadequate sewage or effluent treatment from agriculture and 
manufacturing industries (Zin et al. 2018). Most of these contaminations are 
contributed by small scale manufactures whereby the cost of treating the 
effluents becomes the main hurdle for them. In the Juru River, it has been 
reported that 48 mg/L of Reactive Red 120 is found in the river basin and the 
concentrations vary depending on the seasons (Buhari et al., 2016). Meanwhile, 
in Kelantan, up to 215 mg/L of Reactive Red dyes can be found on average in 
textiles sludges, which is commonly used in Batik manufacturing (Razali et al. 
2020, Buttiyapan et al., 2016, Yacoob et al., 2016). Thus, cost-effective 
remediation is much needed to address this issue. 
 
 
Various azo dye decolourisation using bacteria such as Reactive Black 5 
(Eskandari et al., 2019), Black 5 (Kumar et al., 2019), Methyl Orange (Masarbo 
et al., 2018), Acid Red (Franca et al., 2020), Metanil Yellow (Li, et al., 2020), 
Yellow G (Guo et al., 2020b) and Green 9 (Das & Mishra, 2017) has been 
reported before. Azo dyes are organic compounds containing an azo group (-
N=N-), but some dyes have two (diazo), three (triazo) or more (Benkhaya et al., 
2020). Reduction of the azo group (N=N linkage) leads to the production of 
aromatic amine compounds which are more toxic and are also known 
carcinogens and mutagenic agents in humans (Zahran et al., 2019). The severity 
of the toxic compounds produced during azo reduction depends on the presence 
of the number of azo linkages (Rasool et al., 2016). The higher the number of 
azo linkages, the more toxic amines and benzene is produced.  Furthermore, 
diazo dyes such as Reactive Red 120 are resistant to bacteria degradation due 
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to the strong chemical bond, and the resulting metabolites are toxic towards 
bacteria (Bhatia et al., 2017). Due to these challenges, Reactive Red 120 is less 
studied compared to mono azo dyes which are easier to be broken down by 
microorganisms (Jamee & Siddique, 2019; Singh & Singh, 2017).To date, only 
Acinetobacter, Bacillus, and Pseudomonas species are reported able to 
decolourise RR120 and requires co-substrate to initiate decolourisation (Reddy 
& Osborne, 2020; Hafeez et al., 2018, Anwar et al., 2014). The exploration in 
isolating bacteria capable of degrading RR120 without any co-substrate is still 
going.  
 
 
Over the past decades, many microorganisms that are capable of degrading azo 
dyes, including bacteria (Mishra et al., 2019ab; Ghatak & Das, 2018), fungi 
(Krishnamoorthy et al., 2018; El-Rahim et al., 2017), actinomycetes (Chittal et 
al., 2019), and algae (El-Sheekh et al., 2018) have been identified. Most of the 
azo dyes are reduced anaerobically to the corresponding amines with cleavage 
of azo bonds by bacterial azoreductase, but they are difficult to be degraded 
aerobically (Jha et al., 2016). Most importantly, these microorganisms were only 
able to utilise dyes as their nitrogen source (Bhatia et al., 2017). The utilisation 
of dyes as nitrogen source leads to the production of toxic metabolites although 
decolourisation is achieved (Sandhya, 2010). The complete degradation process 
only occurs when the dyes are utilised as a carbon source (Zahran et al., 2019; 
Misal & Gawai, 2018). Since only a few bacterial species are reported capable 
of decolourising Reactive Red 120, utilising the dye as a source of energy is 
extremely a slow process and it would require a longer period to achieve a 
complete decolourisation even at the low concentrations of 25 ppm (Gao et al., 
2018b; Bhatia et al., 2017; Singh et al., 2015). Therefore, this study is aimed to 
isolate RR120 decolourising bacterium as a sole carbon source along with 
optimising decolourisation using one-factor-at-a-time (OFAT) and response 
surface methodology (RSM). Apart from that, the kinetics of decolourisation on 
RR120 tolerance level need to be carried as to date, no data is available for 
RR120 azo dye type.  
 
 
Even though decolourisation happens, total mineralisation might not occur 
(Zahran et al., 2019; Rawat et al., 2018; Krishnan et al., 2017). Due to this risk, 
most research opted to report the ability of isolated strains able to decolourise 
various azo dyes, however, the metabolite part usually goes unaccounted for. 
This dilemma has been going for the past few decades, leading to various 
optimisations for decolourisation of Reactive Red 120. The textile industry is the 
main contributor in producing the effluent wastewater containing Reactive Red 
120 due to the more consumption of water for its different wet processing 
operations. These textile effluents are high in colour, suspended solids (SS), 
biochemical oxygen demand (BOD), total organic carbon (TOC), chemical 
oxygen demand (COD), temperature, pH, turbidity and toxicity (Aghasadeghi et 
al., 2018). Hence, to study the effect of these conditions, several parameters 
such as nitrogen concentrations, pH, temperature and Reactive Red 120 
concentrations were investigated on their role in improving the decolourisation 
rate. 
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Besides that, in the case of azo dye decolourisation, the ability of the isolated 
strains able to decolourise the dye in the presence of heavy metals has been 
less studied before (Cui et al., 2020; Li, et al., 2020; Zhuang et al., 2020; 
Krishnamoorthy et al., 2018; Cao et al., 2019; Meerbergen et al., 2018). In the 
application of bioremediation, these strains will be exposed to various cocktails 
of chemicals, mostly consisting of heavy metals such as chromium, zinc, copper, 
cadmium, iron, and mercury as part of the manufacturing downline (Reddy & 
Osborne, 2020; Noreen et al., 2017). Hence, there is the need to isolate and 
identify bacteria not only able to decolourise azo dye as the sole carbon source, 
but also able to tolerate various concentrations and types of heavy metals. The 
work in this thesis is aimed at isolating such a decolouriser.  
 
 
1.2 Hypothesis 
 
 
Reactive Red 120 bacterium isolated from industrial effluent polluted sites 
containing an average of 25 ppm Reactive Red 120 can exhibit a better 
decolourisation ability with the need of less co-substrate for total mineralisation 
of resulting metabolite; meanwhile, optimisation through OFAT and RSM further 
increases decolourisation efficiency and limitation of bacteria ability can be 
analysed through kinetic and heavy metal studies. 
 
 
1.3 Objectives 
 
 
Based on the statements above, the present study aims at isolating a native 
consortium from the textile polluted environment with the potential of utilising 
Reactive Red 120 as the sole carbon source that can be utilised as ex-situ 
treatment in a controlled environment. With this in mind, the objectives of the 
study are as follow: 
 

1. To isolate for Reactive Red 120-utilising bacterium or consortium 
from a polluted river in Malaysia as the sole carbon source, 
  

2. To determine the role of medium composition and yeast extract in 
aiding Reactive Red 120 decolouration. 

 
3. To determine the optimal nutritional and physical conditions of the 

bacterium/consortium for a maximum Reactive Red 120 
decolourisation using OFAT and RSM approach.  

 
4. To investigate the primary and secondary modelling of the kinetics 

process for Reactive Red 120 decolourisation in the dye-degrading 
bacterium/consortium. 

 
5. To determine the effect of heavy metals on Reactive Red 120 

decolourisation, 
 

6. To assess the toxicity level of Reactive Red 120 degraded 
metabolites on Vigna radiata seed germination, shoot and root 
length. 
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